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Dairy consumption and hepatocellular carcinoma risk
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Abstract: This review provides epidemiological and translational evidence for milk and dairy intake as 
critical risk factors in the pathogenesis of hepatocellular carcinoma (HCC). Large epidemiological studies 
in the United States and Europe identified total dairy, milk and butter intake with the exception of yogurt 
as independent risk factors of HCC. Enhanced activity of mechanistic target of rapamycin complex 1 
(mTORC1) is a hallmark of HCC promoted by hepatitis B virus (HBV) and hepatitis C virus (HCV). 
mTORC1 is also activated by milk protein-induced synthesis of hepatic insulin-like growth factor 1 (IGF-
1) and branched-chain amino acids (BCAAs), abundant constituents of milk proteins. Over the last decades, 
annual milk protein-derived BCAA intake increased 3 to 5 times in Western countries. In synergy with 
HBV- and HCV-induced secretion of hepatocyte-derived exosomes enriched in microRNA-21 (miR-21) 
and miR-155, exosomes of pasteurized milk as well deliver these oncogenic miRs to the human liver. Thus, 
milk exosomes operate in a comparable fashion to HBV- or HCV- induced exosomes. Milk-derived miRs 
synergistically enhance IGF-1-AKT-mTORC1 signaling and promote mTORC1-dependent translation, 
a meaningful mechanism during the postnatal growth phase, but a long-term adverse effect promoting the 
development of HCC. Both, dietary BCAA abundance combined with oncogenic milk exosome exposure 
persistently overstimulate hepatic mTORC1. Chronic alcohol consumption as well as type 2 diabetes 
mellitus (T2DM), two HCC-related conditions, increase BCAA plasma levels. In HCC, mTORC1 is 
further hyperactivated due to RAB1 mutations as well as impaired hepatic BCAA catabolism, a metabolic 
hallmark of T2DM. The potential HCC-preventive effect of yogurt may be caused by lactobacilli-mediated 
degradation of BCAAs, inhibition of branched-chain α-ketoacid dehydrogenase kinase via production of 
intestinal medium-chain fatty acids as well as degradation of milk exosomes including their oncogenic 
miRs. A restriction of total animal protein intake realized by a vegetable-based diet is recommended for the 
prevention of HCC. 
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Introduction

Hepatocellular carcinoma (HCC) mortality rates have 
increased over recent decades (1-4). Major risk factors for 
HCC are chronic liver disease and cirrhosis due to hepatitis 
B virus (HBV) and/or hepatitis C virus (HCV) infection, 
alcoholic liver disease, non-alcoholic fatty liver disease 
(NAFLD), steatohepatitis, intake of aflatoxin-contaminated 
food, type 2 diabetes mellitus (T2DM) and obesity (1-6). 

Although increased dairy product intake has been associated 
with increased risk of several cancers (7-11), epidemiological 
studies on dairy and milk consumption in HCC are sparse. 
Five older case-control studies with small patient numbers 
presented conflicting results (12-16). Recently, Yang  
et al. (17) assessed the associations of dairy products with 
the risk of HCC development among 51,418 men and  
93,427 women in the Health Professionals Follow-Up Study 
and the Nurses’ Health Study. After adjustment for known 
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HCC risk factors, higher total dairy intake was associated 
with an increased risk of HCC. In accordance with the 
association of milk consumption and T2DM (18-20), there 
was an inverse association between yogurt intake and HCC 
risk (17). The European Prospective Investigation into 
Cancer and Nutrition (EPIC) cohort (477,206 participants) 
demonstrated a significant positive HCC risk association 
with total dairy product intake, milk and cheese, but not 
yogurt (21). The Guangzhou Biobank Cohort Study  
(18,214 participants) showed that moderate (250–750 mL/week) 
versus high milk consumption (>750 mL/week) significantly 
increased the mortality rate for all cancers and raised the 
mortality rate of liver cancers from 3.8 to 7.0 per 10,000 
person-years, respectively (22). 

In 2017, the per capita milk consumption was 65.2 L 
in the United States and 52.2 L in Germany, respectively 
(23,24). Since the 1950s, the annual consumption of cheese, 
a rich source of branched-chain amino acids (BCAAs), has 
increased four- to five-fold in Western societies (25,26). 

I t  i s  the  in t en t ion  o f  th i s  r ev i ew  to  p re sen t 
molecular mechanisms that may explain dairy-induced 
hepatocancerogenesis. For this purpose, it is important 
to keep in mind that milk represents a postnatal signaling 
system evolutionarily restricted to the breastfeeding period 
of mammals for the promotion of cell proliferation and 
growth (27-29).

Insulin-like growth factor 1 (IGF-1)

Circulating IGF-1 concentrations have been associated 
with higher cancer risk (30,31). A cross-sectional EPIC 
analysis of 4,731 men and women demonstrated that each 
1 standard deviation (SD) increment increase in total dairy 
and dairy protein was associated with an increase in IGF-
1 concentrations of 2.5% and 2.4%, respectively (32). A 
meta-analysis reported that circulating IGF-1 increased 
by 13.8 ng/mL in the milk intervention group compared 
with the control group (33). A recent study in Germany 
showed that each 400 g increment in daily dairy intake in 
adults was associated with 16.8 ng/mL higher IGF-1 serum 
concentrations, whereas each daily 200 g increment in 
milk was associated with 10.0 ng/mL higher IGF-1 (34). 
Remarkably, whey protein intake preferentially increased 
serum insulin levels, whereas casein raised serum IGF-1 
levels (35). 

The liver is the primary organ releasing IGF-1 into the 
systemic circulation (36,37). Dietary amino acids (AAs) 
and insulin induce hepatic IGF-1 expression and secretion 

(38,39) (Figure 1). Increasing AA concentrations enhance 
hepatic expression of IGF-1, peroxisome proliferator-
activated receptor-γ (PPARγ) and mechanistic target of 
rapamaycin (mTOR) (38). Low protein diets are associated 
with lower cancer incidence and mortality rates in humans. 
Protein restriction inhibits tumor growth via attenuation 
of IGF-1/mTORC1 signaling (40). Individuals aged 50–65 
with a high protein intake had a four-fold increase in the 
risk of cancer death during a follow-up of 18 years (41).  
Post-initiation development of aflatoxin B1 (AFB1)-
initiated preneoplastic foci in Fischer 344 rat liver could be 
prevented by decreasing casein intake (42). Dietary casein 
reduction from 22% to 6% markedly inhibited hepatic 
tumor formation in HBV-transfected mice (43). A low 
casein diet also suppressed HBV-induced liver injury (44).

IGF-1/IGF-1 receptor signaling plays a critical role in 
hepatocarcinogenesis (45-51), whereas blocking of IGF-1 
receptor pathway is regarded as a treatment option in HCC 
(52-60). Increased systemic IGF-1 levels and enhanced 
hepatic IGF-1 signaling characterize the initiation stage of 
HCC, whereas overt HCC with compromised liver function 
and liver cirrhosis is associated with decreased hepatic IGF-
1 synthesis and low serum IGF-1 (45,61-68), a marker for 
liver reserve capacity in HCC patients (69). 

BCAAs 

The nutrient-sensitive kinase mechanistic target of 
rapamycin complex 1 (mTORC1) is overactivated in many 
cancers including HCC (70-79). Not only insulin and IGF-1  
activate mTORC1 but also AAs (80,81), preferentially 
the BCAAs leucine, isoleucine and valine (82-88). In 
comparison with other animal- and plant-derived protein-
rich nutrient sources, milk proteins are highly enriched in 
BCAAs (89) (Table 1). 

Solute carrier family 7 member 5 (SLC7A5) plays a key 
role for leucine uptake in cancer cells (91,92). Oncogenic 
MYC stimulates SLC7A5 expression promoting BCAA 
import for tumorigenesis (93). High SLC7A5 expression in 
HCC is related with tumor size, tumor stage and shortened 
survival time (94). SLC7A5 expression is associated with 
increased expression of SLC3A2 (95). Canine HCCs 
exhibit 28 times higher SLC7A5 expression than normal 
hepatocytes (96). SLC7A5 also plays a critical role in 
hepatic cancer stem cells (HCSCs) (97). Cellular uptake 
of glutamine via SLC1A5 and its subsequent efflux in the 
presence of BCAAs is the rate-limiting step that activates 
mTORC1 (98). The bidirectional transporter SLC7A5/
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Figure 1 Working model illustrating potential molecular mechanisms of dairy products in the pathogenesis and prevention of hepatocellular 
carcinoma (HCC). Cheese is a rich source of branched-chain amino acids (BCAAs) and palmitate. Pasteurized milk provides BCAAs, 
glutamine, palmitate and bioavailable exosomal microRNAs (miR-21, miR-155, miR-29b). The amino acid transporter SLC7A5 is 
upregulated in HCC promoting leucine (Leu)-mediated activation of mechanistic target of rapamycin complex 1 (mTORC1). Branched-
chain amino acid transaminase 1 (BCAT1) is upregulated in HCC, resulting in increased hepatic levels of α-ketoisocaproate (KIC), which 
in synergy with Leu activates mTORC1. Rab1A is also overexpressed in HCC promoting mTORC1 activation at the Golgi membrane. 
Activated mTORC1 enhances the expression of sterol regulatory element-binding protein 1 (SREBP1) and the kinase S6K1 promoting 
lipogenesis, translation and proliferation. Tuberin (TSC2) expression is decreased in HCC enhancing Rheb-mediated activation of 
mTORC1. Exosomal miR-21 and miR-155 inhibit the expression of insulin-like growth factor binding protein 3 (IGFBP3) and phosphatase 
and tensin homolog (PTEN) further augmenting phosphatidylinositol-3 kinase (PI3K)-AKT-mTORC1 signaling. MiR-21 suppresses 
programmed cell death 4 (PDCD4), a key suppressor of translation initiation. In HCC, the activity of branched-chain α-ketoacid 
dehydrogenase (BCKDH), the rate-limiting enzyme of BCAA catabolism, is decreased leading to increased hepatic levels of BCAA and 
KIC that activate mTORC1. In HCC, the activity of branched-chain α-ketoacid dehydrogenase kinase (BCKDK) is increased. BCKDK 
phosphorylates and thereby inactivates the E1 unit of BCKDH. Exosomal miR-29b inhibits the expression of the E2 core unit of BCKDH 
(dihydrolipoamide branched-chain transacylase), which is essential for the functional assembly of BCKDH. BCKDK also activates MEK and 
ATP citrate lyase increasing proliferation and lipogenesis. In contrast, yogurt-derived lactobacilli (LAB) increase intestinal levels of medium 
chain fatty acid (MCFA) octanoic acid, which reaches the liver directly via the portal vein and functions as an allosteric inhibitor of BCKDK 
thereby increasing BCAA catabolism. Further HCC-preventive effects of LAB are modifications of the gut microbiome and its metabolome 
with reduction of bacterial BCAA synthesis, degradation of milk exosomes and their oncogenic miRs.  

Table 1 BCAA composition of milk proteins compared to animal meat and plant protein sources 

Amino acid g amino acids/100 g protein

Milk Casein Whey Codfish Chicken Egg Beef Pork Lentil Bean Soy

Leucine 10.4 10.4 11.1 1.69 1.83 1.00 2.16 1.72 2.11 2.02 2.84

Isoleucine 6.4 5.7 6.8 0.99 1.34 0.74 1.33 1.12 1.19 1.10 1.78

Valine 6.8 6.8 6.8 1.09 1.25 0.89 1.45 1.27 1.39 1.24 1.76

Table modified according to (89,90). BCAA, branched-chain amino acids. 
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SLC3A2 regulates the simultaneous efflux of glutamine 
and concomitant influx of leucine into cells (Figure 1) (98).  
Glutamine abundance thus improves leucine uptake 
and BCAA-mediated mTORC1 activation, a potential 
explanation for the high glutamine content of milk  
proteins (90). The leucine and glutamine content is 
increased in HCC tissue and is higher in high-grade 
compared with low-grade HCCs (99). HCC is thus a 
leucine addict like prostate cancer (100,101), another 
common milk-induced cancer of Western societies (7-9,11).

Chronic activation of mTORC1 is sufficient to cause 
HCC in mice and represents the key molecular link between 
HCC risk and dietary factors (71). Long-term cow’s milk 
consumption in young mice increased liver BCAA levels 
and activated mTORC1-S6K1 (102). Hepatic mTORC1 
promotes the expression of lipogenic genes and leads to the 
development of HCC (72,79). mTORC1 upregulates sterol 
regulatory element-binding protein 1 (SREBP1), which 
contributes to NAFLD (79). 

In HCC tissues, the expression level of branched-
chain amino acid transaminase 1 (BCAT1), which 
catalyzes the production of branched-chain α-ketoacids 
(BCKAs) from BCAAs, is significantly increased compared 
with adjacent tissues (103). Patients with high BCAT1 
expression possess a lower overall survival than those with 
low BCAT1 expression (103). Leucine and its conversion 
product α-ketoisocaproate (KIC) are sensed by leucyl-
tRNA synthase (LeuRS) (Figure 1) (104). LeuRS acts as 
a GTPase-activating protein (GAP) for RagD GTPase 
activating mTORC1 (105). In high fat-diet (HFD)-treated 
diet-induced obesity (DIO) mice, BCAA supplementation 
increased hepatic BCAA and BCKA levels and induced 
severe hepatic insulin resistance (IR) (104).

Rag small GTPases are critical mediators of AA-
mTORC1 assembly and mTORC1 activation at the 
lysosomal compartment (106,107). AAs are also capable 
of activating mTORC1 in the absence of Rag GTPases 
dependent on Rab1A (108-110). In colorectal cancer (CRC), 
AAs stimulate Rab1A interaction with mTORC1, whereby 
Rab1A promotes the formation and activation of the Rheb-
mTORC1 complex at the Golgi (110). In accordance with 
CRC, overexpressed Rab1A in HCC has been identified as 
a crucial driver for AA-mediated mTORC1 activation in 
hepatocancerogenesis (Figure 1) (111). 

The activity of BCAA catabolic enzymes is suppressed 
in HCC resulting in increased BCAA levels activating 
mTORC1 (112,113). Either downregulation of expression 
and/or changes in post-translational modifications, e.g., 

hyperphosphorylation of BCKA dehydrogenase (BCKDH) 
by BCKDH kinase (BCKDK) impairs BCAA catabolism 
leading to BCAA accumulation with chronic activation of 
mTORC1 in HCC (112,113). In accordance with HCC, 
upregulated BCKDK has also been observed in CRC (114). 
Hepatic overexpression of BCKDK increased the activity of 
ATP-citrate lyase activating de novo lipogenesis (115) linking 
disturbed hepatic BCAA catabolism to steatosis hepatis and 
HCC. 

HBV and HCV

Hepatic overexpression of HBV X protein (HBx) activates 
AKT and mTORC1 signaling (116,117) and induces the 
expression of α-fetoprotein (AFP), which attenuates the 
function of phosphatase and tensin homolog (PTEN) 
leading to increased AKT-mTORC1 signaling in HBx-
transfected human liver cells and HCC (118). This AFP-
mediated mechanism also promotes the initiation of HCC 
progenitor/stem cells (119). In addition, HBx induces 
microRNA (miR)-181a further targeting PTEN (120).

HCV activates mTORC1 via upregulation of the 
SLC7A5/SLC3A2 complex augmenting cellular leucine 
influx (121). Thus, persistent milk consumption synergizes 
with HBV-/HCV-overstimulated hepatic mTORC1 
signaling.

IR and obesity

Aberrant liver metabolism promotes IR, a hallmark of 
NAFLD and T2DM. NAFLD patients with hepatic IR 
generally share a high risk of impaired fasting glucose 
associated with early T2DM. Many patients with T2DM 
experience NAFLD, non-alcoholic steatohepatitis (NASH), 
and severe complications such as cirrhosis and HCC (122). 
Notably, high intake of milk, but not meat, increased serum 
insulin levels and IR in 8-year-old boys (123). Positive 
associations between full-fat dairy, non-fermented dairy 
products and milk with pre-diabetes and newly diagnosed 
T2DM has been reported in the prospective Dutch Lifeline 
Cohort Study including 112,086 adults (19). There is a 
confirmed association between elevated BCAA plasma 
levels and IR (25,124-133). A genetic link between obesity-
associated IR and impaired BCAA catabolic gene expression 
in human and mouse models has been reported (134). In 
genetically obese (ob/ob) mice, the deficiency of BCKDH 
resulted in an accumulation of BCAAs and BCKAs, which 
both activate mTORC1 (134). Restoring BCAA catabolic 
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flux via inhibition of BCKDK reduced BCAA and BCKA 
abundance and markedly attenuated IR in ob/ob mice. 
Similar outcomes were achieved by reducing protein intake, 
whereas increasing BCAA intake did the opposite. Thus, 
compromised BCAA catabolism is a common hallmark of 
IR, T2DM and HCC (112,113,134), metabolic deviations 
overactivating mTORC1 (18,89). In mice, BCAA tissue 
levels were directly related to liver tumor development 
and tumor size associated with dietary BCAA intake and 
mTORC1 activity (112).

Single nucleotide polymorphisms of fat mass and obesity-
associated gene (FTO) are related to body mass index and 
obesity. FTO is a N6-methyladenosine (m6A) demethylase 
that acts as the most common mRNA modification in 
normal and tumor cells linking obesity to cancer (135). In 
murine and human cell lines, total AA deprivation reduced 
FTO expression (136). FTO expression is regulated by 
essential AAs and couples AA levels to mTORC1 signaling 
through a demethylation-dependent mechanism. FTO 
is thus an AA sensor promoting growth and translation 
(137,138). It has been hypothesized that milk functions as an 
epigenetic amplifier of FTO-mediated transcription (139).  
Remarkably, FTO levels are upregulated in HCC tissue 
and correlate to a poorer prognosis, whereas FTO 
knockdown suppresses proliferation and in vivo tumor 
growth (140). FTO triggers the demethylation of pyruvate 
kinase 2 (PKM2) mRNA accelerating its translation. 
Overexpression of PKM2 activates mTORC1 signaling 
through phosphorylation-mediated inactivation of the 
mTORC1 inhibitor AKT1 substrate 1 (AKT1S1) (141). 
In addition, m6A methylation of the 3' ε-stem loop results 
in destabilization of HBV transcripts, suggesting that 
m6A has regulatory function for HBV RNA (142). Milk-
mediated activation of FTO may thus accelerate HBV RNA 
transcription.

Milk fat 

During late-stage NAFLD, fibrotic and cancerous cells can 
proliferate. HCC cells and normal hepatocytes are exposed 
to high concentrations of fatty acids from both surrounding 
tissue and circulating lipid sources. The saturated fatty 
acid palmitic acid (PA) exerts lipotoxic effects in activated 
human hepatic stellate cells (HSCs) and epithelial hepatoma  
cells (143). An HFD rich in PA is associated with lower 
insulin sensitivity (144). The National Institutes of Health-
AARP Diet and Health Study confirmed an association 
between saturated fat intake and HCC (145). However, total 

amounts of triacylglycerols stored in hepatocytes are not 
the major determinant of lipotoxicity, whereas specific lipid 
classes in particular PA, cholesterol, lysophosphatidylcholine 
and ceramides damage liver cells (146,147). 

Fatty acid transport protein 4 (FATP4) is a minor FATP 
in the liver. PA activation of FATP4 triggers hepatocellular 
apoptosis via altered phospholipid composition and steatosis 
by acylation into complex lipids (148). In HFD-treated 
DIO mice, BCAA supplementation increased plasma free 
fatty acid levels (104). O-GlcNAc transferase (OGT), 
which upregulates PA synthesis, is involved in metabolic 
reprogramming and IR and plays a key role in NAFLD-
associated HCC (149). 

Bovine milk contains 3.5% to 5% total lipid secreted by 
mammary gland epithelial cells as milk fat globules (MFGs). 
About 98% of milk lipids are triacylglycerols. PA is the 
predominant fatty acid of MFG triacylglycerols (150,151), 
which are hydrolyzed in the intestine and transported via 
chylomicrons into the systemic circulation. Upregulated 
PA absorption by activation of its hepatic transporters is 
evident in NASH (152). Notably, PA activates mTORC1 
by enhancing its recruitment onto lysosomal membranes  
(153-155). Thus, milk fat-derived dietary PA may contribute 
to hepatic mTORC1 activation, which is involved in the 
pathogenesis of NASH (156-158).

Exosomal MFG-EGF factor 8 (MFG-E8) and TGF-β

Milk contains extracellular vesicles (EVs) that modulate 
numerous biological processes (159-161). EV subsets 
of milk can be separated by ultracentrifugation (161). 
The 100,000 ×g fraction contains the milk exosomes  
(50–100 nm) (162). Milk EVs including exosomes deliver 
RNAs, miRs and proteins protected by a lipid bilayer 
membrane, which confers resistance against their intestinal 
degradation (163).

Milk exosomes are bioavailable and distribute their 
cargo across species boundaries (164). They accumulate 
in liver following suckling, oral gavage and intravenous 
administration to mice and pigs (164). MFG-E8 is a 
major component of MFGs and milk exosomes (165-167). 
MFG-E8 (also called lactadherin) promotes proliferation 
of hepatocytes through the phosphatidylinositol-3 kinase 
(PI3K)/AKT/mTORC1 pathway and is a key regulator of 
cancer cell invasion, migration, and proliferation (168,169). 
MFG-E8 expression is higher in HCC cells compared with 
normal liver tissue (170). Overexpressed MFG-E8 promotes 
proliferation and migration of HCC cells, whereas MFG-
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E8-neutralizing antibodies inhibited HCC cell proliferation 
and migration (170). 

The development of HCC is also associated with 
alterations in transforming growth factor-β (TGF-β) 
signaling (171-175). Increased numbers of TGF-β+ 
regulatory T-cells (Tregs) have been detected in the 
peripheral blood of HCC patients (174). Ki-67 expression is 
also associated with TGF-β1 and deteriorates the prognosis 
of patients with HBV-related HCC (175). The Th17/Treg 
ratio is an independent factor influencing the occurrence of 
HCC in HBV-infected patients (176). 

Mi lk  exosomes  t r anspor t  TGF-β  to  the  mi lk  
recipient (177). In mice, bovine milk exosomes promoted 
Th17 differentiation, which could be suppressed by anti-
TGF-β antibodies (177). Thus, milk exosomes via MFG-E8 
may stimulate hepatocyte proliferation and via TGF-β 
impair immunological surveillance.

Exosomal miRs

Exosomes and their miR cargo play an important role 
in HCC development and treatment (178-186). HCC-

derived exosomal miR-21 contributes to tumor progression 
by converting HSCs to cancer-associated fibroblasts  
(CAFs )  (187 ) .  HBx  upregu l a t e s  miR-21 ,  wh ich 
downregulates programmed cell death 4 (PDCD4) in 
HCC (188). HCC cell apoptosis was suppressed through 
HBx-induced miR-21 by targeting interleukin 12 (IL-12) 
(189,190). MiR-21 compromises IL-12-mediated anti-
cancer activity including activation of natural killer (NK) 
cells and cytotoxic T lymphocytes (191). The secretion of 
miR-21-enriched exosomes by HBV-infected hepatocytes 
is thus a potential viral escape mechanism from host innate 
immune responses (192,193).

It is conceivable that milk-derived exosomes and their 
miR cargo modify hepatocyte transcriptional activity. 
After oral or retroorbital administration, bovine milk 
exosomes accumulated in the liver of mice (164,194) and 
apparently transfer their miRs into hepatocytes (195). 
Part of bovine milk exosome uptake is mediated by bovine 
immunoglobulin G (IgG), which binds to human neonatal 
Fc receptor (FcRn) (196) that is highly expressed in adult 
human liver (197). 

MiR-21

MiR-21 is a well-established oncomiR whose steady-state 
tissue levels are commonly increased in many malignancies 
including HCC (198-206). MiR-21 promotes migration 
and invasion by the miR-21-PDCD4-AP-1 feedback loop 
in human HCC (198). MiR-21 activates mTORC1 and 
mTORC1-dependent translation via targeting PTEN and 
PDCD4 (207-209). Cancer susceptibility gene HEPN1 
is frequently silenced in HCC, whereas exogenous 
HEPN1 exhibits antiproliferative effect on HepG2 cells, 
suggesting that silencing of HEPN1 may be associated 
with hepatocancerogenesis (210). MiR-21 promotes cell 
proliferation and migration in human HCC by targeting 
HEPN1 and Navigator 3 (NAV3) (199,211) (Table 2).

Circulating miR-21 serves as a biomarker for HCC and 
correlates with distant metastasis (199,211-214). The 5-year 
overall survival of a high miR-21 expression group was 
significantly shorter than that of a group with low miR-21 
expression (215,216). Furthermore, overexpression of miR-21 is 
associated with HCC recurrence in patients with HBV-mediated 
HCC undergoing liver transplantation (217). High-mobility 
group box 1 (HMGB1) induces miR-21 in HCC repressing 
matrix metalloproteinase (MMP) inhibitors reversion-inducing 
cysteine-rich protein with Kazal motifs (RECK) and tissue 
inhibitor of metalloproteinase 3 (TIMP3), which regulate HCC 

Table 2 Oncogenic effects of miR-21 in hepatocellular carcinoma

MiR-21 targets Biological effects

IGFBP3 Increased IGF-1 signaling

PTEN Increased PI3K-AKT-mTORC1 signaling

PDCD4 Increased translation

HEPN1 Reduced apoptosis

NAV3 Increased proliferation

RECK Matrix metalloproteinase activation and 
metastasis

TIMP3 Matrix metalloproteinase activation and 
metastasis

IL-12p35 Reduced activation of natural killer cells and 
cytotoxic T lymphocytes, reduced anti-tumor 
immune defense

KLF5 Promotion of HCC cell migration
and HCC progression

IGF-1, insulin-like growth factor-1; IGFBP3, IGF binding 
protein 3; PTEN, phosphatase and tensin homolog; PI3K, 
phosphatidylinositol-3 kinase; mTORC1, mechanistic target of 
rapamycin complex 1; PDCD4, programmed cell death 4; NAV3, 
navigator 3; RECK, reversion-inducing cysteine-rich protein with 
Kazal motifs; TIMP3, tissue inhibitor of metalloproteinase 3; 
KLF5, Kruppel-like factor 5; HCC, hepatocellular carcinoma.
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progression and metastases (218). Thus, upregulated miR-21 
promotes various steps of hepatocancerogenesis (219-224). In 
contrast, degradation of miR-21 or treatment with anti-miR-21 
suppressed HCC growth, induced apoptosis and reduced 
resistance to sorafenib and cisplatin (225-228).

Importantly, miR-21 is a signature miR of commercial 
milk (229,230) and a consistent component of milk 
exosomes (230). In human volunteers, increased plasma 
miR-21 levels have been reported 6 hours after milk 
consumption (231). Because human and bovine miR-21 
sequences are identical (232), milk-derived exosomal miR-
21 and HCC-induced exosomal miR-21 may synergistically 
promote hepatocancerogenesis (219-223,233). 

Commercial milk obtained from persistently pregnant 
cows contains androgenic hormones (234,235). Mean 
milk androstenedione concentrations of pregnant cows 
are three-fold higher compared to non-pregnant cows 
(236,237). High affinity binding sites of androgens have 
been characterized in primary HCC cells (238). Androgen 
receptor activation by androst-5-ene-3,17-dione, androst-5-
ene-3β,17β-diol, dihydrotestosterone, and 5α-androstane-3β 
increased miR-21 transcription in HepG2 cells (239). Thus, 
milk-derived androgenic steroids may enhance oncogenic 
miR-21 expression. 

MiR-155

HBV and HCV are involved in HCC pathogenesis 
and affect the expression of miRs (240). MiR-155 is 
an important oncomiR driving HCC (241-243). The 
expression of miR-155 is upregulated in tissues and serum 
of patients with HCC (241-244). HBV via suppression 
of zinc finger and homeodomain protein 2 (ZHX2), also 
known as α-fetoprotein regulator 1, promotes proliferation 
of HCC through miR-155 activation (245). Overexpressed 
miR-155 in HCV-induced HCC activates Wnt signaling 
(246,247). Epstein-Barr virus (EBV) infection, also observed 
in HCC (248), as well increased the expression of miR-155 
(249,250).

Both miR-21 and miR-155 directly target PTEN and 
thereby activate AKT-mTORC1 signaling (251,252). HCC 
exosome-mediated transfer of miR-155 contributes to 
HCC cell proliferation by targeting PTEN (252). Other 
targets of miR-155 in HCC are forkhead box O3A (FoxO3a) 
(253,254), collagen triple helix repeat containing 1 
(CTHRC1) (255), AT-rich interactive domain 2 (ARID2) (256), 
sex-determining region Y box 6 (SOX6) (257), F-box and 
WD40 domain protein 7 (FBXW7) (258), and Kruppel-like 

factor 5 (KLF5) (259).
FoxO3a exerts antitumor properties in HCC, inducing 

the expression of proapoptotic genes, or interfering 
with signaling cascades commonly altered in HCC such 
as Wnt/β-catenin, PI3K/AKT/mTORC1 or MAPKs  
pathways (260). MiR-155 overexpression increases 
metastasis- and antiapoptosis-related protein expression 
and decreases proapoptosis-related protein expression 
(255,256). As shown in an HCC cell line, ARID2 knockout 
disrupts DNA repair processes resulting in susceptibility to 
carcinogens and potential hypermutation (261). Decreased 
expression of SOX6, which plays critical roles in cell fate 
determination, differentiation and proliferation, confers a 
poor prognosis in HCC (262). Because FBXW7 mediates 
ubiquitination-dependent degradation of c-MYC and 
mTOR (263,264), miR-155-mediated suppression of 
FBXW7 is likely to affect HCC tumorigenesis. MiR-155 
in synergy with miR-21 suppresses IGF binding protein 3 
(IGFBP3) activating IGF/IGFR signaling in HCC (265,266) 
(Figure 1). TGF-β1, a component of milk exosomes (177), 
promotes the expression of miR-155. Increased levels of 
miR-155 in HCC cells accelerate epithelial-mesenchymal 
transition (EMT), activate PI3K-serum/glucocorticoid-
regulated kinase 3 (SGK3)-β-catenin signaling, promote 
cellular invasion and migration (267,268). Notably, 
TGF-β1 promotes the expression miR-155 in HCC (267).  
MiR-155 is also upregulated in diffuse large B-cell 
lymphoma (269,270), another malignancy related to milk 
consumption (10). A relationship between serum miR-155 
and telomerase expression has been observed in HCC (271).  
MiR-155 downregulates suppressor of cytokine signaling 
1 (SOCS1), resulting in activation of STAT3 and STAT3-
induced transcription of miR-21 (272,273). MiR-155 
targets tumor protein p53-inducible nuclear protein 1 
(TP53INP1) regulating liver CSC acquisition and self-
renewal (274). Under hypoxic conditions, HCC cells secrete 
miR-155-enriched exosomes enhancing angiogenesis in 
endothelial cells (275). Finally, miR-155 has been identified 
as a biomarker for tumor recurrence and survival of HCC 
patients following orthotopic liver transplantation (276) 
(Table 3).

The role of EVs in mediating HCC progression and 
metastasis as well as HCC therapy is in the focus of recent 
research (178,277). Importantly, miR-155 is enriched in 
exosomes released from HCC cells and exosome-derived 
miR-155 is transferred into targeted cells increasing HCC 
cell proliferation (251,252). HCV proteins associate with 
the membrane tetraspanin CD81 for HCV infection of 
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hepatocytes (278). HCV envelope glycoprotein E2 binds to 
CD81 associated with exosomes that were captured from the 
plasma of HCV-infected patients (279). In analogy to HCV, 
HBx can tweak the exosome biogenesis machinery both by 
enhancing neutral sphingomyelinase 2 activity as well as by 
interacting with exosomal neutral sphingomyelinase 2, CD9 
and CD81 (280). Enhanced secretion of exosomes by HBx-
expressing cells has been confirmed with co-localization of 
HBx with CD9 and CD63 (280). 

Milk exosomes also contain CD9, CD63 and CD81, all 
dominant milk exosome membrane proteins (165,166) that 
may augment HBV and HCV transmission. In analogy with 
HBV- and HCV-induced exosome secretion, milk exosome-
derived miR-21 and miR-155 (229,230,281-284) via milk 
exosome uptake may modify hepatocyte gene transcription 
promoting HCC.

Notably, the liver is the major organ for the uptake 
of orally administered milk exosomes (164,284). Thus, 
not only HCC-derived exosomal miR-155 but also milk 
exosome-derived miR-155 may converge in exosome-
induced hepatocancerogenesis (285). Of interest, the 
combined panel of miR-155, miR-96, miR-99a and AFP has 

a higher sensitivity and specificity for the diagnosis of HCC 
when compared with each single marker (244).

MiR-29b

MiR-29b is a bioavailable bovine milk miR, which increases 
in plasma and peripheral blood mononuclear cells of healthy 
volunteers 4 to 6 hours after milk consumption (195). MiR-
29b plays a key role in hepatic IR (18,89) and is related 
to impaired hepatic BCAA catabolism (286-288). Human 
and bovine miR-29b exhibit identical sequences (mirbase.
org). Intriguingly, miR-29b inhibits BCAA catabolism 
via targeting the E2 core component (DBT) of BCKDH 
(Figure 1) (289). In this regard, milk-derived miR-29b may 
augment compromised BCAA catabolism in HCC (112,113). 
Milk miR-29b-mediated suppression of BCAA catabolism 
during the breastfeeding period might conserve BCAAs for 
mTORC1-dependent growth and BCAA incorporation into 
structural and functional proteins such as albumin (290).

Milk exosomes: potential carriers of oncogenic 
viruses

Host exosome pathways are hijacked by viruses such as 
HBV, HCV, and EBV (291-297). Circulating virus particles 
may interact with exosomal tetraspanins of milk (165,166), 
a potential mechanism promoting cellular virus uptake. The 
detection of a novel HCV-like virus (BovHepV) in domestic 
cows with liver tropism is of concern (298,299), because it 
is not yet known whether BovHepV is able to enter milk 
exosomes and modify hepatic gene expression of milk 
consumers. 

Furthermore, virus-like small circular single-stranded 
DNA (ssDNA) molecules have been isolated from 
commercial milk (300-302). These replication-competent 
genomic DNA sequences called bovine meat and milk 
factors (BMMF1 and BMMF2) are regarded as a specific 
class of infectious agents spanning between bacterial plasmid 
and circular ssDNA viruses with similarities to the genome 
structure and replication of hepatitis deltavirus (303). The 
possibility that these potentially oncogenic DNA sequences 
are transported via milk exosomes is under investigation 
(Harald zur Hausen, personal communication).

Milk exosomes for drug delivery

There are recent efforts to use exosomes for drug transfer 
as anti-cancer agents (277,304-307) and HCC treatment 

Table 3 Oncogenic effects of miR-155 in hepatocellular carcinoma

MiR-155 targets Biological effects

IGFBP3 Increased IGF-1 signaling

PTEN Increased PI3K-AKT-mTORC1 signaling

SOCS1 Enhanced STAT3 signaling and miR-21 
expression

TP53INP1 Liver cancer stem cell acquisition and self-
renewal

FOXO3A Reduced pro-apoptotic signaling

CTHRC1 Disturbed WNT/β-catenin signaling

ARID2 Decreased DNA repair 

SOX6 Disturbed differentiation and increased 
proliferation

FBXW7 Increased c-MYC and mTOR expression

IGF-1, insulin-like growth factor-1; IGFBP3, IGF binding 
protein 3; PTEN, phosphatase and tensin homolog; PI3K, 
phosphatidylinositol-3 kinase; mTORC1, mechanistic target of 
rapamycin complex 1; SOCS1, suppressor of cytokine signaling 
1; STAT3, signal transducer and activator of transcription 3; 
TP53INP1, p53-inducible nuclear protein 1; CTHRC1, collagen 
triple helix repeat containing 1; ARID2, AT-rich interactive 
domain 2; SOX6, sex-determining region Y box 6; FBXW7, F-box 
and WD40 domain protein 7. 
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(180,308,309). Some investigators promote cow milk-
derived exosomes as potential carriers for drug delivery 
(196,284,310,311). However, it should be kept in mind 
that milk exosomes per se carry oncogenic miRs (miR-21, 
miR-155) and TGF-β that should not augment oncogenic 
signaling cascades (160). 

Aflatoxin 

Ruminants metabolize AFB1 ingested by contaminated 
food to aflatoxin M1 (AFM1), the hydroxylated mycotoxin, 
which is excreted into milk (312,313). There is concern 
about an increase of AFM1 concentrations in milk of 
maize-fed cows due to the climate change (314). The 
International Agency for Research on Cancer classified 
AFB1 and AFM1 as human carcinogens of group 1  
(315-317). AFM1 is relatively stable during pasteurization, 
storage and processing (318-320). More than 50% of HCC 
patients from high aflatoxin exposure areas harbor a codon 
249 G to T transversion in the p53 tumor suppressor 
gene, which is found to be consistent with the mutagenic 
specificity of AFB1 observed in vitro (321). This is of 
concern as milk signaling per se attenuates p53 activity by 
various mechanisms including AKT-mediated activation 
of mouse double minute 2 (MDM2) (322,323). As 

demonstrated with 1H NMR spectroscopy, AFB1 exposure 
of rats elevated hepatic BCAA levels (324). In accordance, 
AFM1 exposure of HepG2 cells enhanced cellular BCAA 
levels (325). Consumption of alcohol (2,000 kcal added 
to the diet) in human alcoholics for 2 to 4 weeks as well 
increased BCAA levels (326). In baboons, chronic alcohol 
intake over years increased plasma leucine concentrations 
and enhanced plasma BCAA levels with steatosis hepatis as 
well as hepatitis-fibrosis (Table 4) (326). 

Liver cirrhosis and advanced HCC

In contrast to the unnoticed induction phase of BCAA-
mTORC1-dr i ven  hepa tocance rogenes i s ,  d i r e c t 
supplementation of BCAAs in patients with advanced liver 
cirrhosis may reduce profibrotic signaling and prevent 
progressive liver failure (327). In patients with overt HCC, 
BCAA supplementation improved overall and disease-specific 
survival in those patients with low BCAA to tyrosine ratios 
despite having normal albumin levels (328). Overexpression of 
platelet-derived growth factor C (PDGF-C) promotes liver 
fibrosis, which is preceded by activation and proliferation of 
HSCs (329). In PDGF-C transgenic mice, an anti-fibrotic 
effect of BCAAs has been observed (330). In HSCs, BCAAs 
restored TGF-β1-stimulated expression of profibrotic genes, 
whereas in hepatocytes, BCAAs restored TGF-β1-induced 
apoptosis, lipogenesis, and Wnt/β-catenin signaling, and 
inhibited the transformation of WB-F344 rat liver epithelial 
stem-like cells. The inhibitory effect of BCAA on TGF-β1 
signaling was mTORC1-dependent, suggesting a negative 
feedback regulation from mTORC1 to TGF-β1 (330). 
TGF-β1 activates HSC proliferation and primes HSCs for 
extracellular matrix deposition and scar contraction (331).  
In HFD-treated mice, HCC induction by the hepatic 
carcinogen diethylnitrosamine (DEN) resulted in 
mTORC1 inhibition, increase of IL-6, activation of STAT3 
and HCC development (332). In a rat model of DEN-
induced liver fibrosis and HCC, a diet containing either 3% 
casein, 3% or 6% BCAAs for 13 weeks beginning 6 weeks 
after DEN administration demonstrated less dysplastic foci 
and less numbers of HCC in the BCAA groups at 16 weeks 
of DEN administration compared to the casein group (333). 
However, at 19 weeks of DEN, there was a trend to higher 
HCC numbers in the BCAA groups compared to casein 
controls (333). In contrast, attenuation of mTORC1 activity 
by low-dose oral rapamycin reduced fibrogenesis, improved 
liver function, and prolonged survival in rats with bile duct 
ligation-induced liver cirrhosis (334). Obviously, the type 

Table 4 Effects of hepatocancerogenic agents on BCAA metabolism  

Exposures Effects 

Hepatitis C virus Upregulation of SLC3A2/SLC7A5 
increasing cellular leucine influx

Alcohol Increased plasma BCAA levels

Aflatoxin M1 Increased hepatic BCAA levels

Obesity Increased plasma BCAA levels

Insulin resistance and 
type 2 diabetes 

Increased BCAA plasma levels and 
decreased BCAA catabolism

Milk protein intake Increase of hepatic BCAA levels and 
activation of mTORC1 

Milk exosomal miR-29b Inhibition of DBT decreasing BCKDH-
mediated BCAA catabolism increasing 
cellular BCAA levels activating mTORC1

BCAA, branched-chain amino acid; SLC3A2, solute carrier 
family 3, member 2 (4F2hc); SLC7A5, solute carrier family 
7, member 5 (LAT1); BCKDH: branched-chain α-ketoacid 
dehydrogenase complex; mTORC1, mechanistic target of 
rapamycin complex 1; DBT, dihydrolipoamide branched-chain 
transacylase.
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of model, target cells and stage of HCC development are 
of importance for HCC-promoting or HCC-preventing 
effects of BCAAs.

Nevertheless, BCAA-mediated activation of hepatic 
mTORC1 is generally accepted to promote HCC 
development, progression and spreading (78,79,335,336). 
Activation of mTOR is more intense in the tumor edge, 
reinforcing its role in HCC proliferation and spreading (336). 
In addition, mTOR is overexpressed in multinodular HCC 
and is associated with increased post-liver transplantation 
tumor recurrence rates (336). mTORC1 upregulates 
SREBP1 via crosstalk with the STAT5 pathway, which 
contributes to NAFLD-related HCC pathogenesis (79). In 
HBV-associated tumorigenesis, the mTORC1 signal cascade 
also plays an important role in promoting de novo lipogenesis 
through activation of SREBP1 and ATP-citrate lyase (337). 
Loss-of-function of tuberin (TSC2), a key negative regulator 
of mTORC1, is common in HCC (338). Finally, the majority 
of therapeutic interventions in HCC aim at decreasing AKT-
mTORC1 signaling (339-342). 

Inverse relation between yogurt intake and HCC 
risk

Epidemiological studies confirmed an inverse relationship 
between yogurt consumption and the risk of HCC (17,21) 
as well as T2DM (20,343,344), two related pathologies 
exhibiting disturbed BCAA catabolism (112,113,132-
134). The combination of Streptococcus thermophiles and 
Lactobacillus delbrueckii subsp. bulgaricus is the classic 
starter in yogurt production. Lactic acid bacteria (LAB) 
degrade milk’s natural signaling capacity. LAB modify 
intestinal and systemic BCAA homeostasis, degrade 
milk proteins, and produce a-ketoacids including KIC 
(345-347), a physiological inhibitor of BCKDK (348). 
Probiotic yogurts also contain the strong BCKDK 
inhibitor octanoic acid (349,350). Via the portal vein, 
octanoic acid is taken up by the liver (Figure 1) (351). In 
rats, oral administration of octanoic acid activated hepatic 
BCKDH via suppression of BCKDK activity reducing 
BCAA plasma concentrations (350). Lactobacillus delbrueckii 
subsp. bulgaricus and Streptococcus thermophilus increase the 
intestinal ratio of Bacteroidetes to Firmicutes associated with 
increased butyrate production (352-354). The butyrate-
derivative phenylbutyrate (PB) is an allosteric inhibitor of 
BCKDK and reduces BCAA plasma concentrations (355).  
Activated BCKDK promotes CRC via direct MEK  

phosphorylation (356). A cancer-preventive effect of PB 
has been observed in two liver carcinoma cell lines (Bel-
7402, HepG2) (357-360). Furthermore, LAB-mediated 
fermentation of milk decreased the size of milk exosomes, 
exosome protein and miR-21 as well as miR-29b content (361). 
Yogurt intake increased the density of LAB and C. perfringens 
and reduced Bacteroides (362). Bacteroides vulgatus is a major 
producer of intestinal BCAAs that has been related to IR (363). 

Thus, the HCC- and T2DM-preventive effect of yogurt 
consumption may reside in LAB-mediated improvements of 
intestinal and systemic BCAA homeostasis via suppression 
of intestinal BCAA synthesis and hepatic BCKDK resulting 
in upregulated BCKDH activity and reduced plasma BCAA 
levels (Figure 1).

Summary and conclusions

On the basis of epidemiological and translational evidence, 
it can be concluded that total dairy, milk and butter are 
critical risk factors of HCC. Increased intake of milk 
protein-derived BCAAs and saturated milk fat promote 
hepatic IGF-1 and mTORC1 activation. HCC-related 
deviations on BCAA catabolism combined with extensive 
BCAA intake promote excessive mTORC1 activation. Milk-
derived exosomes and their oncogenic miRs apparently 
synergize with oncogenic signaling of HCC-derived 
exosomes in hepatocancerogenesis. 

For HCC prevention, dietary reduction of BCAAs 
should be pursued in accordance with recommendations 
for the prevention of IR and T2DM (25,364). Notably, 
the most common antidiabetic drug metformin exhibits 
potential for the prevention and adjuvant treatment of 
HCC (365-368). Metformin inhibits mTORC1 (369,370), 
suppresses BCAT2 associated with a reduction of KIC (371), 
and reduces circulating BCAA levels (372), thus operates in 
the opposite direction of milk signaling (28,373). 

The Canadian Dietary Guidelines recommend an animal 
protein-reduced and vegetable-accentuated diet (374), which 
apparently decreases the risk of HCC (375,376) including 
milk-related overall and cancer mortality (8,22,377-
380). Milk exosomes and their oncogenic miRs have to be 
removed from the human food chain (160) as substantial 
evidence implies that milk exosome-derived oncogenic miRs 
promote HCC in synergy with HBV-/HCV-induced hepatic 
exosomes. Thus, accumulating evidence adds milk, cheese 
and butter with the exception of yogurt to the list of dairy-
related risk factors of HCC (Table 5).
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