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Three-dimensional color map: a novel tool to locate the surgical 
transepicondylar axis
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Background: Accurate localization of the surgical transepicondylar axis (sTEA) in total knee arthroplasty 
(TKA), the most reliable anatomical reference for femoral rotation, has long been a challenge, primarily 
because it is intractable to locate the center of the sulcus of the medial epicondyle. This study aimed to 
introduce and verify a novel method to locate the sTEA more precisely.
Methods: This study included 26 adult femoral specimens and 80 adult patients with computed 
tomography (CT) scan data. Three dimensions (3D) models based on CT scans of the distal femurs were 
reconstructed with Mimics and imported into Geomagic Studio. The 3D color map method was applied 
to locate the sTEA. To further verify the accuracy of the method, the identified sTEA was transferred to 
the femoral specimens and compared with the points identified by the total station machine. We further 
compared the recognition rate of sTEA between 3D color map method and two-dimensional (2D) CT slices 
method. The repeatability of this novel method was also evaluated.
Results: The 3D color map method located the centers of the sulcus of the medial epicondyle and the most 
prominent point of the lateral epicondyle of all the femoral specimens, which were further identified and 
confirmed by patient-specific guide plates and total station machine on femoral specimens. The 3D color 
map method achieved a recognition rate of up to 96.23%, while the recognition rate of the 2D CT slices 
method was only 68.87%. The repeatability of this objective method was excellent.
Conclusions: The results of this study indicated that the 3D color map method could be used to accurately 
and objectively locate the sTEA, with high repeatability and recognition rate. However, the proposed novel 
method requires further validation in clinical applications.
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Introduction

Rotational alignment of the distal femur is an important 
reference axis for successful total knee arthroplasty (TKA), 
but its location has long been a challenge, and anatomical 
references are often used to locate the rotational alignments. 
Anatomical references are based on the acquisition of 
anatomical landmarks, such as the transepicondylar line 
(TEA) (1-3), the posterior condylar line (PCL) (4-6), and the 
Whiteside's line (WL) (7-10). The intraoperative localization, 
function, and reliability of these landmarks for determining 
femoral component rotation have been extensively studied 
(1,4,7,11-16). The surgical transepicondylar axis (sTEA) has 
been recognized as the most reliable anatomical reference to 
determine the correct rotation of the femoral component, 
and it is not affected by bone geometry, such as condylar 
osteophyte or bone defects (17-23).

The sTEA is a line joining the center of the sulcus 
of the medial epicondyle and the most prominent point 
of the lateral epicondyle. Locating the sulcus of the 
medial epicondyle is particularly difficult, mainly due to 
concealment by the soft tissues of the medial collateral 
ligament that attach over the medial sulcus and medial 
epicondyle (1,24,25). Previous studies have reported high 
deviation of location, low intraobserver and interobserver 
reliability and reproducibility, and low recognition rates of 
the location of the sTEA by using computed tomography 
(CT) or magnetic resonance imaging (MRI) (24-27), and no 
golden standard method is available. Therefore, a reliable 
method to accurately identify and digitize the sTEA is 
desperately needed for research and clinical application.

A three-dimensional (3D) color map is a kind of 
graphical representation of the distance differences between 
2 superimposed 3D images. Although many software 
programs that are compatible with 3D imaging data also 
have the capability of generating 3D color maps, 3D 
color maps are rarely used in the orthopedic field, as some 
surgeons may be unaware of how to generate such maps 
and how to interpret them. This study first introduced 
the 3D color map method to enhance the accuracy of the 
sTEA location and aimed to validate the repeatability and 
recognition rate of this novel approach. We hypothesized 
that the 3D color map method could accurately locate the 
sTEA, with a higher repeatability and recognition rate 
than the previous two-dimensional (2D) CT slices method. 
We present the following article in accordance with the 
Materials Design Analysis Reporting (MDAR) checklist (28) 
(available at http://dx.doi.org/10.21037/atm-20-1887). 

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) (29). Ethical 
approval of this study was obtained from the Ethics 
Committee of The First Affiliated Hospital of Chongqing 
Medical University (NO.: 2016-94), and informed consent 
for this specific project was waived because the research was 
performed on radiographic data. The following experiment 
was conducted following the approved study protocol.

Materials and population

This study included 26 adult femur specimens (15 left 
femurs, 11 right femurs) and 80 adult patients (31 males, 
49 females, with 41 left femurs, 39 right femurs), which 
were scanned with a Siemens Somatom Definition AS 
128-slice CT scanner. The CT scans (slice thickness,  
0.625 mm) were saved as digital imaging and communications 
in medicine (DICOM) files. The average age of the  
80 patients was 38.4 years (range from 23 to 65 years), 
and none of the patients presented with a history of distal 
femoral fractures or surgery. Specifically, femur specimens 
were also CT scanned and used for further verification 
(Figure 1).

sTEA localization with the 3D color map

3D models of the distal femurs were reconstructed with 
Mimics 15.0 (Materialise HQ, Leuven, Belgium) and 
imported into Geomagic Studio 2013 (Geomagic®, 
Morrisville, North Carolina). The distal femur of each 
subject was placed in a standard position (the medial and 
lateral condyles of the distal femur were superimposed) 
for the following procedures: (I) Create a plane: The Best 
Fit application was used to select the medial and lateral 
femoral epicondyles of each femur, and the plane command 
was used to identify the area and assign a name to each 
plane for further analysis, alignment, and trimming. (II) 
3D color map: A 3D color-coded mapping was generated 
based on the distance differences between the plane and the 
underlying polygonal mesh. Next, the center of the sulcus 
of the medial epicondyle and the most prominent point 
of the lateral epicondyle were accurately located based on 
the colors at the positive or negative end of the scale. The 
sTEA, which is the connection between the two points, was 
identified and digitized by using the 3D color map method 
(Figure 2).
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Figure 1 Flow chart of the study procedure. sTEA, surgical transepicondylar axis.

Figure 2 sTEA localization with the 3D color map method (application of Best Fit), in a standard position (the medial and lateral condyles 
of the distal femur were superimposed). (A) The 3D color map was used to locate the center of the sulcus of the medial epicondyle. (B) 
Localization of the most prominent point of the lateral epicondyle using the 3D color map. (C) Localization of the sTEA, a line between the 
center of the sulcus of the medial epicondyle and the most prominent point of the lateral epicondyle.
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Figure 3 Verification with the total station machine. The horizontal distance between the center of the sulcus of the medial epicondyle 
and the most prominent point of the lateral epicondyle of each specimen were measured repeatedly. The center of the sulcus of the medial 
epicondyle was furthest from the total station machine, while the most prominent point of the lateral epicondyle was nearest to the total 
station machine.

sTEA verification

sTEA identified by a total station machine
Total stations are mainly used by land surveyors and civil 
engineers, either to record features as in topographic 
surveying or to set out features, which is a high-precision 
equipment through a combination of electromagnetic 
distance measuring instruments and electronic theodolites. 
A total station machine (accuracy of ±0.2 mm, Topcon ES-
602G, Beijing, China) was applied to locate the anatomical 
landmarks of the medial and lateral epicondyles on the 
femoral specimens and to locate the sTEA on specimens. 
According to the measurement principle, the telescope 
eyepiece of the total station machine and the medial or 
lateral femoral condyle was placed in the same horizontal 
plane (Figure 3). The horizontal distance between the 
total station machine and the medial or lateral femoral 
epicondyle was repeatedly measured to determine the 
center of the sulcus of the medial epicondyle or the most 
prominent point of the lateral epicondyle. The center of the 
sulcus of the medial epicondyle was the furthest point from 
the total station machine, while the most prominent point 
of the lateral epicondyle was the nearest point to the total 

station machine, which were identified by a laser beam and 
marked for further comparison.

Verification with the patient-specific guide plate
To evaluate the consistency between the points located by the 
3D color map and the anatomical landmarks of the medial 
and lateral epicondyles on the femoral specimens, the location 
of sTEA and the geometry of the distal femur were used 
to design and construct a patient-specific guide plate with 
guide holes (diameter: 2.0 mm) via 3D printing (Figure 4).  
Then, Kirschner wires (“K-wires”, diameter: 1.5 mm)  
were passed through the guide holes to locate the sTEA 
axes found by the 3D color map on the femoral specimens. 
The consistency of the points located by the 3D color map 
and the patient-specific guide plate was compared to the 
anatomical landmarks identified by the total station machine.

sTEA recognition rate of the 3D color map

A previous study reported that the sulcus of the medial 
epicondyle, which could be used to identify the medial 
end of the sTEA, might become filled in as osteoarthritis 
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progresses; thus, the sulcus may not be identified in some 
cases. Therefore, the recognition rate, which was defined 
as the proportion of located sTEA of all cases, was used to 
compare the 3D color map method with the 2D CT slices 
method. The 106 CT scans (including 26 femur specimens 
and 80 patients) of the femur were collected to construct 
3D bone models. Each specimen was used to recognize and 
locate the sTEA by using the 3D color map method, and 
the recognition rate was calculated accordingly.

Repeatability analysis of the 3D color map

The posterior condylar angle (PCA) was chosen as the 
repeatability parameter. The PCA was defined as the 
angle between the PCL and the sTEA. Before repetitive 
measurements, we established a 3D coordinate system to 
ensure that all the measurements were carried out in the 
same spatial location. The coordinate system was defined 
previously (Figure 5) (30). Measurements were made three 

B

C

A

Figure 4 Verification with the patient-specific guide plate. (A) Patient-specific guide plate models with guide holes (diameter: 2.0 mm) were 
constructed for each femoral specimen via 3D printing based on the surgical transepicondylar axis (sTEA) localization results. (B) Kirschner 
wire (diameter: 1.5 mm) was passed through the guide hole in each femoral specimen. (C) Comparison of the consistency of the points on 
medial epicondyle and lateral epicondyle of each specimen identified by using the Kirschner wire and total station machine.
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times by two orthopedic surgeons and a radiologist at 
an interval of two weeks to assess the interobserver and 
intraobserver reliability of the 3D color map method. 
The CT scan data of the 80 patients were used for the 
repeatability analysis. The observers were not aware of any 
previous measurements at the time.

Statistical analysis

All of the data were analyzed using SPSS version 18.0 

(SPSS Inc, Chicago, Illinois, USA). The associations among 
the various measurements were evaluated using Pearson's 
correlation coefficient. A P value <0.05 was considered 
statistically significant. The intraobserver and interobserver 
reliabilities were determined based on the intraclass 
correlation coefficients (ICCs) of each measurement (26). 
ICC values greater than 0.90 indicate excellent reliability, 
while ICC values between 0.75 and 0.9 indicate good 
reliability, values between 0.5 and 0.75 indicate moderate 
reliability, and values less than 0.5 are indicative of poor 
reliability.

Results

sTEA localization and verification

The center of the sulcus of the medial epicondyle and 
the most prominent point of the lateral epicondyle in the  
26 femur specimens were all accurately located via the 3D 
color map approach (Figure 2). Based on the horizontal 
distance, the center of the sulcus of the medial epicondyle 
and the most prominent point of the lateral epicondyle 
were identified and marked on all femoral specimens by 
using a total station machine (Figure 3). The patient-specific 
guide plates and K-wires successfully marked the center of 
the sulcus of the medial epicondyle and the most prominent 
point of the lateral epicondyle on the femoral specimens 
(Figure 4), which were all overlaid with the points marked 
by the total station machine.

sTEA recognition rate of the 3D color map

The 3D color map method showed a higher recognition 
rate of 96.23% (102 of 106 cases) than the 2D CT slices 
method 68.87% (73 of 106 cases). The ages of the patients 
for which the method failed were 28, 30, 35, and 56 years 
old, respectively.

For instance, in some cases, the center of the sulcus of 
the medial epicondyle was unable to be accurately located 
via 2D CT slices (Figure 6A) but could be precisely located 
with a 3D color map (Figure 6B). Notably, in one particular 
case, the center of the sulcus of the medial epicondyle 
could be located in eight consecutive thin-slice CT images 
(Figure 7A), when the eight CT slices were automatically 
converted into a 3D-CT reconstruction model, which 
merged into a sulcus approximately 5 mm in length (Figure 
7B). However, the exact center of the sulcus was able to 
be precisely located by the 3D color map (Figure 7C).  

A B

C

sTEA

PCL

Figure 5 The posterior condylar angle (PCA)—the angle between 
the posterior condylar line (PCL) and the surgical transepicondylar 
axis (sTEA) was determined. (A) Three-dimensional coordinate 
system for measurement: The center of the hip was taken as a 
sphere fitted to the femoral head. The center of the knee was 
identified as the mid-point of the sTEA. The Z-axis of the knee 
(distal-proximal) was defined as the extension of the femoral 
mechanical axis that connected the center of the knee and the 
center of the femoral head. The plane perpendicular to the Z-axis 
at the center of the knee was defined as the X–Y plane. The X-axis 
(medial-lateral) was defined as the extension of the sTEA, which 
was projected onto the X–Y plane perpendicular to the Z-axis. The 
Y-axis (anterior-posterior) was defined as the line normal to the 
coronal plane (X–Z plane) at the center of the knee. (B) Important 
anatomical landmarks identified by the 3D color map method. (a: 
The most prominent point of the lateral epicondyle; b: The center 
of the sulcus of the medial epicondyle; c: The lowest point of the 
lateral femoral condyle; d: The lowest point of the medial femoral 
condyle; e: The top of the femoral notch; f: The deepest point of 
the trochlear groove). (C) PCA was the angle between PCL and 
sTEA lines.
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Figure 6 The center of the sulcus of the medial epicondyle was unable to be accurately located via the 2D CT slices method, but could be 
located via 3D color map method. (A) In this case, the center of the sulcus of the medial epicondyle was unable to be accurately located in 
these consecutive slices via the 2D CT slices method. (B) The center of the sulcus of the could be precisely located via the 3D color map 
method. (Low values are dark blue, values in the center of the map are green, and high values are dark red).

Similarly, the most prominent point on the lateral 
epicondyle of the femur appeared in eight consecutive thin-
slice CT images (Figure 7D), which merged into a ridge in 
the 3D-CT reconstruction model (Figure 7E), but the exact 
most prominent point could be precisely located using the 
3D color map (Figure 7F). In this case, the maximum angle 
of the error of the two endpoints was 7.52° when the sTEA 
was set at 7.8 cm in length (Figure 7G).

In most cases, the center of the sulcus of the medial 
epicondyle and the most prominent point of the lateral 
epicondyle were located in different 2D CT slices, but the 
sTEA was a line in 3D space (Figure 8). Thus, the actual 
sTEA was often not reflected in one 2D thin-slice CT 
image.

Repeatability analysis of the 3D color map

The repeatability of the 3D color map method was 
evaluated by measuring PCA (Figure 5B,C). The ICC values 
for intraobserver and interobserver reliability for different 
measurements on PCA were 0.993 and 0.985, respectively 
(P<0.001). Meanwhile, the correlation coefficient was 0.986 
for two intraobserver observations, and the correlation 
coefficient was 0.973 for two interobserver observations 
(Table 1 and Table 2). The results indicate excellent 

repeatability of the 3D color map method.

Discussion

Main findings

To the best of our knowledge, this is the first study that 
introduced the 3D color map method into the orthopedic 
field to locate the center of the sulcus of the medial 
epicondyle and the most prominent point of the lateral 
epicondyle, and to accurately and objectively locate the 
sTEA. The reliability and recognition rate of the proposed 
method were higher than those of the 2D CT slices 
method.

Implications for clinical practice

Although TKA is associated with greater than 90% survival 
for more than ten years after implantation (31-33), up 
to 15–30% of patients remain “unsatisfied” after TKA 
(34-37). The accuracy of the rotational alignment of the 
femoral component is considered to be one of the most 
influential factors of short-term functional outcome and 
long-term implant survival (38,39). Although sTEA has 
been well established as the most reliable reference for the 
rotational axis of the distal femur, it is difficult to accurately 
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Figure 7 Comparison between the 3D color map method and 2D CT slices method. (A) The center of the sulcus of the medial epicondyle 
was able to be located in eight consecutive thin-slice CT images. (B) All of the points were automatically converted into the 3D reconstruction 
model, which merge into a sulcus approximately 5 mm in length. (C) The 3D color map method could locate the center of the sulcus of the 
medial epicondyle. (D) The most prominent point of the lateral epicondyle appears in eight consecutive thin-slice CT images. (E) All of the 
points were automatically converted into the 3D reconstruction model, which merged into a ridge approximately 5 mm in length. (F) The 3D 
color map method could locate the most prominent point of the lateral epicondyle. (G) The maximum angle of the error of the two endpoints 
was 7.52° when the length of the sTEA was 7.8 cm in length (Low values are dark blue, values in the center of the map are green, and high 
values are dark red).
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Figure 8 The sTEA located by the 3D color map method. (A) The sTEA was located in one CT slice via the 2D CT slices method. (B) The 
sTEA located by the 3D color map method was an axis in the 3D space.

Table 1 Intraobserver reliability on different measurements [WithinR1 (3 measures)]

Reliability Difference

Pearson r ICC P value Mean Minimum Maximum

PCA 0.986 0.993 <0.001 3.662 3.648 3.676

ICC, intraclass correlation coefficient; PCA, Posterior Condylar Angle.

Table 2 Interobserver reliability for different observers [R1(mean)-R2]

Reliability Difference

Pearson r ICC P value Mean Minimum Maximum

PCA 0.973 0.985 <0.001 3.620 3.578 3.662

ICC, intraclass correlation coefficient; PCA, Posterior Condylar Angle.

locate sTEA during surgery, mainly due to the medial 
epicondyle is covered by extensive soft tissue. Jerosch  
et al. suggested a high perioperative variance of sTEA for 
rotational alignment of the femoral component (24), which 
could induce inaccurate prosthesis implantation and various 
postoperative complications. Although PCL and WL 
have been created to determine the rotational alignment 
of the femoral component (40-42), individual differences 
in bone morphology, such as bone deformity or defects of 
the femoral condyle, and other factors including gender, 
race, height, and even weight, can affect the relationships 
between these parameters and sTEA (26,43-47). Therefore, 
these parameters are inaccurate and unreliable, which may 
result in adverse outcomes in patients after TKA.

The 2D CT slices method has been traditionally used 
to locate the sTEA, but proved to be inaccurate with a low 

recognition rate. Yoshino et al. included 48 participants but 
only detected the medial sulcus in 33 knees and suggested 
that the degree of osteoarthritis significantly affected the 
identification of the medial sulcus (25). Our study also 
revealed that the 2D CT slices method yielded a low 
recognition rate of sTEA, and the center of the sulcus of 
the medial epicondyle was only recognized in 73 of 106 
patients (68.87%). In contrast, the 3D color map method 
showed a high recognition rate, only 4 of 106 cases failed, 
which was not due to apparent osteoarthritis but due to 
abnormal morphology of the medial epicondyle. Therefore, 
the 3D color map method could be used to precisely and 
objectively locate the sTEA in most cases, but may also fail 
in some cases with abnormal femur morphology.

Our findings demonstrated that the 2D CT slices 
method is inaccurate for sTEA localization, mainly due 
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to the following reasons: (I) The center of the sulcus of 
the medial epicondyle and the most prominent point of 
the lateral epicondyle could be found in consecutive thin-
slice CT images, which merged into a sulcus in the medial 
epicondyle or a ridge in the lateral epicondyle in the 3D-
CT reconstruction model. Even if these marked points 
were automatically traced in the 3D reconstruction model, 
it would be highly challenging to locate the correct point 
objectively. (II) The center of the sulcus of the medial 
epicondyle and the most prominent point of the lateral 
epicondyle were often not located in the same slice from 
the CT scans. (III) Recognition of the center of the 
sulcus of the medial epicondyle and the most prominent 
point of the lateral epicondyle was often based on the 
surgeon’s experience and subjective evaluations. Based 
on the inaccurate location of anatomical landmarks of 
the distal femur, other crucial parameters, including the 
PCA, the Whiteside-epicondylar angle (W-EP angle), 
and the condylar twist angle (CTA), would be unreliable. 
In comparison, the 3D color map method is an objective 
method, with high repeatability and reliability.

Call for future studies

This study indicated that the 3D color map method could 
be used to precisely and objectively locate the center of the 
sulcus of the medial epicondyle, the most prominent point 
of the lateral epicondyle, and the sTEA. These recognized 
points can be transferred from the 3D-CT model to 
femoral specimens with a 3D-printed patient-specific guide 
plate, which holds great promise for clinical applications, 
especially for improving the design of patient-specific 
instrumentation (PSI) in TKA in the future (48). Therefore, 
this study established a novel method for future research 
regarding the rotation axis of the distal femur. In addition, 
the 3D color map method could be used to digitize and 
explore the morphological features of the distal femur and 
to locate other important anatomical landmarks, especially 
the PCA, W-EP angle, and CTA. The color map method 
can also be applied in other 3D geometric morphometric 
analyses.

Limitations

This study had some limitations. First and foremost, there 
is no golden standard method for locating the sTEA; and 
we were unable to compare the accuracy of the 3D color 
map method with the 2D CT slices method, mainly due 

to different models. Second, the Kellgren-Lawrence (KL) 
classification of the included patients was not available; 
therefore, it remains uncertain whether the sTEA can be 
accurately located in patients with severe knee osteoarthritis 
by using the 3D color map method, even though the 
degenerative processes of osteoarthritis only involves 
damage to the articular surface and is associated with 
marginal osteophytes. Next, CT scans are associated with 
high levels of radiation exposure. Finally, the proposed 
method has not yet been applied in clinical applications and 
requires further validation.

Conclusions

The findings of this study suggest that the 3D color map 
method could be used to precisely locate the sTEA, with 
high repeatability and recognition rate. The proposed 
approach could be used to locate the sTEA and other 
important anatomical landmarks. However, the proposed 
method requires further validation in clinical applications.
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