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In vivo retinal imaging in translational regenerative research 
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Abstract: Regenerative translational studies must include a longitudinal assessment of the changes in 
retinal structure and function that occur as part of the natural history of the disease and those that result 
from the studied intervention. Traditionally, retinal structural changes have been evaluated by histological 
analysis which necessitates sacrificing the animals. In this review, we describe key imaging approaches 
such as fundus imaging, optical coherence tomography (OCT), OCT-angiography, adaptive optics (AO), 
and confocal scanning laser ophthalmoscopy (cSLO) that enable noninvasive, non-contact, and fast in vivo 
imaging of the posterior segment. These imaging technologies substantially reduce the number of animals 
needed and enable progression analysis and longitudinal follow-up in individual animals for accurate 
assessment of disease natural history, effects of interventions and acute changes. We also describe the 
benefits and limitations of each technology, as well as outline possible future directions that can be taken in 
translational retinal imaging studies. 
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Introduction

The retina is a leading target tissue for advanced therapeutic 
approaches due to the compartmentalized nature of the eye, 
its relative immune privilege, and low dose requirement 
for treatment. Numerous translational studies in recent 
decades have assessed the regenerative potential of stem 
cells and gene therapy, which have led to promising clinical 
trials and the recent approval of the first gene therapy for 
treating retinal degeneration by the US Food and Drug 
Administration (1). 

Numerous studies demonstrated a direct correlation 
between retinal structure and visual function in animals 

and humans (2-7). Traditionally, retinal structure was 
determined in translational regenerative studies by 
histological analysis which required sacrificing the animals, 
removing the eyes for sectioning, hematoxylin and eosin 
staining, quantification of retinal layer thickness, and 
immunofluorescence staining for specific cell markers 
or ultrastructural analysis of the specific retinal cells by 
electron microscopy (3,8-23). Histological analysis requires 
a large number of animals, does not enable longitudinal 
follow-up, easily permits transient changes to be missed, 
and most importantly cannot be employed in human clinical 
trials.
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The normal transparency of the anterior segment and 
lens enable relatively easy imaging of the posterior segment. 
The breakthroughs in advanced imaging techniques 
enable non-invasive, non-contact, and fast monitoring of 
changes in retinal structural in vivo without necessitating 
sacrificing the animals. Thus, they enable monitoring 
of individual animals in longitudinal studies, can detect 
transient structural changes, and require a smaller number 
of animals which reduces both variability and cost. Given 
that the majority of these imaging modalities are used 
currently in clinical practice to evaluate human retina, the 
results of these animal studies using in vivo retinal imaging 
may be directly translated into clinical trials. Within the 
last two decades the use of ocular imaging in animal model 
studies has expanded. Currently, they are gradually being 
used along with histological analysis for characterizing the 
natural history of the disease, monitoring the distribution 
of injected therapeutics, and for assessing their effects on 
retinal structure and function, as detailed in this review.

Current technology allows for ophthalmologists to 
capture in vivo images of the retina at a wide variety of 
resolution. Macroscopically, it permits capturing images 
of the entire retina [e.g., ultra-wide field fundus imaging 
(24,25)] down to a single diseased cell [e.g., using adaptive 
optics (AO) (26)]. Other innovative single cell resolution 
imaging technologies include the identification of single 
apoptotic retinal ganglion cells (RGCs) [using the recently 
developed Detection of Apoptosing Retinal Cells (DARC) 
which is currently being considered for use in clinical 
trials], as well as in vivo determination of the function of 
single cells by calcium-imaging (27,28). Several of these 
imaging technologies were adopted from the clinical 
setting to usage in animal models [e.g., optical coherence 
tomography, OCT (29)], with others gradually transferring 
into clinical trials after being developed and validated in 
animal models (e.g., DARC). In this review, we focused 
on leading ophthalmic imaging modalities that are being 
used in today’s translational studies, then describe their use 
and key advantages and limitations associated with each 
technique. 

Color fundus photography

After the advent of photography’s introduction in the 
mid 1800’s, the field of ophthalmology has progressed 
significantly in its ability to better detect, identify, and 
observe different ocular pathologies that weren’t before 
possible with the naked eye. Yet with ever advancing 

photographic technologies provided in today’s era, the 
principle of basic fundus photography remains a cornerstone 
in ophthalmic imaging. Color fundus photography allows 
the assessment of the gross morphology of the retina in 
vivo. Furthermore, it allows for identification of structural 
changes in a wide range of ocular pathologies from diabetic 
retinopathy to the rare Oguchi disease (30,31). It can be 
used in humans and animals, both large and small, and is a 
key tool for identification of lesions, geographic thinning, 
subretinal deposits, evaluation of retinal vasculature, and 
the optic nerve head. In translational studies, color fundus 
imaging is widely used for the characterization of new 
animal models, determination of the natural history of the 
disease and staging (32-35), as well as for monitoring the 
location and distribution of injected therapy. Specifically, 
a vast majority of advanced therapies, including stem 
cells and gene therapy, are delivered into the posterior 
segment by a subretinal injection, and the resulting bleb 
of elevated retina following subretinal injection and the 
eventual resolution can be visualized by color fundus 
photography (36-39). In recent studies involving subretinal 
transplantation of whole retina grafts or retinal pigment 
epithelial cells grown on scaffolds, fundus imaging was used 
for evaluating graft location and health of the surrounding 
tissue (39,40). Fundus imaging was also used as a gross 
qualitative estimation of the safety of intraocular injection 
of viral vectors (41) or cells and for evaluating the potential 
regenerative effects of various therapies on the retina (42). 
The main limitations of fundus imaging are the lack of 
details (resolution and retinal layer), the lack of quantitative 
measurements, and the subjective interpretation of the 
results. Therefore it is almost always just one part of the 
ophthalmic evaluation, often accompanied by histological or 
OCT analysis (41). Recent artificial intelligence approaches 
are being developed for objective, standardized tagging of 
fundus images (43), however these have not been employed 
yet in animal studies. 

Near infra-red fundus imaging

One advancement of fundus imaging was the development 
of near infra-red (NIR) fundus imaging. It involves 
capturing the fundus autofluorescence (FAF) by excitation 
at 787 nm and capturing the emission at >800 nm. Using a 
longer wavelength for excitation is advantageous because it 
enables the detection of sub-retinal features, both normal 
and pathological, by penetrating deeper through the fundus 
as compared to other modalities. Retinal imaging using 
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NIR-FAF was first reported in 1996 by Piccolino et al. and 
Elsner et al. (44,45). Later studies demonstrated that the 
source of NIR-FAF is mainly retinal pigment epithelium 
(RPE) melanin, and to a lower extent, the melanin in 
choroidal layers (46). Hence, this imaging modality can be 
used to study the pathophysiology of diseases affecting the 
RPE, Bruch’s membrane and choroid, and for evaluating the 
effect of interventions on these retinal layers (47). Recent 
development of ultra-wide field imaging enables monitoring 
the NIR-AF in a larger area of the retina (102°) than 
conventional FAF (55°), and is mainly used in translational 
studies for safety assessment of therapeutic injection, 
including gene therapy (48). Similar to color fundus imaging, 
the main drawback of NIR-FAF is the lack of quantitative 
measures and the subjective interpretation of the results.

Short-wavelength fundus autofluorescence (SW-
FAF)

SW-FAF is another method for gross assessment of RPE 
health across the retina. It is based on excitation at 488 
nm (therefore known as Blue-FAF) and a subsequent 
recording of the emitted autofluorescence by lipofuscin 
using a barrier filter between 500 and 700 nm to exclude 
for emittance from other retinal pigments (49). Lipofuscin 
pigments accumulate in RPE cells (50) and are comprised of 
a mixture of fluorophores produced in the disk membranes 
of photoreceptor outer segments (POS) as oxidative by-
products of vitamin A use and recycling. The pigments 
are transferred to RPE cells after the cells phagocytose the 
shed POS (51,52). Ex vivo the peak excitation of lipofuscin 
is between 450–490 nm, and the maximal emission is at  
~600 nm (53). In the healthy retina, the SW-FAF increases 
with age with the continuous deposition of Lipofuscin in 
the lysosomal RPE cells (54). In areas with pathological loss 
of RPE and/or photoreceptor cells, both the SW-FAF and 
the NIR-FAF signals are significantly attenuated or lost, but 
SW-FAF imaging is more sensitive for these pathological 
changes, as demonstrated in Figure 1 (55-57). As fundus 
imaging is noncontact, noninvasive and fast, it is highly 
valuable in the detection and longitudinal monitoring of 
geographic atrophic lesions. The development of tools 
providing automated quantification of hypo-fluorescent 
lesion sizes has led the way to employing this imaging tool 
as an endpoint in clinical trials with GA patients (4,58,59). 
Unfortunately, these automated quantification tools are not 
directly applicable to image small rodent eyes. Recently, 
a readily available semi-automatic tool for quantification 
of hypofluorescent lesions in rodent eyes was developed 
based on the “Regional Finder” tool available in the 
Heidelberg Engineering OCT systems (55). This tool was 
successfully employed for monitoring retinal degeneration 
in Royal College of Surgeon (RCS) rats, a widely used 
model in translational studies for regenerative medicine. 
In this rat model, loss-of-function of the MERTK gene 
prevents POS phagocytosis by the RPE cells. The shed 
discs accumulate in a subretinal layer termed the “debris 
zone”, leading to an increased SW-FAF hyperfluorescence. 
This is shortly followed by a gradual replacement of the 
hyperfluorescent lesions with hypofluorescent lesions due to 
a loss of photoreceptors and shed debris, as demonstrated in  
Figures 1,2 (55). The benefit of using SW-FAF is its ability 
to monitor retinal degeneration in rats throughout the 
entire retina using just a few scans, which is practically 

Figure 1 NIR-FAF (A,B,C) and SW-FAF (D,F) imaging of WT, 
non-dystrophic Long Evens (LE) rats (A,D) and dystrophic 
RCS rats at age postnatal day [p]28 (B,E) and p84 (C,F). At 
p28, the SW-FAF signal is weak. At p84, the SW-FAF image 
of RCS rats is characterized by a strong hyperautofluorescence 
and the appearance of discrete hypofluorescent lesions 
surrounded by hyperfluorescent flecks around the optic nerve 
head. No hypofluorescent lesions are found in LE rats. These 
hypofluorescent lesions are barely detectable by NIR-FAF (C, red 
arrow points to a dateable lesion). The figure is modified from our 
previous publication (55).

NIR-FAF
LE

R
C

S
 p

28
R

C
S

 p
84

SW-FAF

A

B

C F

D

E



Sher et al. In vivo retinal imaging in translational research

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(17):1096 | http://dx.doi.org/10.21037/atm-20-4355

Page 4 of 14

impossible to do using other imaging techniques, such as 
OCT, as detailed below. 

SW-FAF can further be employed in longitudinal follow-
up studies of retinal degeneration and in mouse models of 
lysosomal storage diseases where it is possible to visualize 
accumulating autofluorescent storage biomolecules in the 
inner retina (60). 

In addition to using SW-FAF in natural history 
translational studies, since SW-FAF can detect changes 
in subretinal structures, it is used in translational studies 
for assessing the safety of subretinal injection procedures. 
For example, a recent study using primates demonstrated 
hypofluorescent areas outside the subretinal injection 
bleb, correlating with RPE and outer retina structural 
abnormalities caused by re-administration of subretinal 
gene therapy viral vectors (37). 

Fluorescent fundus imaging

Preclinical animal studies often use fluorescently labeled 
cells or proteins (such as green fluorescent protein, GFP) 
in order to identify and localize the injected therapeutics 

in the target tissue, and to determine vector expression 
levels in gene therapy studies specifically at early stages of 
intervention development. Several animal-specific imaging 
systems have been developed for fluorescent imaging in small 
animals (e.g., Phoenix MICRON™ systems). Moisseiev et al.  
used in vivo scanning laser ophthalmoscopy (SLO) fundus 
imaging to visualize enhanced GFP (EGFP)-labeled human 
bone marrow stem cells within the eyes of a mouse model 
of retinal degeneration following intravitreal injection (61). 
Wassmer et al. used fluorescent fundus imaging to compare 
the efficacy of intravitreal delivery of GFP into the retina 
using AAV2 vectors and exosome-associated AAV2 (62). 
The clear advantages of such an approach are the abilities 
to monitor and compare GFP expression levels at different 
time points following gene therapy delivery in the same 
animal, and to assess the fluorescent protein expression levels 
at various retinal areas (e.g., center of the retina vs. optic 
nerve head) in a single imaging frame. However, removal of 
the eyes and processing retinal sections for fluorescent or 
confocal microscopy are required to determine which retinal 
layers expresses the protein and to evaluate the temporal 
changes in gene expression level in each retinal layer (62). 

Figure 2 Multimodal imaging for longitudinal follow-up of retinal degeneration in RCS rats. SW-FAF imaging (A,D,G) and corresponding 
SD-OCT scans (B,E,H) of the central retina area in a representative WT, non-dystrophic Long Evans (LE) rat and a single-representative 
RCS rat at different ages (p28, p84). (C,F,I) A zoomed-in view of the SD-OCT shown in (B,E,H), respectively. The vertical lines in panels 
(C,F,I) highlight the ONL (red), total retina (yellow) and debris zone [DZ, in blue, panel (F)]. The hypofluorescent lesion detected in the 
SW-FAF scan [highlighted by red lines, (G)] corresponded to focal loss of the DZ (H,I). The green vertical lines in panels (A,D,G) indicate 
the position from which the SD-OCT scans on the right were taken. 
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Confocal scanning laser ophthalmoscopy (cSLO) 

In the 1980’s a new technology took advantage of the 
optical properties of the eye by using a laser to capture 
the retina at a cellular resolution, in what is today called 
confocal scanning laser ophthalmoscopy (cSLO) (63). 
cSLO uses a laser light at a specific wavelength, pinhole 
apertures arranged in precise confocal positions, and a beam 
splitter to generate a raster pattern scan of the retina that is 
subsequently detected and converted into an electrical signal 
to allow for its reconstruction into a detailed digital image. 
Similar to other fundus imaging technologies, cSLO enables 
the evaluation of gross changes in retinal and vascular 
structures of the posterior segment en-face. Using the lasers 
at different wavelengths in the shorter range [usually native 
Argon wavelengths (488/514 nm)], and infrared diode 
lasers in the longer wavelength range (795/830 or 785/815 
nm), enable detection of RPE irregularities and hypo- and 
hyper-autofluorscent areas that reflect metabolic changes 
in photoreceptor and RPE cells. It is always coupled with 
OCT and histological analysis to gain information on the 
thickness of the retinal layers. 

This imaging modality was successfully used for en-
face visualization of the retina in several mouse and rat 
models of retinal degeneration (e.g., Rho-/-, rd1, RPE65-/-,  
RhoP23H), and in characterization of the gross structural 
changes associated with disease progression (64,65). 
This imaging modality was also employed in a study 
aimed at development of sodium iodate induced retinal 
degeneration in mice. As animals were scanned at different 
time points following sodium iodate intravenous injection, 
cSLO revealed the appearance of dark patchy blots in 
planar images of the retina that corresponded to areas with 
photoreceptor loss by OCT and histology analysis, and 
were dose dependent (66). Even though the meticulous 
comparison between cSLO, OCT, and histological analysis 
of the animals demonstrated the superiority of OCT in 
early detection of photoreceptor loss compared with the 
cSLO en face imaging (64), cSLO remains a valuable tool 
for longitudinal follow-up covering large areas of the 
retina since OCT enables imaging of only small areas of 
the retina. Furthermore, cSLO fundus imaging enables 
quick scanning of animals at different time points and can 
assist in choosing the appropriate drug dose, as well as the 
optimal time points and retinal locations for performing 
other, more laborious analyses such as OCT scans, 
histological, and functional assessments. 

OCT

OCT is a noninvasive tomographic imaging technique that 
provides high-resolution cross sectional two- and three-
dimensional imaging of microscopic retinal layers based on 
the principle of low-coherence tomography (67). It does 
so by comparing the measured backscattered light from a 
tissue sample, such as the retina, and a known reference 
arm, such as a mirror, to create an interference pattern 
that creates an image when the two light paths match or 
fall within the coherence length of the wave (29). Different 
technological advancements over the years have risen to the 
development of time-domain OCT, spectral-domain OCT 
(SD-OCT), swept-source OCT, and long-wavelength 
OCT (68). 

OCT is widely used in the clinical setting because 
it provides objective and quantitative measurements of 
retinal layer thickness, edema, and subretinal retinal  
fluids/lesions (69). Thinning of retinal layers, specifically 
photoreceptors layers in retinal and macular degeneration 
diseases, along with RGC and nerve fiber layers in 
glaucoma and other optic nerve degeneration diseases, 
reflect loss of nerve cells and correlate with visual function 
deficits (5-7,70-72). OCT has been widely used in the last 
decade for in vivo noninvasive characterization of retinal 
structure in animal models, reducing the numbers of 
study animals needed and enabling for assessment of acute 
dynamic processes such as retinal edema or thinning (73). 
Specifically, animal studies enable for directly determining 
the correlation between retinal thinning as observed by 
OCT imaging with histological analysis of the retina. Thus, 
the natural history of disease progression was determined 
by OCT and validated by histological  analysis  in 
numerous retinal degeneration models including RCS rats 
(57,74,75), RhodopsinP23H and RhodopsinS334T rats (65,76-79);  
sodium iodate–induced retinal degeneration in rats (66); 
NRL, Crb1, Rb, Rho, RPE65 knockout and rd1, rd10, rd12, 
mice (64,78,80,81), rabbits (82,83), and monkeys (84).  
In addition, OCT imaging enabled retinal structural 
changes to be demonstrated longitudinally in various animal 
models of other retinal diseases including mouse models 
for lysosomal storage diseases (60) and diabetic retinopathy 
(85,86) as well as retinal ganglion cell (RGC) death that 
preceded retinal nerve fiber layer (RNFL) thinning in 
a mouse model of optic nerve crush (87). These natural 
history studies paved the way for using OCT imaging for 
evaluating safety and efficacy of novel intervention using 
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a fewer number of study animals, as disease progression 
analysis can be done using serial imaging of the same 
animal. These include regenerative studies using stem cells 
(84,88-90), retinal transplantation (91), laser therapy (92), 
gene therapy (93) and pharmaceutical interventions (83). 
The ability to correlate animal model findings with clinical 
findings in patients carrying the same mutation [e.g., (94,95)] 
facilitates the translation of these interventional studies into 
clinical trials. In addition, new drug delivery systems for 
administrating treatments to the posterior segment can be 
evaluated in small and large animals using OCT (48).

Some published translational studies were able to 
obtain high resolution OCT images of the retina in animal 
eyes by using commercially available clinical grade OCT 
instruments equipped with eye tracking to prevent image 
signal disturbance from animal breathing. Some of these 
instruments are also equipped to improve OCT image 
resolution by using an automated software that rescans 
the same area of the retina and averages multiple images 
(55,96,97). However, one of the limitations in using the 
clinical devices is that the automatic layer segmentation 
procedures developed for the human eye are not applicable 
to the small rodent eyes. Hence, many of these studies 
report manual layer segmentation by the researcher which 
by nature is subjective, error prone, and laborious. To 
overcome this limitation, novel tools are being developed 
for automatic segmentation of rodent OCT images to 
enhance the accuracy of segmentation and quantification 
of retinal layer thicknesses (98). In addition, although there 
is a wide-field OCT that can scan the whole eye, standard 
OCT machines are not equipped with this technology and 
thus have a limited field of view (99,100).

OCT angiography (OCTA)

One of the hallmarks of retinal degeneration is the 
characteristic of lowered blood flow coupled with 
constriction and attenuation of retinal blood vessels (101). 
In addition, retinal vascular diseases, such as diabetic 
retinopathy, is associated with changes in retinal vasculature. 
Recently, OCT-angiography (OCTA) technology has 
emerged that can detect changes in retinal and choroidal 
circulation noninvasively in human and animal eyes 
(102-105). Until the development of OCTA, fluorescein 
angiography and indocyanine green angiography were used 
for in vivo visualization of retinal and choroidal circulation. 
However, these angiographic methods are invasive and 
provide only two-dimensional imaging of the retinal and 

choroidal circulation (106). With fluorescein angiography, 
visualization of the choroidal circulation is limited by 
the overlying RPE. In contrast, OCTA provides a three-
dimensional image of the retinal and choroidal circulation 
by detecting the movement of blood cells in rapid sequential 
OCT imaging of the same region of the retina (107). Thus, 
OCTA images can be obtained using OCT instrumented 
equipped with the appropriate software. It is relatively 
fast and does not require injection of dyes (108). In recent 
years, a growing number of clinics and animal translational 
studies have been using this imaging modality (109). Major 
limitations of OCTA include its large dependence on image 
interpretation, possible artifacts from eye movements (110)  
and projection artifacts from overlaying vessels (111),  
as well as possible segmentation errors that require manual 
correction (112). In addition, there is no global standardized 
and reliable segmentation method, leading to variability in 
segmentation by different users that may limit the ability to 
compare between studies led by different groups (113). Also, 
the current OCTA technologies enable only a small imaging 
area (3–12 mm2) with high resolution (110). Nevertheless, 
several studies reported the use of OCTA for monitoring 
longitudinal changes in retinal vasculature in wildtype 
rodents (114), and in rodent models of retinal degeneration 
including rd10 mice (115). OCTA has also been used to 
study the protective effects of novel interventions in rodent 
models of retinal vasculopathy (116). As more researchers 
get access to this technology and gain experience in 
interpreting the data, OCTA may allow for the extension 
of knowledge on vascular changes associated with retinal 
disorders and provide a deeper assessment of the effects of 
new treatments on retinal and choroidal vasculature. 

AO

AO is a technology originally developed by astrophysicists 
to remove the atmospheric turbulence present while 
viewing objects in outer space (26). In recent years, this 
technology has extended into ophthalmology, where it is 
used to correct for optical aberrations and allow for direct 
in vivo visualization of the retina at a cellular level (117). Its 
complex system composes of three principle components—
a wavefront sensor to measure incoming aberrations, a 
corrective element, and a software system to control the 
interplay between the previous two (118). There exists a 
range of corrective, or “adaptive”, elements that allow for 
the incoming wave properties to be reconfigured as they hit 
the system such as liquid crystal modulators, digital mirror 
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devices, or deformable mirrors (119). AO by itself does 
not provide a retinal image, but rather is a subsystem that 
must be incorporated into a pre-existing device such as a 
fundus camera, a cSLO system, or an OCT system (26,120). 
AO technology is an impressive emerging technology that 
provides unprecedented retinal visualization to as small of 
a detail as a single photoreceptor cell (121). It produces 
imaging at a cellular level that is only rivaled by invasive 
histological procedures (122). For example, when paired 
with SD-OCT, AO allows for improved photoreceptor 
visualization on the backdrop of the three-dimensional 
scaffolding that the OCT system provides (123).  
In retinal degeneration diseases such as Age Related 
Macular Degeneration (AMD), AO paired SD-OCT 
captured clear images of photoreceptor morphology that 
were congruent with histopathological reports (124). Given 
AO’s ability to map photoreceptor density (125) it has 
been a sought-after technology to incorporate into animal 
model studies assessing photoreceptor health, mapping the 
dynamic interaction between microglia and retinal cells in 
healthy retina and following photoreceptor injury (126), 
and for long term monitoring of retinal health following 
pharmaceutical intervention or cellular therapy (127).  
The major limitation of AO is the small area that can be 
imaged, usually 4×4 degrees (127). In addition, although 
the visualization by AO paired technology is impressive, 
it still remains a question to whether the recovery of 
photoreceptors in this case concretely translates into visual 
function (128). In a very recent paper, McGregor et al.  
combined AO ophthalmoscopy with calcium imaging 
and successfully recorded RGC activity in the fovea of 
living primates that received optogenetic treatment after 
photoreceptor ablation (28). Given the biological and 
anatomical similarities of the fovea in primates and humans, 
the potential for this therapeutic approach to translate 
into clinical studies is encouraging. The applications for 
AO integrated imaging are vast but they remain very 
expensive, require accurate alignment, and need expert 
monitoring at all times. Although it may be easy to train 
ophthalmologists to read and interpret the images captured, 
training individuals to handle and operate the equipment is 
a significant roadblock to its widespread use (129).

Detection of apoptosing retinal cells (DARC)

DARC is a promising new technology that utilizes cSLO’s 
detailed image acquisition to detect RGC apoptosis in vivo. 
Annexin V, a cellular protein which has been demonstrated 

to bind with high affinity to outer leaflet phosphatidylserine 
in apoptosing cells (130), is tagged with a fluorescent 
marker and injected intravitreally. cSLO’s set wavelength 
laser excites the fluorophores and subsequently captures the 
sensitive fluorescent signals of the dying RGCs (27).

Detection of dying RGCs is decidedly important, as 
their loss leads to glaucoma, one of the leading causes of 
irreversible blindness worldwide affecting more than 70 
million people (131,132). The gradual visual field loss in 
glaucoma can go unnoticed at first by the patients, hence 
early detection of the disease is of significant importance. 
Using DARC may potentially allow for an early diagnosis 
of glaucoma, subsequently leading to earlier interventional 
action and improved treatment outcomes (133). Recently, 
a push in research to apply DARC to map retinal cell 
health progression after drug or other pharmacological 
delivery has been set in motion. Davis et al. reported 
lower RGC cell death by DARC imaging, which was 
validated by histological analysis and immunofluorescent 
staining of Brn3 (an RGC cell marker), following topical 
administration of coenzyme Q10 and D-α-tocopherol 
polyethylene glycol 1000 succinate in a rat model of 
ocular hypertension (134). Other studies have employed 
the DARC technology for detecting apoptotic RGCs 
in other neurodegenerative diseases such as Parkinson’s 
disease (PD) in mice. In a rotenone-induced model of 
PD, longitudinal follow-up using DARC demonstrated 
RGC apoptosis as early as 20 days following rotenone 
insult, whereas loss of dopaminergic neurons was only 
found by histologic means in the substantia nigra of the 
brain on day 60. The anti-inflammatory drug rosiglitazone 
prevented loss of RGCs and dopaminergic neurons (135). 
This study highlights the power of the DARC method for 
in vivo quantitative monitoring of RGC apoptosis and for 
screening new pharmaceutical interventions. Further, it 
highlights the concept of the retina being a “window to the 
brain” such that these advanced imaging technologies may 
potentially contribute for earlier diagnosis and screening 
of new treatments, not only for ocular diseases, but for 
brain neurodegenerative pathologies as well. Although 
the technique has demonstrated successes, one challenge 
it faces is the need for large-scale validation of whether 
or not DARC is able to effectively distinguish between 
pathological and age-related physiological RGC death (136). 
Standardizing the pathological to physiological apoptosis 
rate of the human eye is the next step before implementing 
this method in clinical practice (137). Nevertheless, 
DARC is being explored in clinical trial as a novel method 
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for detecting changes in the ganglion cells of the retina 
associated with glaucoma (NCT02394613).

Conclusions and future aims

The major benefit of having different in vivo retinal 
imaging modalities is that they allow the experimenter 
to select just how macroscopic or microscopic their data 
needs to be analyzed. For example, capturing an image 
with the standard fundus camera is the simplest, most 
convenient, accessible, and most straightforward method 
of analysis on the market today. The logistics of operating 
the equipment aren’t too different than using a handheld 
or smartphone camera, as it mostly involves a “point and 
shoot” method of image capture. Further, the diagnostic 
power of its seemingly rudimentary macroscopic image 
can’t be overlooked, as not every experiment needs an OCT, 
AO, or cSLO level of minute visualization. In experiments 
where gross morphological appearance of the retina is 
required, the fundus camera may still provide a significant 
tool. However, out of the various imaging modalities 
mentioned in this review, the fundus camera stands alone 
as the most inexpensive but also the most subjective means 
of assessment. The images produced are highly subjective 
to the viewer and can therefore potentially differ in 
diagnosis from person to person. Future directions such 
as automatic tagging of fundus imaging by using artificial 
intelligence algorithms (43) may yield a computerized tool 
assisting ophthalmologists and researchers, although the 
implementation of such tools in preclinical studies has to be 
determined. OCT, AO, and cSLO all provide images that 
can be objectively measured and are therefore considered 
more accurate and yield quantitative outcome measures that 
may be translated from animals to humans. 

OCT is a time-proven platform that is recognized for 
being able to accurately evaluate different retinal cell layers 
in vivo. Measuring thickness of the retinal layers can be 
computerized to yield mathematical numbers that have been 
cross-checked as accurate by follow-up histological analysis. 
For experiments needing an accurate means of interpreting 
retinal layer health, OCT provides the most appropriate 
medium and can be viewed in a three-dimensional 
configuration. Future development of wide field OCT, as 
well as tools for automatic segmentation of retinal layers in 
rodent models and diseased eyes, will further improve the 
accuracy of this tool. 

Recent questions have been raised for future directives as 
to whether or not OCTA can replace fundus angiography in 

diagnostic capability. One study compared these techniques 
longitudinally in diabetic retinopathic patients, concluding 
that OCTA cannot currently be used as a stand-alone 
method over fundus angiography (138). This segues into 
OCTA’s main drawbacks, the lack of global consensus on 
segmentation and long learning curve needed to capture 
and interpret the images. 

AO technology is the one imaging method described 
in this review that cannot function independently, which 
makes it both advantageous and disadvantageous to work 
with. First off, its ability in itself allows for incredibly 
clear visualization that has remained unmatched since its 
introduction to the market. Studies that seek to monitor and 
carefully examine the minutia of the retina down to single 
cells are those that stand to benefit the most from AO. 
Advantages of AO having a dependency on other imaging 
modalities is that they can be applied to and systematically 
improve image quality for any and all other preexisting 
platforms. Unfortunately, this advantage comes with a price 
as AO equipment is understandably still very expensive. On 
top of purchasing the AO equipment itself, the dependency 
of the equipment means that another system must be 
purchased and optimized to the equipment, further raising 
the price. Additionally, the equipment is exceedingly 
complex and time consuming to learn its basic operating 
system, so experiments that require multiple angles of data 
collection sets may find the process more time consuming.

Lastly, DARC with cSLO grants impressive power to 
those seeking to study RGC death in vivo. Longitudinal 
studies of glaucoma and PD appear to be the pathologies 
most commonly investigated with this equipment so far, yet 
the boundaries for retinopathies it can be applied to extend 
far further. The relative ease and reproducibility of the 
technique permits clear and straightforward interpretation 
of the results. In the future it would be exciting to see 
a development in this technology that would allow for 
fluorescently tagged RGCs to be automatically, instead of 
manually, counted. The main drawback that potentially 
limits DARC’s widespread use is its unstandardized 
quantification in differentiating between pathological and 
physiological RGC death. Although the studies mentioned 
in this review maintain its accuracy as an early diagnostic 
method of retinal and central nervous system pathologies, 
care should be given when setting up future experiments to 
have a concrete control group so as to subtract any baseline 
fluorescence from the experimental group. Doing so would 
provide stronger sets of data collection. 

Another promising direction in retinal imaging is its 
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potential use for early detection of brain pathologies. 
With the retina being a “window to the brain”, the 
retinal imaging technologies provide potentially earlier 
diagnostic capabilities and can concede the development 
of new regenerative interventions in retinal and brain 
neurodegeneration diseases. 
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