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Background: The tumor immune microenvironment is pivotal in predicting clinical outcomes and 
therapeutic efficacy in cancer patients. This study aims to develop an immune prediction model (IPM) to 
effectively predict prognosis and immunotherapeutic response in patients with hepatocellular carcinoma 
(HCC). 
Methods: An IPM was constructed and validated based on immune-related genes. The influence of IPM 
on the HCC immune microenvironment, as well as the possible mechanism, was comprehensively analyzed. 
The value of the model in predicting the response of HCC patients to immunotherapy was also evaluated. 
Results: A novel IPM based on eight genes was developed and validated to predict the prognosis of HCC 
patients. These genes are matrix metalloproteinase 12 (MMP12), heme oxygenase 1 (HMOX1), C-X-C motif 
chemokine receptor 6 (CXCR6), hepatoma-derived growth factor (HDGF), placental growth factor (PGF), 
tyrosine kinase 2 (TYK2), retinoid X receptor beta (RXRB), and cyclin-dependent kinase 4 (CDK4). High-
risk patients showed significantly poorer survival than low-risk patients. A nomogram was also established 
based on the IPM and tumor, node, metastasis (TNM) classification, which showed some net clinical benefit. 
Gene set enrichment analysis (GSEA) revealed several significantly enriched oncological signatures and 
immunologic signatures. Furthermore, high-risk patients were characterized by severe clinicopathological 
characteristics and immune cell infiltration. Finally, we found the that the IPM showed a significant positive 
correlation with programmed cell death 1 (PDCD1), cluster of differentiation 274 (CD274), and cytotoxic 
T-lymphocyte-associated antigen 4 (CTLA-4) expression, suggesting a potentially enhanced effects of 
immunotherapy antibodies in HCC patients with a high risk score.  
Conclusions: A novel IPM that could predict clinical prognosis and immunotherapeutic response in HCC 
patients was developed. Our findings not only provide new insights into the identification of HCC patients 
with poor survival, but also deepen our understanding of the immune microenvironment, as well as the 
mechanism of immunotherapy, in HCC. 
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Introduction

Liver cancer is the fourth leading cause of cancer-associated 
mortality globally (1,2). Hepatocellular carcinoma (HCC), 
the most prevalent subtype of liver cancer, is an aggressive 
chronic malignancy. The prognosis of HCC is poor, which 
is mainly attributable to metastasis-related recurrence. 
Most patients with HCC are at an advanced stage at the 
time of diagnosis and consequently respond poorly to 
surgical resection or chemotherapy (3). In recent years, 
immunotherapy has been used in the treatment of HCC, 
achieving certain therapeutic effects (4). However, the 
survival benefits of immunotherapy vary widely among 
HCC patients. Personalized treatment strategies can help to 
prolong the survival and improve the quality of life of HCC 
patients. Therefore, an effective model that can accurately 
predict prognosis and immunotherapeutic response for 
HCC patients is urgently needed.

A growing amount of evidence has indicated that the 
tumor immune microenvironment plays a pivotal role in 
the progression and clinical outcomes of HCC (5,6). For 
instance, differences in the composition of immune cells, 
including T cells, macrophages, dendritic cells, and cancer-
associated fibroblasts, have been reported to influence 
the prognosis of HCC in different ways (7). Immune 
checkpoint-based immunotherapies have emerged as 
potentially effective treatments for patients with advanced 
HCC. Immune checkpoint inhibitors, such as the anti-
cytotoxic T-lymphocyte-associated antigen 4 (anti-
CTLA-4) agent tremelimumab and the anti-programmed 
cell death protein 1 (anti-PD-1) agent nivolumab, have 
been used to treat HCC in clinical trials (8). Although 
immunotherapy has shown promise for some HCC patients, 
especially as second-line therapy, others have not benefited 
from this treatment. Recent studies have suggested a 
close relationship between immune-related genes and 
prognosis in HCC patients who receive immunotherapy 
(9-11). However, a model that can predict prognosis and 
immunotherapeutic response in HCC patients based on 
immune-related genes has yet to be designed.

In this study, we analyzed immune-related genes and 
constructed an immune prediction model (IPM) using 
HCC transcriptome data from The Cancer Genome Atlas 
(TCGA) database. The prognostic prediction value of 
our IPM was validated using the GSE14520 dataset from 
the Gene Expression Omnibus (GEO) database. Further, 
multivariate Cox regression analysis was carried out to 
confirm the independent prognostic role of the IPM. A 

nomogram was also established to predict the prognosis 
of patients with HCC based on independent clinical 
risk factors. Gene set enrichment analysis (GSEA) was 
performed to explore the potential mechanisms. Finally, 
the model’s potential in guiding the treatment of HCC 
patients was also evaluated. Overall, our IPM could be used 
to guide therapeutic strategy in the management of HCC 
patients, and the genes in the IPM could serve as potential 
biomarkers for HCC. We present the following article in 
accordance with the TRIPOD reporting checklist (available 
at http://dx.doi.org/10.21037/atm-20-6112).

Methods

Data preparation

The mRNA expression data and clinical information of 
patients with HCC were downloaded from the TCGA 
database and used to construct the IPM for HCC. The 
GSE14520 dataset was also downloaded from the GEO 
database and used to validate the IPM. The alteration status 
of immune-related genes in HCC was obtained from the 
cBioPortal for Cancer Genomics database. All data were 
publicly available and downloaded from online databases; 
therefore, this study did not require additional ethical 
approval. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). 

Identification of differentially expressed immune genes in 
HCC

A total of 1,534 immune-related genes were downloaded 
from the ImmPort database (https://immport.niaid.nih.gov), 
accessed on October 26, 2019 (12). To identify differentially 
expressed immune genes (DEIGs) in HCC tissues and 
normal tissues, the raw count data were extracted and 
analyzed using the R package “edgeR”. DEIGs meeting 
the criteria of Log2 fold change (FC) >2 and an adjusted P 
value <0.05 were considered for subsequent analysis. 

Development of IPM for HCC prognosis prediction

Patients with a follow-up time of longer than 1 month were 
included for survival analysis. Univariate Cox regression 
analysis was carried out to screen prognostic genes of HCC 
among the DEIGs with the criterion P<0.05. Multivariate 
Cox regression analysis was performed by using R package 
“survival” to construct the IPM for HCC based on the 

http://dx.doi.org/10.21037/atm-20-6112
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prognostic genes. The risk score of IPM =(βmRNA1 * 
expression level of mRNA1) + (βmRNA2 * expression level 
of mRNA2) + (βmRNA3 * expression level of mRNA3) + 
… + (βmRNAn * expression level of mRNAn). According 
to the risk score, patients were classified into the high- 
and low-risk groups. The survival difference between the 
high- and low-risk groups was evaluated through Kaplan-
Meier survival analysis combined with the log-rank test 
using the “survival” package in R. The predictive potential 
of the IPM for overall survival (OS) was assessed by time-
dependent receiver operating characteristic (ROC) curve 
analysis using the R package “survivalROC”. Further, 
the prognostic function of the IPM was validated in the 
GSE14520 dataset. Risk score was calculated with the same 
IPM formula from the TCGA dataset. Finally, the Kaplan-
Meier method and ROC curves were used to evaluate and 
validate the predictive value of the IPM in the GSE14520 
dataset.

Independent prognostic role of the IPM from traditional 
clinical factors

The TCGA dataset included HCC patient clinical 
information including age,  gender,  tumor grade, 
tumor stage, and pathological T, pathological_M, and 
pathological_N. The GSE14520 dataset included HCC 
patient clinical information including age, gender, alanine 
aminotransferase (ALT), tumor size, multinodular, liver 
cirrhosis, alpha fetoprotein (AFP), and TNM stage. To 
validate whether the IPM was independent of other clinical 
factors for patients with HCC, univariate and multivariate 
Cox regression analyses with a forward stepwise procedure 
were performed.

Construction and evaluation of the nomogram

A nomogram that integrated all of the independent 
clinical factors identified by multivariate Cox analysis was 
constructed using the R package “rms”. Discrimination 
and calibration are the most commonly used methods for 
evaluating the performance of a nomogram. To assess the 
discrimination ability of the nomogram, the concordance 
index (C-index) was calculated by a bootstrap method with 
1,000 resamples. The calibration curve was applied to 
evaluate the similarity between the prediction probabilities 
and the observed rates. Additionally, ROC curve analysis 
was performed to compare the nomogram and individual 
clinical prognostic factors.

Gene set enrichment analysis 

To explore the molecular mechanisms potentially underlying 
our constructed immune signature, GSEA was performed 
of the Gene Ontology (GO) term in C5, the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway in 
C2, the oncogenic signatures of gene sets in C6, and the 
immunologic signatures of gene sets in C7, respectively 
(13,14). Gene sets from the Molecular Signatures Database 
(MSigDB) were used for reference. The number of 
permutations was set at 1,000. Enrichment results satisfying 
a nominal P value <0.05 and a false discovery rate (FDR) 
<0.25 were considered to be statistically significant.

Tumor-infiltrating immune cell analysis

CIBERSORT is an analytical tool that characterizes 
the cell composition of complex tissues based on their 
gene expression profiles (15). LM22 is a signature matrix 
consisting of 547 genes that accurately distinguish immune 
cell types, including T cell types, naïve and memory B cells, 
plasma cells, NK cells, and myeloid subsets. To determine 
immune cell infiltration in the high- and low-risk patient 
groups, CIBERSORT was used in combination with 
the LM22 signature matrix to estimate the proportions 
of immune cell types. For each sample, the sum of all 
estimated proportions is equal to 1. Cytolytic activity was 
calculated as the geometric mean of PRF1 and GZMA (16).

Statistical analysis

Statistical analysis was performed using R software v3.5.0 (R 
Foundation for Statistical Computing, Vienna, Austria) and 
GraphPad Prism v7.00 (GraphPad Software Inc., USA). 
Survival analysis was performed using the Kaplan-Meier 
method and the log-rank test in R package “survival”. A P 
value <0.05 was considered statistically significant.

Results

Identification of DEIGs

A total of 1,534 immune-related genes were downloaded 
from the ImmPort database. The expression values of these 
genes were extracted from the TCGA dataset and analyzed 
using “edgeR”. Of the 1,534 immune-related genes, 294 
were identified as DEIGs between HCC tissues and normal 
tissues (|log2FC| >1 and P<0.05). A heatmap of the DEIGs 
is shown in Figure S1. Of these 294 DEIGs, 194 genes were 
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Figure 1 Prognostic analyses of the IPM. (A) Distribution of the risk score, survival data, and the mRNA expression heatmap in the TCGA 
dataset. (B) Kaplan-Meier survival analysis of the IPM in the TCGA dataset. (C) Time-dependent ROC analysis of the IPM in the TCGA 
dataset. IPM, immune prediction model; TGCA, The Cancer Genome Atlas; ROC, receiver operating characteristic.
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found to be significantly upregulated in HCC compared 
to normal tissues, and 100 genes were significantly 
downregulated in HCC relative to normal tissues.

Development of an IPM based on the TCGA dataset

The 294 DEIGs were used to construct the IPM for HCC 
based on the TCGA dataset. First, 80 of the 294 DEIGs 
were identified as being significantly associated with OS 
by univariate Cox regression analysis (P<0.05). Then, 
multivariate Cox regression analysis was performed to 
determine the genes with the greatest prognostic value. 
Eight genes with relative regression coefficients were 
identified and used to construct the IPM. The eight genes 
identified were matrix metalloproteinase-12 (MMP12), 
tyrosine kinase 2 (TYK2), heme oxygenase 1 (HMOX1), 

chemokine receptor type 6 (CXCR6), hepatoma-derived 
growth factor (HDGF), placental growth factor (PGF), 
retinoid X receptor beta (RXRB), and cyclin-dependent 
kinase 4 (CDK4). Survival risk score was calculated as 
follows: risk score = (0.0864* expression of MMP12) + 
(−0.3658* expression of TYK2) + (0.2206* expression of 
HMOX1) + (−0.3100* expression of CXCR6) + (0.5089* 
expression of HDGF) + (0.1430* expression of PGF) + 
(−0.5244* expression of RXRB) + (0.3323* expression of 
CDK4). Next, the risk score was calculated for each HCC 
patient and the patients were ranked (Figure 1A). As shown 
in the heatmap in Figure 1A, patients in the high-risk group 
tended to have increased levels of MMP12, HMOX1, 
CXCR6, HDGF, PGF, and CDK4 expression, as well as 
reduced TYK2 and RXRB expression. The Kaplan-Meier 
curve analysis and log-rank test suggested that the high-
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Figure 2 Validation and evaluation of the IPM in the GSE14520 dataset. (A) Distribution of the risk scores and survival times with the 
IPM, and a heatmap showing mRNA expression, in the GSE14520 dataset; (B) Kaplan-Meier survival analysis of the IPM in the GSE14520 
dataset; (C) time-dependent ROC analysis of the IPM in the GSE14520 dataset. IPM, immune prediction model; ROC, receiver operating 
characteristic.

risk patients had significantly worse OS than patients in 
the low-risk group (P<0.001, Figure 1B). Figure 1C shows 
the predictive potential of the IPM using time-dependent 
ROC curves. The area under the ROC curve (AUC) of the 
prognostic model for HCC was 0.768, 0.739, and 0.757 at 1, 
3, and 5 years, respectively.

Validation and evaluation of the IPM in the GEO dataset

To validate whether the IPM had similar prognostic value 
among different HCC populations, we calculated the risk 
score for each patient in the GSE14520 dataset using the 
formula described above. The patients were divided into 
high- and low-risk groups with a risk score of 1.455 as 
the optimal cutoff point. Figure 2A shows the distribution 

of risk scores and survival times with the IPM, along 
with the gene expression data, in the GSE14520 dataset. 
Consistent with our previous findings, the Kaplan-Meier 
curve suggested that patients in the high-risk group showed 
significantly worse OS than patients in the low-risk group 
(P<0.001, Figure 2B). The AUCs for 1-, 3-, and 5-year 
OS were 0.669, 0.703, and 0.701, respectively (Figure 2C). 
Furthermore, the percentage of alteration of the eight genes 
in HCC patients was investigated using the cBioPortal 
website (Figure S2). The alteration percentages varied from 
0.6–10% (HDGF, 10%; RXRB, 3%; and CDK4, 1.1%; 
TYK2, 0.8%; CXCR6, 0.6%; HMOX1, 0.6%; MMP12, 
0.6%; and PGF, 0.6%). Overall, these results suggested that 
our IPM had a good performance in predicting the survival 
of patients with HCC.



Wang et al. A prognostic and immunotherapeutically relevant model in HCC

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(18):1177 | http://dx.doi.org/10.21037/atm-20-6112

Page 6 of 14

Table 1 Univariate and multivariate Cox regression analysis in HCC

Dataset Variables
Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

TCGA Age (≥60 vs. <60 years) 1.012 (0.618–1.657) 0.963 1.097 (0.650–1.851) 0.729

Gender (male vs. female) 1.120 (0.666–1.881) 0.669 1.011 (0.577–1.771) 0.969

Grade (3+4 vs. 1+2) 1.087 (0.661–1.786) 0.743 0.923 (0.535–1.594) 0.969

TNM stage (III+IV vs. I+II) 3.712 (2.261–6.095) <0.001 0.086 (0.004–1.756) 0.111

Pathological_T (3+4 vs. 1+2) 3.712 (2.263–6.088) <0.001 32.922 (1.714–632.225) 0.020

Pathological_M (M1 vs. M0) 4.769 (1.485–15.311) 0.009 1.205 (0.334–4.345) 0.776

Pathological_N (N1 vs. N0) 2.439 (0.593–10.035) 0.217 9.772 (1.232–77.515) 0.031

Risk score (high vs. low) 1.334 (1.209–1.471) <0.001 5.837 (3.210–10.613) <0.001

GSE14520 Age (≥60 vs. <60 years) 0.805 (0.453–1.429) 0.459 1.039 (0.572–1.885) 0.899

Gender (male vs. female) 1.658 (0.800–3.436) 0.174 1.221 (0.579–2.571) 0.598

ALT (>50 vs. ≤50 U/L) 1.085 (0.704–1.671) 0.713 0.816 (0.517–1.289) 0.383

Tumor size (>5 vs. ≤5 cm) 2.087 (1.354–3.215) 0.001 1.042 (0.600–1.807) 0.885

Multinodular (yes vs. no) 1.553 (0.961–2.510) 0.073 0.832 (0.462–1.500) 0.542

Cirrhosis (yes vs. no) 4.757 (1.170–19.351) 0.029 3.366 (0.811–13.978) 0.095

AFP (>300 vs. ≤300 ng/mL) 1.655 (1.078–2.542) 0.021 1.159 (0.729–1.843) 0.531

TNM stage (III + IV vs. I + II) 3.413 (2.176–5.352) <0.001 2.814 (1.500–5.278) 0.001

Risk score (high vs. low) 3.227 (2.052–5.073) <0.001 2.707 (1.677–4.371) <0.001

HCC, hepatocellular carcinoma; TGCA, The Cancer Genome Atlas; HR, hazard ratio; CI, confidence interval.

Independent prognostic ability of the IPM

Univariate and multivariate Cox regression analyses 
were performed to determine whether the IPM was 
independent of other clinical parameters. In the TCGA 
dataset, univariate Cox analysis showed that TNM stage, 
pathological_T, pathological_M, and risk score were 
significantly associated with OS. Furthermore, the results 
of multivariate Cox analysis showed that pathological_
T, pathological_N, and risk score were independent 
prognostic factors for OS (Table 1). The same result was 
observed in the GSE14520 dataset after adjusting for 
other clinical features, including age, gender, ALT, tumor 
size, multinodular, cirrhosis, AFP, TNM stage, and risk 
score. Univariate and multivariate Cox regression analyses 
indicated that TNM stage and risk score were independent 
prognostic factors for OS (Table 1). Therefore, the IPM 
had independent prognostic significance for OS in HCC 
patients. 

Construction and validation of a nomogram based on the 
IPM

The prognostic nomogram was developed by integrating the 
IPM and independent clinical risk factors from the TCGA 
and GSE14520 datasets, respectively. In the TCGA dataset, 
the risk score was found to contribute more risk points 
(ranging from 0 to 100) than the other clinical factors, which 
was consistent with the results of our Cox multivariate 
regression analysis (Figure 3A). The calibration plot showed 
good performance between the outcomes predicted by 
the nomogram and actual observations (Figure 3B). The 
C-index for the nomogram was 0.696 with 1,000 bootstrap 
replicates (95% CI: 0.624–0.769). The AUCs for 1-, 3-, and 
5-year OS were: 0.743, 0.703, and 0.820, respectively, for 
the TNM model; 0.678, 0.693, and 0.771, respectively, for 
the IPM; and 0.677, 0.692, and 0.783, respectively, for the 
combined model (Figure 3C). Furthermore, we applied the 
same method to build a nomogram based on the IPM and 
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Figure 3 Nomogram predicting OS in HCC patients. (A) Nomogram predicting OS in the TCGA dataset; (B) calibration curve of the OS 
of HCC patients in the TCGA dataset; (C) time-dependent ROC curves of the nomogram comparing 1-, 3-, and 5-year OS, respectively, 
using the TCGA dataset; (D) nomogram predicting OS in the GSE14520 dataset. (E) Calibration curve of the OS of HCC patients in the 
GSE14520 dataset; (F) time-dependent ROC curves of the nomogram comparing 1-, 3-, and 5-year OS, respectively, using the GSE14520 
dataset. OS, overall survival; HCC, hepatocellular carcinoma; TGCA, The Cancer Genome Atlas; ROC, receiver operating characteristic.
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Figure 4 Gene set enrichment analysis. (A) GO biological process enrichment analysis; (B) KEGG pathway enrichment analysis; (C) 
oncological signature enrichment analysis; (D) immunologic signature enrichment analysis. GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes.

TNM stage in the GSE14520 dataset (Figure 3D,E,F). As 
expected, compared with the TNM model and the IPM, 
the combined model had the largest AUCs for 1-, 3-, and 
5-year OS. In summary, these findings demonstrate that our 
nomogram could be used to predict OS in HCC patients 
more accurately than individual prognostic factors.

Gene set enrichment analysis

To explore the underlying mechanisms of the genes used 
to construct our IPM in HCC, we applied the GSEA 
method to investigate the potential biological processes and 
pathways in the high- and low-risk groups. GO enrichment 
analysis identified 142 enriched GO terms, including cell 
cycle G2 M phase transition, mitotic cell cycle checkpoint, 
and regulation of chromosome segregation, in the high-risk 
group (Figure 4A). The enrichment of c2 suggested that 3 
KEGG pathways (regulation of fatty acid metabolism, the 
peroxisome proliferator-activated receptor (PPAR) signaling 
pathway, and peroxisome) were enriched in the low-risk 
group, and that 5 KEGG pathways (cell cycle, Fc gamma 

receptor mediated phagocytosis, DNA replication) were 
enriched in the high-risk group (Figure 4B). Furthermore, 20 
oncological signatures [including E2F transcription factor 
1 (E2F1), myelocytomatosis oncogene (MYC), and vascular 
endothelial growth factor (VEGF)] were significantly 
enriched in the high-risk group, while no oncological 
signatures were significantly enriched in the low-risk group 
(Figure 4C). In terms of immunologic signatures, B cells, 
CD4+ T cells, NKT cells, and PD-1 ligation were the most 
enriched pathways in the high-risk group (Figure 4D).

Correlation of clinicopathological characteristics with the 
IPM

The relationship between the clinicopathological 
characteristics of HCC patients and the IPM was analyzed in 
the TCGA and GSE14520 datasets. As shown in Figure 5A-P,  
risk score was negatively associated with survival time. In 
terms of AJCC-TNM stage, in the TCGA dataset, stage 
III and IV patients had higher risk scores than stage II and 
I patients, which was consistent with our findings from the 
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GSE14520 dataset. Similarly, in terms of T stage, grade, 
Barcelona Clinic Liver Cancer (BCLC) classification, and 
AFP, patients with advanced HCC had a higher risk score 

than early-stage patients. Further, to explore the clinical 
significance of the eight genes described above, we analyzed 
the correlation between their expression levels and tumor 
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Figure 6 Correlations of immune cells with risk score. (A) Naïve B cells; (B) activated dendritic cells; (B) regulatory T cells; (D) M2 
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follicular helper cells; and (L) activated memory CD4 T cells. 

stage. The results showed that the mRNA expression levels 
of MMP12, PGF, and CDK4 were significantly increased in 
advanced HCC patients. In contrast, CXCR6 expression in 
these patients was significantly decreased compared to that 
in early-stage patients.

Correlation of tumor-infiltrating immune cells with the 
IPM

To determine the possible differences of tumor-infiltrating 
immune cells in the HCC microenvironment, we applied 
the CIBERSORT algorithm to estimate the relative 
proportions of immune cells between low- and high-
risk patients. The association between risk score and 
immune cells was analyzed by Pearson’s correlation 

coefficient. As shown in Figure 6A-F, naïve B cells, 
activated dendritic cells, regulatory T cells (Tregs), M2 
macrophages, activated NK cells, and CD8+ T cells were 
significantly negatively correlated with risk score. In 
contrast, monocytes, M0 macrophages, and neutrophils 
were significantly positively correlated with risk score 
(Figure 6G-I). However, no significant correlations were 
observed between resting mast cells, T follicular helper 
cells, or activated memory CD4 T cells (Figures 6J-L). 
Moreover, the proportions of different subpopulations 
of tumor-infiltrating immune cells were weakly to 
moderately correlated (Figure S3). Therefore, variation in 
the proportions of tumor-infiltrating immune cells might 
represent an intrinsic heterogeneity that could characterize 
differences between individual patients.
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The IPM could identify the HCC patients most likely to 
benefit from immunotherapy

Immune checkpoints  have emerged as  important 
therapeutic targets in cancer immunotherapy. Therefore, 
we investigated the expression levels of PDCD1 (encoded 
protein PD-1), CD274 (encoded protein PD-L1), and 
CTLA4 (encoded protein CTLA-4) in the high- and 
low-risk groups. As shown in Figure 7A-L, in the high-
risk group, the expression levels of PDCD1 and CTLA-
4 were significantly increased while CD274 expression 
was significantly decreased compared to the low-risk 

group. Furthermore, the expression of PDCD1, CD274, 
and CTLA-4 was significantly positively correlated with 
CD8+ T cells, but negatively correlated with NK cells. No 
significant correlation existed between the expression of 
CD274 and NK cells. Cytolytic activity, which is associated 
with clinical responses to anti-CTLA-4 and anti-PD-L1 
immunotherapies, was calculated. The results showed a 
significant positive correlation with PDCD1, CD274, and 
CTLA-4 expression, suggesting a potentially enhanced 
effect of PD-1, PD-L1, and CTLA-4 antibodies in HCC 
patients with a high-risk score.
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Discussion

In this study, we constructed and validated an IPM based on 
eight genes (MMP12, TYK2, HMOX1, CXCR6, HDGF, 
PGF, RXRB, and CDK4), which was able to predict the 
prognosis and immunotherapeutic response of HCC 
patients. MMP12, HMOX1, HDGF, PGF, and CDK4 
were found to be negative prognostic genes, while TYK2, 
CXCR6, and RXRB were found to be positive prognostic 
genes. Our IPM had independent prognostic significance 
for HCC, with patients in the high-risk group showing 
significantly poorer survival than those in the low-risk 
group. Calibration and ROC curve analysis demonstrated 
that the nomogram that integrated the IPM with AJCC-
TNM stage gave the best performance in predicting the 
survival of HCC patients. Furthermore, the correlation of 
the IPM with tumor-infiltrating immune cells revealed that 
T cells and macrophages played a crucial role in the IPM. 
The patients with a high-risk score had increased expression 
levels of PD-L1 and CTLA-4, indicating a potentially high 
response rate to immunotherapy. Lastly, GSEA revealed 
several significantly enriched oncological signatures and 
various immunologic signatures, which might help to 
explain the underlying molecular mechanisms of the genes 
used to construct the IPM.

Most of the eight genes in our IPM have been 
reported to be involved in cancer progression. Matrix 
metalloproteinases (MMPs) are a large family of zinc-
dependent proteases that have been demonstrated to 
be implicated in cancer progression and metastasis by 
degradation of matrix proteins (17). Recent research has 
shown that overexpression of MMP-12 is correlated with 
poor prognosis in HCC (18,19). Nevertheless, the role and 
mechanism of MMP-12 in HCC remain unclear. TYK2, a 
member of the Janus kinases (JAKs) protein family, plays a 
key role in immune responses and inflammation through 
cytokine receptors (20). In this study, we found that the 
expression of TYK2 was associated with OS. However, to 
date, the role of TYK2 in HCC has not been illuminated. 
HMOX1, a core enzyme in heme catabolism, is associated 
with tumor growth and metastasis (21). Dysregulated 
expression of CXC chemokines and CXC chemokine 
receptors can serve as a useful biomarker in various cancers. 
In particular, CXCR6, which was found to be overexpressed 
in HCC, is associated with invasive growth, inflammatory 
recruitment, and angiogenic activities in HCC (22,23). 
Recent studies have suggested that HDGF may be an 
independent prognostic factor for predicting the disease-

free survival and OS of patients with various cancers, 
including HCC. Furthermore, the proliferation of HCC 
cells is promoted by HDGF overexpression, but inhibited 
by reduced HDGF expression (24). PGF, a member of the 
VEGF family, is closely associated with tumor angiogenesis. 
Cell cycle dysregulation is a hallmark of cancer that 
results in the uncontrolled proliferation of cancer cells. 
CDK4 is involved cell cycle regulation, and is frequently 
overexpressed or mutated in cancer (25). Recently, a study 
reported that high expression of CDK4 was a significant 
prognostic factor for OS of HCC (26).

Immune cells are key participants of the tumor immune 
microenvironment, and can promote or inhibit tumor 
formation and development. To explore the association 
of immune cells with our IPM, the relative proportions 
of immune cells were investigated. The risk score was 
significantly negatively correlated with CD8+ T cells, NK 
cells, Tregs, dendritic cells, and M2 macrophages. The 
HCC patients with a low risk score had high proportions 
of dendritic cells and CD8+ T cells, which cooperate to 
achieve an antitumor effect. Moreover, we found that high-
risk HCC patients generally had higher proportions of 
M0 macrophages and neutrophils than low-risk patients. 
M0 macrophages are well known to contribute to tumor 
progression at different levels, including by promoting 
genetic instability, paving the way to metastasis, and taming 
protective adaptive immunity (27). Recent research has 
shown that neutrophils recruit M0 macrophages and Tregs 
to promote HCC progression (28,29). All of these results 
suggest that these differences in tumor-infiltrating immune 
cells promote HCC growth, progression, invasion, and 
angiogenesis, resulting in poor prognosis of high-risk 
patients. 

Immune checkpoint-based immunotherapies that 
target the PD-1 or CTLA-4 pathways have achieved some 
success in the treatment of liver cancers, including HCC 
and cholangiocarcinoma (30). However, only a proportion 
of patients benefit from immunotherapy. Thus, a deeper 
understanding of the mechanisms underlying the varied 
therapeutic responses to immunotherapy is critical to 
improving individual diagnoses and precision medicine. 
PD-1 is a potent inhibitor of T-cell immune response, and 
is expressed by activated CD8+ T cells and NK cells (4). 
The binding of PD-L1 to PD-1 receptors blocks T-cell 
antigen receptor (TCR) signaling and inhibits T cells 
activation. Importantly, PD-L1 expression is an important 
biomarker that can predict the response to anti-PD-1/
PD-L1 therapies (31). CTLA-4 is critical for the control 
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of CD4+ T cell function and is primarily involved in the 
priming phase of the immune response (4). CTLA-4 further 
promotes immunosuppression by inducing Treg activity and 
differentiation (32). In our analysis, the expression levels of 
PD-1, PD-L1, and CTLA-4 were significantly increased in 
the high-risk group. Furthermore, the expression levels of 
PD-1, PD-L1, and CTLA-4 were significantly correlated 
with CD8+ T cells, NK cells, and cytolytic activity, which 
provides a potential basis for PD-1/PD-L1, and CTLA-4 
treatment. Similarly, the IPM we constructed also indicated 
that high expression levels of PD-1, PD-L1, and CTLA-4 
were correlated with a high-risk score. Therefore, patients 
with a high-risk score could derive more benefit from 
immunotherapy than patients with a low risk score.

However, our study had some limitations that need to be 
recognized. First, the sample size in our study was relatively 
small, and research on larger sample sizes is needed to 
increase the reliability of our findings. Second, the IPM 
and prognostic nomogram need to be validated with more 
independent datasets. Third, functional experiments are 
needed to clarify the underlying mechanism of the IPM. 
Therefore, future research is still needed to address these 
issues. Because of the small sample size and incomplete 
clinical information in the current study, further well-
designed studies with larger sample sizes are necessary to 
validate our results.

Conclusions

In this study, we developed and validated an IPM to help 
predict OS and immunotherapeutic response in patients 
with HCC. Our IPM may help to guide clinical decision-
making for HCC patients.
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Figure S1 The heatmap of the differentially expressed immune-related genes.
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Figure S2 Expression alteration profiles of the eight genes in The Cancer Genome Atlas cohort.



Figure S3 Correlation matrix of immune cell proportions.


