
Page 1 of 16

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(15):951 | http://dx.doi.org/10.21037/atm-20-4428

Upregulation of STAT1-CCL5 axis is a biomarker of colon cancer 
and promotes the proliferation of colon cancer cells 
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Background: Colorectal cancer (CRC) is the third most commonly diagnosed cancer in men and women 
globally. Investigating genetic ground differences between normal and CRC tissues would be significant for 
identifying some key oncogenic pathways and developing anti-cancer agents.
Methods: Weighted gene co-expression network analysis (WGCNA) method was used to screen out core 
pathways related to the clinical traits of CRC patients. Then, multiple databases were utilized to further 
verify the hub genes obtained from data mining. Finally, to explore the role of hub genes in CRC, cell 
counting and EdU assays were performed.
Results: The results of the WGCNA analysis showed that a module (turquoise module) was highly related 
with CRC differentiation grade (R =0.53, P<0.0001). Enrichment analysis indicated that genes of the 
turquoise module were remarkably enriched in multiple inflammatory processes and pathways. Among all 
hub genes of the turquoise module, the mRNA levels of STAT1 and CCL5 were significantly higher in CRC 
than in normal colon tissues. STAT1 expression was highly positively correlated with the level of CCL5. The 
results of the cell counting, EdU, CCK-8, and CFSE staining assays showed that interfering with STAT1 
and CCL5 could inhibit the proliferation of CRC cells.
Conclusions: Our study indicated that the STAT1-CCL5 axis is an important modulator in the 
development of CRC through promoting cell proliferation. Moreover, the levels of STAT1 and CCL5 might 
be valuable biomarkers for CRC screening.
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Introduction

Colorectal cancer (CRC) was the third most commonly 
diagnosed cancer in men and women in 2019 (1). The 
statistical data of the American Cancer Society showed that 
CRC is the second leading cause of cancer-related death in 
the United States (1). Improvements in cancer prevention, 
early diagnosis, and treatment strategies leaded to a 35% 
decrease in CRC-associated mortality between 1990 and 
2007 (2). Encouragingly, the advancements in precision 
medicine have further improved the outcomes of patients 
without compromising treatment effects. Nevertheless, a 
recent report presented an unsatisfactory 5-year survival 
rate for stage IV CRC patients of about 14% (3). With the 
developments of gene sequencing techniques, there is a 
growing body of evidence that indicates that some genetic 
alterations, such as those in KRAS, NRAS, epidermal 
growth factor receptor (EGFR), as well as APC, are closely 
related to carcinogenesis and poor clinical outcomes in 
CRC (4). For colon cancer patients, these gene expression 
statuses not only predict prognosis but also herald the 
efficacy of some regimens such as bevacizumab, cetuximab, 
and panitumumab (5). Therefore, investigating genic 
background differences between normal and colon cancer 
cells would be significant to identifying some key oncogenic 
pathways and understanding the malignant biological 
behaviors of cancer cells, and may also provide valuable 
information for the development of anti-cancer drugs. 

In the present study, we calculated the correlation values 
of genes through a WGCNA-based systemic biology 
method and identified a novel signaling pathway associated 
with the development of colon cancer and the prognosis 
of patients. This study was based on dataset GSE29612. 
The raw gene expression data of GSE29621 were provided 
by Chen et al., and the pre-processed gene matrix was 
downloaded from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo) (6). GSE29612 
contains the expression profiles of 65 colon cancer samples 
(tumor purity >90%, without genetic cancer syndromes and 
inflammatory bowel disease) (6).

Methods

Data cleaning and processing

Figure 1 shows the workflow followed in this study. The 
gene expression values were detected with the Affymetrix 
Genechip Human Genome U133 Plus 2.0 Array and were 
further transformed using the Robust Multi-array Average 

(RMA) algorithm. Then, based on the results of variance 
analysis, the top 50% of the variant genes (10,826 genes) 
were used in the following WGCNA analysis. 

Constructing co-expression network 

To construct the co-expression network, the gene expression 
matrices of 10,826 genes were extracted by WGCNA 
package (version of R software: 3.6.0). The analysis was 
performed as previously described (7). The connection 
strength between two nodes was calculated by adjacency 
matrix aij using the following formula:

( ), ,ij ij ij i ja S S cor x xβ= =                                                 [1]

In the formula, xi and xj represent the vectors of the 
expression data of genes i and j. Sij represents the Pearson’s 
correlation coefficients of xi and xj. aij reflects the network 
connection strength between two genes. In this study, β 
=5 was served as the soft-threshold value for constructing 
the scale-free network (scale-free R2 >0.85). In WGCNA 
analysis, the correlations between two connected genes as 
well as the correlations between multiple associated genes 
are vital parameters. A series of modules were generated by 
hierarchical clustering of weighted coefficient matrix. Then, 
topological overlap measure (TOM) was calculated using 
the following formula:

Figure 1 The work flow of the study.

Downloading the gene matix of GSE29621

Pretreating gene expression data before futher analysis

Screening top 50% variant genes

Pathway enrichment analysis

Indentifying hub genes

Constructing weighted gene co-expression network

Identifying clinically significant expression modules



Annals of Translational Medicine, Vol 8, No 15 August 2020 Page 3 of 16

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(15):951 | http://dx.doi.org/10.21037/atm-20-4428

( )
, , ,1

,
,min , 1

N
i k k j i jK

i j
i j i j

A A A
TOM

K K A
=

× +
=

+ −
∑  

                                     [2]

In this formula, Ai,j represents weighted adjacency matrix 
calculated by Ai,j=|cor(xi,xj)|

β. TOM-based dissimilarity 
method (minimized gene group =50) was employed to 
perform average linkage hierarchical clustering. The 
DynamicTreeCut algorithm was used to distribute genes 
with similar expression patterns into the same module. 

Identifying clinically significant modules

Two parameters, module gene significance (MS) and module 
eigengenes (MEs), were adopted to evaluate the correlations 
between the clinical traits of patients and clustered modules. 
As the first principal component, the expression levels of all 
the genes in one clustered module could be profiled with 
ME. Gene significance (GS) refers to the absolute values of 
P in the linear regression analysis. MS was calculated based 
on the average GS values of all the genes in each module.
 

KEGG pathway and GO term enrichment analysis

As previously described, the enrichment analysis was 
conducted using the online analysis tool G: Profiler (https://
biit.cs.ut.ee/gprofiler/) (version: e98_eg45_p14_ce5b097). 
The significantly enriched KEGG pathways and GO 
terms were identified with <0.05 serving as the cutoff for 
determining the false positive rate. 

Hub genes

Hub genes were screened out by calculating their connectivity 
with other genes (|cor.geneModuleMembership| ≥0.8). 
After that, the hub genes had to meet the criterion |cor.
geneTraitSignificance| ≥0.2. To further investigate the 
role of hub genes in CRC, the gene expression matrix 
was downloaded from the GEO, the Cancer Cell Line 
Encyclopedia, The Cancer Genome Atlas (TCGA), and 
the Genotype-Tissue Expression (GTEx) databases. 
Comparisons of hub gene expression levels between tumor 
and normal tissues were performed using the online Gene 
Expression Profiling Interactive Analysis (GEPIA) tool 
(http://gepia.cancer-pku.cn/).

Cell counting

To evaluate the effect of two hub genes, STAT1 and 

CCL5, on colon cancer cells, colon cancer cell lines HCT-
116, SW480, and SW620 were cultured in high-glucose 
Dulbecco’s Modified Eagle Medium (DMEM) supplemented 
with 10% or 1% fetal bovine serum (FBS) at 37 ℃ with 
5% CO2. After the cells were incubated with STAT1 
inhibitor Fludarabine (10 μM, Catalog No: HY-B0069, 
MCE) (8) and CCL5 neutralizing antibody (1 μg/mL,  
Catalog No: 12000-1-AP, Proteintech), the number of 
cells of the three cancer cell lines were counted with a cell 
counting chamber. 

EdU assay

An EdU a s s ay  was  conduc ted  accord ing  to  the 
manufacturer’s instructions (Cell-LightTM EdU Apollo  
567 Kit, Catalog No: C10310-1, RIBOBIO) (9). Firstly, cells 
were seeded in 24-well plates at a density of 3×103 per well 
and incubated for 2 days. Next, the cells were stimulated 
for 12 h with or without 10% FBS. Then, 250 μL EdU 
medium was added to each well. After incubation lasting 
2 h, the cells were fixed with 4% paraformaldehyde for  
20 min. Subsequently, glycine solution was added to 
neutralize aldehydes. After the permeability of the cell 
membrane had been increased with 0.5% TritonX-100 in 
PBS, the cells were incubated with Apollo dyeing reaction 
solution in the dark for 30 min. Nuclei were counterstained 
with Hoechst 33342. Finally, fluorescent images were taken 
at 200× and the positive cells were counted in 5 fields per 
well.

Small-interfering RNA (Si-RNA) transfection

Si-RNA of STAT1 was purchased from RiboBio Co., Ltd. 
(Guangzhou). Tumor cells were seeded at a density of 2×106 
cells in a 6-well plate on the day prior to transfection. The 
transfection was performed using Hieff Trans™ in vitro 
siRNA/miRNA Transfection Reagent (Yeasen Biotech Co., 
Ltd.) according to the manufacturer’s recommendations. 
Twenty picomole Si-RNA was required for each well. 

Real-time PCR analysis

The primers of STAT1 were designed as follows: forward 
primer, 5'-CAGCTTGACTCAAAATTCCTGGA-3'; reverse 
primer, 5'- TGAAGATTACGCTTGCTTTTCCT-3'. The 
primers of CCL5 were designed as follows: forward primer, 
5'-CCAGCAGTCGTCTTTGTCAC-3'; reverse primer, 
5'-CTCTGGGTTGGCACACACTT-3'. Total mRNA was 

https://biit.cs.ut.ee/gprofiler/
https://biit.cs.ut.ee/gprofiler/
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extracted using FastPure Cell/Tissue Total RNA Isolation 
Kit (Vazyme) according to the manufacturer’s protocol. 
Approximately 500 ng total mRNA was reversely transcribed 
to complementary DNA (cDNA) using HiScript II Q Select 
RT SuperMix for qPCR (Vazyme). Quantification reactions 
were performed with ABI 7500 platform. Samples were 
amplified using the following conditions: 95 ℃ for 30 s, 45 
cycles of 95 ℃ for 15 s, 60 ℃ for 60 s. The expression fold 
changes were calculated with the formula: 2−∆∆CT (10).

CCK-8 assay

Cell viability was measured using CCK-8 cell proliferation 
kit (Dojindo). Ten  μL CCK-8 reagent was added into 
100  μL cell culture medium. After incubation for 2.5 hours 
in 37 ℃, the absorbance values were measured at 450 nm 
with the microplate reader (Molecular Devices).

CFSE staining and flow cytometry

SW480 and SW620 were labeled with 2.5 μM CFSE 
(Invitrogen). Then, cells were seeded at the density of 
1 × 106 per well in 6-well plates and cultured with RPMI-

1640 media containing 10% FBS. After culture for 2 days, 
we performed flow cytometry assay to measure the ratio of 
proliferating cells (CFSE-low) with BD Celesta platform. 
The data of flow cytometry were analyzed with Flow Jo 
software (Flow Jo LLC, Ashland, USA).

Results

Constructing the co-expression network and identifying 
clinically significant modules

Patients’ clinical traits were summarized in Table 1. After 
Pearson’s correlation coefficients and average strength 
were calculated, the 65 samples of GSE29621 were 
clustered (Figure 2). Then, with the soft-thresholding 
power as β =5 (R2 >0.85), the co-expression analysis was 
conducted by generating a scale-free network. Based on 
an average hierarchical clustering algorithm, 26 modules 
were generated (Figure 3). Notably, the turquoise module 
possessed a strong correlation with CRC differentiation 
grade (R =0.53, P<0.0001) (Figure 4, Table 2). Thus, 
the turquoise module was identified as having clinical 
significance. 

The results of KEGG pathway and GO term enrichment 
analyses

The turquoise module was a highly complicated gene 
panel comprising 1,723 genes. Therefore, the biological 
functions of the turquoise module were profiled through 
KEGG pathway analysis and GO term enrichment 
analysis. The results of enrichment analysis showed that 
the genes in the turquoise module were significantly 
enriched in inflammation-associated pathways such as the 
B-cell receptor signaling pathway, antigen processing and 
presentation, the chemokine signaling pathway, cytokine-
cytokine receptor interaction, the NF-κB pathway, PD-
L1 expression, and the PD-1 pathway in cancer (Figure 5). 
Furthermore, this panel of genes was remarkably enriched 
in extracellular cytokine release processes including in the 
cytokine-mediated signaling pathway, extracellular regions, 
and chemokine receptor activity. Cytoscape software 
(software version: 3.6.0) was employed to construct the 
interaction networks of GO terms (Figures 6 and 7). 

The identification and verification of hub genes

A total of 82 genes in the turquoise module met the 

Table 1 The clinical traits of patients in GSE29621

Clinical traits Group Values

Gender Male 40

Female 25

Tumor size T2 8

T3 52

T4 5

Lymph node metastasis N0 32

N+ 32

NA 1

Distant metastasis M0 46

M1 18

NA 1

AJCC stage Stage I–II 29

Stage III–IV 36

Vital status Alive 40

Dead 25

Overall survival time 45.87 (median value)
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Figure 2 The clustering dendrogram of 65 CRC samples. CRC, colorectal cancer.

Figure 3 Calculating soft-thresholding power. (A) Calculating scale-free fit indices using different soft-thresholding powers (β).  
(B) Calculating mean connectivity using different soft-thresholding powers.
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Figure 4 Identifying clinically significant modules of GSE29621. (A) The dendrogram of the most variant genes clustered by Dynamic 
Tree Cut algorithm. (B) The heat map profiling the correlations between all module eigengenes and the clinical traits of patients including 
gender, adjuvant chemotherapy history, tumor differentiation grade, tumor size, tumor stage, overall survival, and death event. 
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Table 2 The correlations between the turquoise module and patients’ clinical traits

Module Traits R P values

turquoise Gender −0.19824 0.113414

turquoise Adjuvant chemotherapy −0.15069 0.23084

turquoise Histologic grade 0.519138 9.39E-06

turquoise Tumor size 0.155133 0.217226

turquoise AJCC stage −0.17554 0.1619

turquoise Overall survival time 0.127409 0.311825

turquoise Death event −0.15132 0.228881

Figure 5 KEGG pathway enrichment analysis of genes in the turquoise module. (A) The histogram showing the significantly enriched 
representative KEGG pathways. (B) The bubble diagram showing the significantly enriched representative KEGG pathways.
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Figure 6 The interaction networks of significantly enriched GO biological process and GO cellular component terms. (A) The interaction 
networks of significantly enriched GO BP terms. (B) The interaction networks of significantly enriched GO CC terms. BP, biological 
process; CC, cellular component.
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criteria of |cor.geneModuleMembership| ≥0.8 and |cor.
geneTraitSignificance| ≥0.2 and were subsequently 
screened out as hub genes. Among these 82 genes, two 
genes, STAT1 and CCL5, stood out. The results from the 

TCGA and GTEx databases showed that the mRNA levels 
of STAT1 and CCL5 were significantly elevated in CRC 
tissues compared with normal colon tissues (Figure 8). In 
addition, the correlation analysis of the TGCA, GEO, and 

Figure 7 The interaction networks of enriched GO molecular function terms. 

Figure 8 The mRNA levels of STAT1 and CCL5 in CRC and normal colon tissues. (A) The mRNA levels of STAT1 in CRC and normal 
colon tissues. (B) The mRNA levels of CCL5 in CRC and normal colon tissues. This analysis was performed using the online tool GEPIA. 
CRC, colorectal cancer.
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Cancer Cell Line Encyclopedia databases indicated that 
the expression of STAT1 was closely correlated with that of 
CCL5 (P<0.0001) (Figure 9A,B,C,D). Moreover, in SW489 
and SW620 cells, when STAT1 expression was inhibited by 
Si-STAT1, the level of CCL5 was decreased simultaneously 
(Figure 9E,F). 

STAT1-CCL5 pathway promoting the proliferation of 
colon cancer cells 

For the cancer cells cultured with medium containing 10% 
FBS, STAT1 inhibitor and CCL5-neutralizing antibody 
exhibited anti-proliferative activity. After the HCT-116, 
SW480, and SW620 cells underwent STAT1 inhibitor 
treatment at 10 μM, a significant decrease was observed in 
their numbers. Meanwhile, CCL5-neutralizing antibody 
at 1 μg/mL also decreased the number of cancer cells in 
the culture medium with 10% FBS (a decreasing trend was 
observed, but statistical significance was not reached in the 
HCT-116 cells) (Figure 10). The results of the EdU assay 
showed that treatment with STAT1 inhibitor remarkably 
reduced the number of EdU-positive cancer cells (Figure 11).  
Moreover, we used medium with 1% FBS to minimize the 
potential influence of growth factors from serum. Similar 
to the findings under the conditions of 10% FBS, blocking 
STAT1 and CCL5 inhibited the proliferation of three 
cancer cell types.

In addition, we used Si-STAT1 to explore the effect of 
STAT1 on colon cancer cell’s proliferation in SW480 and 
SW620 cells. The results of CFSE staining assay indicated 
that Si-STAT1 treatment significantly reduced the ratio of 
proliferating (CFSE-low) colon cancer cells (Figure 12A,B). 
The results of CCK-8 and cell number counting assays also 
demonstrated that Si-STAT1 impaired the proliferation of 
colon cancer cells (Figure 12C,D). 

Discussion

Both sporadic CRC and colitis-associated cancer are 
well known to be related to inflammation. At some 
stages of cancer, the localized inflammation not only 
counteracts the anti-tumor immune response through an 
immunosuppressive effect, but it also participates in the 
proliferation, survival, and metastasis of CRC cells (11).  
Be fore  the  tumor  l e s ion  forms ,  cy tok ines  f rom 
inflammatory cells may upregulate the generation of 
reactive nitrogen intermediates (RNI) and reactive oxygen 
species (ROS) (12). Terzic et al. found that intracellular 

RNI and ROS in pre-malignant cells silenced tumor 
suppressors through epigenetic alterations and promoted 
tumor initiation (11). Their study also showed that, apart 
from inducing the initiation of cancer cells, multiple pro-
tumor cytokines could activate the receptors on colon 
cancer cells, which subsequently activated intracellular 
oncogenic signaling pathways or transcriptional factors 
such as NF-κB, AP-1, and STAT3 (11). These oncogenic 
signals regulate a wide range of biological processes 
including cell proliferation, survival, and apoptosis (13,14). 
Furthermore, Li et al. also found that the activation of 
these oncogenic signals enhanced chemokine secretion, 
recruited more inflammatory cells, and self-propagated 
localized inflammation (15). In advanced colon cancer, some 
proinflammatory cytokines including IL-1, TNF-α, and 
IL-6 activate transcriptional factors such as ZEB, Twist, and 
Snail, which promote epithelial-mesenchymal transition 
and increase the migratory properties of cancer cells (11). 
In this study, we comprehensively analyzed gene expression 
data from the TCGA, GTEx, GEO, and Cancer Cell Line 
Encyclopedia (CCLE) databases. We found that several 
tumor immune microenvironment-related signals played a 
key role in CRC. 

The present WGCNA analysis was performed based 
on the GSE29621 dataset with the aim of identifying the 
co-expression modules associated with tumorigenesis 
or outcomes of CRC. To save computational memory, 
the most differentially expressed genes (in the top 50%) 
were used to construct a weighted co-expression network. 
Subsequently, the turquoise module was identified as a 
clinically significant module. Further enrichment analysis 
showed that the genes of the turquoise module were 
remarkably enriched in multiple inflammatory processes 
and pathways, such as cytokine pathways, chemokine 
signaling, and immunosuppressive pathways. These results 
were consistent with previous studies. Chronically localized 
inflammation not only induces the initiation of CRC, but 
also promotes the progression of CRC. Among all hub 
genes in the turquoise module, the expressions of two 
genes, STAT1 and CCL5, were highly positively correlated. 
Moreover, the mRNA levels of STAT1 and CCL5 were 
both significantly elevated in CRC compared with normal 
colon tissues. This finding indicated that STAT1 and CCL5 
overexpression might be valuable biomarkers for predicting 
the progression of CRC.

STAT1 is a vital participator of innate immunity, 
protecting the host from infection by pathogens. As a 
downstream mediator of interferon receptors, STAT1 



Annals of Translational Medicine, Vol 8, No 15 August 2020 Page 11 of 16

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(15):951 | http://dx.doi.org/10.21037/atm-20-4428

Figure 9 The correlations analysis between STAT1 and CCL5 mRNA levels. (A) The correlations analysis between STAT1 and CCL5 
mRNA levels in CRC tissues based on the GSE29621 dataset. (B) The correlations analysis between STAT1 and CCL5 mRNA levels in 
CRC tissues based on the TCGA database. (C) The correlations analysis between STAT1 and CCL5 mRNA levels in CRC tissues based 
on the GSE28722 dataset. (D) The correlations analysis between STAT1 and CCL5 mRNA levels in colon cancer cell lines based on the 
Cancer Cell Line Encyclopedia database. (E) The histogram reflecting the effect of Si-STAT1 on CCL5 expression in SW480 cells. (F) The 
histogram reflecting the effect of Si-STAT1 on CCL5 expression in SW620 cells. *, P<0.05; ****, P<0.0001. CRC, colorectal cancer.
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Figure 10 Cell counting assays. (A) The histogram reflecting the effect of STAT1 inhibitor on the proliferation of colon cancer cell lines 
cultured with 10% FBS. (B) The histogram reflecting the effect of STAT1 inhibitor on the proliferation of colon cancer cell lines cultured 
with 1% FBS. (C) The histogram reflecting the effect of CCL neutralizing antibody on the proliferation of colon cancer cell lines cultured 
with 10% FBS. (D) The histogram reflecting the effect of CCL neutralizing antibody on the proliferation of colon cancer cell lines cultured 
with 1% FBS. *, P<0.05; **, P<0.01; ****, P<0.0001.

regulates the expression of multiple anti-pathogens and 
immunoregulatory genes (16). STAT1 is generally believed 
to have a bi-directional role in different cancer cells. In 
some cancers, STAT1 performs its anti-tumor role by 
enhancing immune surveillance and increasing the tumor-
killing effect of natural killer (NK) cells (17). STAT1 has 
also been shown to suppress the proliferation of cancer cells 
via the upregulation of cyclin-dependent kinase inhibitor 
expression or the downregulation of c-myc expression 
(18,19). In other cancers, such as leukemia, STAT1 promotes 
leukemogenesis by inhibiting immune clearance (20).  
Moreover, in some solid tumors, STAT1 increases the 
expression of several interferon-inducible genes and repairs 
treatment-mediated DNA damage, and is highly related 

to chemotherapy resistance (21). Wang et al. reported that 
STAT1 exhibited pro-survival effect in CRC by increasing 
PI3K class IB signaling and decreasing the expression of 
programmed cell death protein 4 (22). Furthermore, when 
STAT1 signaling was blocked, they also observed that the 
tumorigenic potency was impaired and there was reduced 
sensitivity to the inhibition of translation initiation factor 
eIF4A (22). For some oncogenes, such as CUG2, oncogenic 
signaling pathway-mediated STAT1 activation significantly 
enhances the metastatic and drug-resistance properties 
of colon cancer cells (23). In our study, STAT1 inhibitor 
markedly suppressed the proliferation of multiple colon 
cancer cell lines, which suggested STAT1 might contribute 
to cancer progression. 
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Figure 11 EdU assays. (A) The representative images and relative quantities of EdU positive colon cancer cells treated with STAT1 
inhibitor or DMSO cultured with 10% FBS. (B) The representative images and relative quantities of EdU-positive colon cancer cells treated 
with STAT1 inhibitor or DMSO cultured with 1% FBS. In this assay, proliferative cells could be dyed red after the reaction of EdU reagent 
and fluorochrome. The cell nuclei were counterstained with Hoechst 33342 (blue). FBS, fetal bovine serum. ****, P<0.0001.
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CCL5, which is also known as RANTES, is a C-C 
chemokine secreted by immune cells, fibroblasts, and 
epithelial cells (24). CCL5 was originally found to be an 
inducer, recruiting leukocytes to inflammatory sites (24). 
Further investigations showed it to be overexpressed in 
multiple cancers (25,26). Elevated CCL5 promotes cancer 
development through regulating cell proliferation, the 
generation of matrix metalloproteinase, and angiogenesis 
(27,28). Recent studies demonstrated that increased CCL5 

had a substantial influence during the development of CRC. 
In CRC, CCL5 not only promotes growth and metastasis, 
but also undermines immune surveillance by increasing the 
ratio of Tregs and myeloid-derived suppressor cells (29-31). 
Furthermore, CCL5-β-catenin-Slug has been shown to be 
a core pathway by which epithelial-mesenchymal transition 
of CRC is induced (32). In the present study, neutralizing 
CCL5 significantly decreased the proliferation of CRC, 
indicating that CCL5 might serve as a potential target for 

Figure 12 The effect of Si-STAT1 on the proliferation of colon cancer cell lines. (A) The representative images CFSE-labeled colon cancer 
cells treated with Si-STAT1 or Si-NC in flow cytometry assay. (B) The ratio of proliferating (CFSE-low) cancer cells treated with Si-STAT1 or 
Si-NC. (C) The histogram reflecting the relative cell counts of colon cancer cells treated with Si-STAT1 or Si-NC. (D) The results of CCK-8 
assay reflecting the effect of Si-STAT1 on the proliferation of colon cancer cell lines. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001.
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CRC treatment. 
Previous studies have shown that STAT1-CCL5 axis is 

the downstream pathway of cancer-associated molecules 
such as interleukin 35 and interferon-induced protein 35 
(33,34). In pancreatic ductal adenocarcinoma, the activated 
STAT1-CCL5 pathway promoted micro-vessel formation 
and monocyte infiltration (34). However, to our knowledge, 
the role of the STAT1-CCL5 axis in CRC has not been 
systemically studied. The results of our study show that 
increased levels of STAT1 and CCL5 might be potential 
biomarkers for CRC screening. The STAT1-CCL5 axis 
may be a vital regulator in the development of CRC 
through its promotion of cell proliferation.

Conclusions

In conclusion, using WGCNA big data mining, we screened 
out a clinically significant module. The genes of this module 
were remarkably enriched in inflammation and cytokine-
associated pathways. Among all of the hub genes of the 
clinically significant module, the mRNA levels of STAT1 
and CCL5 were significantly higher in CRC than in normal 
colon tissues. STAT1 expression was highly positively 
correlated with CCL5. The results of in vitro study showed 
that interfering with STAT1 and CCL5 could inhibit the 
proliferation of CRC cells. Our study indicated that the 
STAT1-CCL5 axis is an important modulator of CRC 
development through its regulation of cell proliferation. 
The levels of STAT1 and CCL5 may become valuable 
biomarkers for CRC screening. 
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