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Treatment strategy for papillary renal cell carcinoma type 2: a 
case series of seven patients treated based on next generation 
sequencing data
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Background: Papillary renal cell carcinoma type 2 (PRCC2) is refractory to systemic treatment and has a 
dismal prognosis. Previous studies showed that genetic alterations in PRCC2 were heterogeneous regardless 
of germline or somatic mutations. In this study, we aimed to perform precision treatment of PRCC2 based 
on genetic information. 
Methods: We performed exome and genome sequencing of tumor tissues and matched normal samples. 
Based on sequencing data, we treated patients with metastatic PRCC2 using precision oncology. 
Results: Four patients underwent curative surgery of PRCC2 and three patients had metastatic PRCC2. 
All PRCC2 heterogeneously harbored own driver mutations. Two out of the three patients with metastatic 
disease had fumarate hydratase (FH) germline mutations. One patient with a germline FH mutation 
was diagnosed with hereditary leiomyomatosis RCC. He was treated with bevacizumab and erlotinib 
combination and showed a durable response. The other metastatic PRCC2 patient harboring a germline 
FH mutation had an additional somatic FH mutation and was durably controlled with pazopanib. Other 
metastatic PRCC2 patient with somatic PBRM1 and SETD2 mutations had over 5 years of overall survival 
with axitinib treatment. 
Conclusions: We performed precision systemic treatment based on genetic information. Genome 
sequencing could help identify candidates for targeted therapy in PRCC2, a genetically heterogeneous 
disease.
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Introduction

Renal cell carcinoma (RCC) is a heterogeneous disease 
comprising a number of different types of cancer (1,2). The 
genetic background differs among various forms of RCC, 
and treatment response and prognosis vary according to 
subtype (3-6). 

Papillary renal cell carcinoma (PRCC), which accounts 
for 15–20% of RCCs, is divided into type 1 and type 2 (7). 
In terms of clinicopathologic characteristics, type 1 and 
2 diseases are different, and type 1 disease has a relatively 
good prognosis compared to type 2 (1). Genetic alterations 
also differ between type 1 and type 2 PRCC (7-9). In 
particular, type 1 PRCC frequently harbors MET alteration 
regardless of sporadic or hereditary disease (7). 

PRCC type 2 (PRCC2) comprises a number of different 
types of non-PRCC type 1 cancers, including hereditary 
leiomyomatosis and renal cell carcinoma (HLRCC) (10). 
HLRCC is the most aggressive subtype of PRCC and 
harbors germline pathologic variants of fumarate hydratase 
(FH), which encodes one of the Krebs cycle enzymes (11). 
In addition, other genetic alteration, TFE3 translocation 
was reported in RCC in children and young adults and was 
associated with a grave prognosis (12).

There has been a steady effort to find genetic alterations 
of PRCCs. Exome and genome sequencing data suggest 
that the driver genetic alterations of PRCCs are varied, and 
somatic copy number alterations might be pathogenic events 
during the genetic evolution of PRCCs (13). Furthermore, 
large-scale genomic characterization of PRCC demonstrated 
that PRCC2 is divided into three subgroups according to 
genetic alterations. CDKN2A silencing, SETD2 mutation, 
TFE3 fusion, and NRF2-antioxidant response element 
(ARE) pathway activation were found in PRCC2 including 
FH mutation (7). Moreover, these genetic alterations are 
significantly related to cancer prognosis. 

However, current treatment guideline could not reflect the 
advance of comprehensive genomic analysis in PRCC2 (14).  
Current treatment guideline suggested sunitinib or clinical 
trial as the first line treatment for metastatic non-clear 
RCC, including PRCC2 (8,15). Treatment guideline 

recommended only bevacizumab plus erlotinib treatment 
for HLRCC among PRCC2 (14). Moreover, there have 
been no clinical trials of treatment based on genomic 
information of PRCC2 because of disease rarity. 

In this study, we performed exome and genome 
sequencing of PRCC2 patient samples to characterize their 
genomic landscapes. Potentially functional rare germline 
mutations in a wide range of known cancer genes as well 
as somatic mutations of a few PRCC-related genes such 
as ALK, CSF1R, NF2, SETD2, and FH were identified 
from our sequencing analysis. We also found previously 
reported recurrent copy gains of chr7, chr16, and chr17 in 
PRCC from our data as well. Our analysis confirmed the 
heterogeneous nature of PRCC2 genomic characteristics 
and identified genetic biomarkers for the prediction of 
prognosis and drug response in PRCC2. We present the 
following article in accordance with the MDAR checklist 
(available at http://dx.doi.org/10.21037/atm-20-3466). 

Methods 

Patients and sample preparation

We performed genet ic  analys i s  of  PRCC2 us ing 
prospectively collected, surgically removed, fresh frozen 
samples of RCC and paired normal tissues in the Seoul 
National University Hospital tissue bank. Two other 
formalin-fixed paraffin-embedded samples from patients 
with metastatic PRCC2 were also included. These seven 
samples were reviewed by qualified pathologists and 
histologically classified as PRCC2. We obtained informed 
consent from all subjects, and this study was reviewed 
and approved by the Institutional Review Board of Seoul 
National University Hospital (IRB No. 1204-026-403) 
and have therefore been performed in accordance with 
the ethical standards laid down in the 1964 Declaration of 
Helsinki and its later amendments.

Genomic DNA was extracted from FFPE samples using 
a QIAgen FFPE Tissue DNA kit. DNA and RNA were 
extracted from the fresh frozen samples using GeneAll 
exgene cell SV kit and Ambio PureLink RNA mini kit, 
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respectively. Concentrations of DNA and RNA were 
measured using Qubit.

Exome capture, library construction and sequencing

Up to 3 μg of genomic DNA was sheared with a Covaris SS 
Ultrasonicator and adaptors were then ligated to both ends 
of the fragments. Adaptor-ligated templates were purified 
using Agencourt AMPure SPRI beads, and fragments 
with an insert size of ~200 bp were isolated. Exons were 
captured from adaptor-ligated DNAs using SureSelect 
Human All Exon v4 + UTRs kit (71 Mb) according to the 
manufacturer’s instructions (Agilent Technologies). PCR 
amplification of the libraries was carried out for four cycles 
in the pre-capture step and for ten cycles after capture. 
Paired-end sequencing, resulting in sequences of 101 base 
pairs from each end of the fragments, was performed on the 
HiSeq 2000 platform (Illumina) following the manufacturer’s 
instructions. Image analysis and base calling were performed 
using the Illumina pipeline with default settings.

Bioinformatics analysis

Whole-genome sequencing analysis was performed for the 
five pairs of PRCC2 and matched control samples (four 
adjacent normal tissues and one blood sample). Whole-
exome sequencing analysis was conducted for the two 
pairs of PRCC2. Reads were mapped to human reference 
genome (hg19) using Burrows-Wheeler Alignment (BWA) 
tool 0.7.12 (16). The mapped reads were processed using 
GATK best practice pipeline (http://fp.amegroups.cn/
cms/59e8a8bf8e7cf142d5298efd3f7e76e6/atm-20-3466-
1.docx) (17). We used the Mutect2 (version 3.6) (18) and 

GATK HaplotypeCaller (version 3.6) algorithms in order 
to identify somatic and germline single nucleotide variants 
(SNVs)/short insertions and deletions (indels). Germline 
variants were categorized by the American College of 
Medical Genomics and Genetics (ACMG) guidelines using 
InterVar (19,20). Germline variants classified as benign 
or uncertain significance by InterVar were discarded if 
their allele frequencies (AFs) are higher than 0.01 based 
on both 1,000 genomes project (21) and gnomAD (22). 
Somatic variants were further filtered by visual inspection 
of panel of normal data using Integrative Genomics 
Viewer (23). Both germline and somatic variants were 
annotated using Variant Effect Predictor (version 92) (24),  
and only the protein-altering variants were used for 
subsequent analyses (http://fp.amegroups.cn/cms/cf916fe8d
d33be9ffb96d81d425f881e/atm-20-3466-2.docx).

Copy-number alterations (CNAs) were identified using 
Control-FREEC (25). For WES data, exonic regions were 
used as initial windows, and for WGS data, we used 5 kb 
for both initial window and step size for CNA detection  
(http://fp.amegroups.cn/cms/02ef9eaf1b6b4d30901c76d9e
c6d4557/atm-20-3466-3.docx). Structural variations (SVs) 
were detected from WGS data using Meerkat (version 
0.189) program (26). We set the standard deviation cutoff 
to call and cluster discordant repairs as 5 and the number 
of supporting split reads to call a SV event as 3 (http://
fp.amegroups.cn/cms/b7f5aa78e9c0e90bf1e94315b355
bc81/atm-20-3466-4.docx).

Results 

Clinical characteristics of patients with PRCC type 2 

We obtained a total of seven PRCC2 tissues and paired 

Table 1 Clinical and pathological baseline characteristics of PRCC2

No. Age (years) Sex Prognostic risk group Stage Grade FU (months) Status Tumor Normal Sample type

1 30 M NA 3 4 95.20 NED Kidney* Kidney Fresh frozen

2 74 M NA 1 3 46.83 NED Kidney* Kidney Fresh frozen

3 82 M Intermediate 4 3 69.40 Dead Kidney* Kidney Fresh frozen

4 63 M NA 1 3 81.17 NED Kidney* Kidney Fresh frozen

5 51 M NA 1 3 108.60 NED Kidney* PB Fresh frozen

6 27 M High 4 NA 14.50 Dead Bone# PB FFPE

7 26 F High 4 3 35.83 Dead Kidney# PB FFPE

*, surgical specimen; #, percutaneous needle biopsy specimen. PRCC2, PRCC type 2; NED, no evidence of disease; PB, peripheral blood; 
FFPE, formalin fixed paraffin embedded. 

http://fp.amegroups.cn/cms/59e8a8bf8e7cf142d5298efd3f7e76e6/atm-20-3466-1.docx
http://fp.amegroups.cn/cms/59e8a8bf8e7cf142d5298efd3f7e76e6/atm-20-3466-1.docx
http://fp.amegroups.cn/cms/59e8a8bf8e7cf142d5298efd3f7e76e6/atm-20-3466-1.docx
http://fp.amegroups.cn/cms/cf916fe8dd33be9ffb96d81d425f881e/atm-20-3466-2.docx
http://fp.amegroups.cn/cms/cf916fe8dd33be9ffb96d81d425f881e/atm-20-3466-2.docx
http://fp.amegroups.cn/cms/02ef9eaf1b6b4d30901c76d9ec6d4557/atm-20-3466-3.docx
http://fp.amegroups.cn/cms/02ef9eaf1b6b4d30901c76d9ec6d4557/atm-20-3466-3.docx
http://fp.amegroups.cn/cms/b7f5aa78e9c0e90bf1e94315b355bc81/atm-20-3466-4.docx
http://fp.amegroups.cn/cms/b7f5aa78e9c0e90bf1e94315b355bc81/atm-20-3466-4.docx
http://fp.amegroups.cn/cms/b7f5aa78e9c0e90bf1e94315b355bc81/atm-20-3466-4.docx
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normal samples. The clinical characteristics of the patients 
are described in Tables 1,2. Of seven patients, only one 
was female. Median age at cancer diagnosis was 51 (range, 
25–82). Four patients underwent curative resection of 
PRCC2 and these patients were alive without metastasis, 
however, three patients with metastatic disease received 
systemic chemotherapy and ultimately died due to disease 
progression. Two patients had poor prognostic risk groups 
and one of intermediate risk group according to Memorial 
Sloan Kettering Cancer Center Prognostic Model (27). 

The systemic treatments administered to patients with 
metastatic disease are listed in Table 2. All three patients 
received temsirolimus as first-line systemic treatment. After 
disease progression, two patients received axitinib and one 
patient received high-dose interleukin-2 as second-line 
treatment. In terms of patients with metastatic disease, we 
performed genome sequencing at disease progression after 
first line systemic treatment. In other patients who had 
stage I–III disease, genome sequencing was performed after 
curative surgery. 

Germline and somatic SNVs/indels

From genome and exome sequencing analysis,  we 
determined germline and somatic SNVs/indels (Figure 1,  

http://fp.amegroups.cn/cms/cf916fe8dd33be9ffb96d81d425f
881e/atm-20-3466-2.docx). In terms of germline mutations, 
a wide range of known cancer genes involved in various 
kinds of biological processes such as positive regulation 
of biosynthetic process, phosphate containing compound 
metabolic process, tissue development, and others were 
seemed to be affected by potentially functional rare germline 
variants reflecting the heterogeneous nature of PRCC2.

Among a few recurrently mutated genes by germline 
variants, FH germline mutations were detected in two 
patients (Figure 1). For the patients with metastatic 
disease, one with familial leiomyoma had a germline 
missense mutation of FH (p.Lys230Glu) (Figure S1A), 
and the other patient without family history of HLRCC 
harbored a germline splicing site mutation (c.1108+1G>A) 
in FH (Figure S1B). 

Other germline mutations were also found in PRCC2 
(Figure 1, http://fp.amegroups.cn/cms/cf916fe8dd33be
9ffb96d81d425f881e/atm-20-3466-2.docx). Germline 
MKL1, NACA, PRDM16, TET2, RGPD3, CSMD3 and 
KMT2C alterations were found in more than one PRCC2 
sample. Genetic alterations were present in different 
loci of coding region. In addition, BRCA1, BRCA2 and 
PMS2 germline mutations were also detected. In terms 
of functional alteration according to base change, BRCA1 

Table 2 Medical treatment of stage IV PRCC2 patients

No. Metastasis sites Treatment No. of cycle Time to progression (weeks) Best response Treatment off Overall survival

3 Lung Temsirolimus Week 12 23 SD AE 69.4 months

Adrenal gland Axitinib 22 87 PR Patient wish

6 Bone, liver Temsirolimus Week 4 4 PD PD 14.5 months

Lymph node Axitinib 1 4 PD PD

Gemcitabine/ cisplatin 1 4 PD PD

Pembrolizumab 2 2 PD PD

Bevacizumab + erlotinib‡ 13 40 SD PD

Nivolumab + ipilimumab 1 2 PD PD

7 Bone RTx1* – – – PD 35.8 months

Liver Temsirolimus Week 26 26 SD PD

Adrenal gland High dose interleukin-2 6 19 SD PD

Peritoneum RTx2† – – – PD

Pazopanib‡ 14 52 PR PD

*, tomotherapy at bone metastasis; †, tomotherapy at bone, adrenal gland, abdomen wall, pelvis metastasis; ‡, precision treatment using 
NGS data. PRCC2, PRCC type 2; SD, stable disease; PR, partial response; PD, progressive disease; AE, adverse event. 

http://fp.amegroups.cn/cms/cf916fe8dd33be9ffb96d81d425f881e/atm-20-3466-2.docx
http://fp.amegroups.cn/cms/cf916fe8dd33be9ffb96d81d425f881e/atm-20-3466-2.docx
https://cdn.amegroups.cn/static/public/ATM-20-3466-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-20-3466-supplementary.pdf
http://fp.amegroups.cn/cms/cf916fe8dd33be9ffb96d81d425f881e/atm-20-3466-2.docx
http://fp.amegroups.cn/cms/cf916fe8dd33be9ffb96d81d425f881e/atm-20-3466-2.docx
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Figure 1 Germline and somatic mutations in PRCC2. Known cancer-related gene based on the Cancer Gene Consensus of COSMIC 
database are shown in bold letters. PRCC2, PRCC type 2.
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alteration (p.Lys181Gln), BRCA2 (p.Gly2508Ser) and PMS2 
(p.Val196Phe) resulted in amino acid changes be deleterious 
by SIFT prediction (28). In addition, 16 genes were affected 
by pathogenic or likely pathogenic germline mutations based 
on the ACMG criteria in at least one patient. Among them 
ALDH2, BCR, FH and NBEA genes were known cancer 
driver genes according to COSMIC Cancer Gene Census 
database (29) identified (http://fp.amegroups.cn/cms/cf916fe
8dd33be9ffb96d81d425f881e/atm-20-3466-2.docx).

A significant number of somatic mutations were detected 
from tissue development-related genes such as SETD2, 
COL2A1, FLNA, NF2, NOTCH2, and RAD51B. Especially, 
SETD2 was altered also by germline mutation in other 
samples (Figure 1). Interestingly, a somatic FH frameshift 
deletion (p.Leu132Ter) was detected from the patient 
with metastatic disease who already harbored the germline 
splicing site mutation (c.1108+1G>A) (Figure S1B).

Copy number alterations and structure variations 

CNAs were analyzed using both whole-exome and whole-
genome sequencing data. Recurrent copy number gains 

of chromosome 7, 16, and 17 were observed in our data 
(Figure 2), which is well concordant with that reported by 
The Cancer Genome Atlas (7). Other than chromosomal 
copy number alterations, recurrent focal amplifications of 
potential oncogenes such as MYC4, IRF4 and NUP98 were 
identified. Frequent copy number losses of TNFRSF14, 
FGFR3, STK11, and SEPT5 that are known to have tumor 
suppressor properties were also found. For SV analysis, 
we used whole-genome sequencing data and identified 
average 34.3 SV events (sd: 29.7) per samples. We identified 
a number of gene fusions in PRCC2 samples but none 
affecting known cancer driver genes (Figure 3).

Precision patient treatment strategy according to genetic 
alterations 

We evaluated the effect of genetic alterations on patient 
prognosis (Tables 1,2). Regardless of genetic alterations, 
primary carcinoma that received curative surgery did not 
recur. Three patients with metastatic carcinomas were 
treated with systemic chemotherapy and eventually died 
due to disease progression. All patients had received 

Figure 2 Copy number alterations detected from the seven PRCC2 sequencing data. WGS, whole-exome sequencing; WES, whole-genome 
sequencing. PRCC2, PRCC type 2.
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Figure 3 Structural variation identified from whole-genome sequencing data. 
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temsirolimus (mTOR inhibitor) as their first line treatment 
according to treatment guideline (14). After disease 
progression, sequencing results were reported and two 
of the three patients with metastatic disease had genetic 
alteration of FH. 

One patient with familiar history of leiomyoma had a 
germline missense mutation of FH. Among his family, his 
mother and her sisters have been diagnosed with myoma, 
thyroid cancer, and early gastric cancer (Figure S2).  
Germline FH mutation testing of his family members 
revealed germline missense mutation of FH at the same 
locus in his maternal family members but absent in his 
father (Figure S1A). In clinical course, this patient did 
not respond to mTOR inhibitor, VEGFR TKI, cytotoxic 
chemotherapy, or the anti-PD1 antibody pembrolizumab 
(Table 2). After we found the FH germline mutation, the 
patient was treated with a combination of bevacizumab [an 
anti-VEGF antibody) and erlotinib (an epithelial growth 
factor receptor (EGFR) TKI) and showed a durable 
response of 40 weeks (Figure 4A). Disease progression after 
bevacizumab and erlotinib treatment, there was no effective 
treatment strategy. In this patient, overall survival (OS) 
duration between diagnosis to death was 14.5 months. 

A young patient with germline and somatic FH mutations 
was treated with pazopanib, a selective multi-targeted 
receptor TKI, after her genetic alteration was revealed 
(Table 2). Pazopanib resulted in a decrease in the tumor over 
one year, but grade 3 lethargy developed and resulted in 
treatment discontinuation. Time to progression of pazopanib 
treatment was 52weeks. Her disease also harbored PMS2 
alteration (Figure 4B). However, her performance status did 
not permit further treatment, such as immune check point 
inhibitor. She had 35.8 months of overall survival. 

The patient without genetic alteration of FH showed a 
durable response to temsirolimus and axitinib [a tyrosine 
kinase inhibitor (TKI), which targets vascular endothelial 
growth factor-receptor 1–3 (VEGFR 1–3)]. We observed 
PBRM1 and SETD2 mutations in his disease and he had 
relatively long survival duration. He responded axitinib 
treatment for a long duration (87 weeks) until adverse events 
forbade him from receiving treatment (Table 2, Figure 4C). 

Discussion 

In this study, we identified genetic alterations in PRCC2. 
Mutation in the gene encoding FH, either germline or 
somatic, was found in patients younger than 30 years and 
indicated poor prognosis. In terms of treatment, patients 

harboring FH mutation responded to anti-angiogenesis 
agents including bevacizumab and pazopanib. 

PRCC is defined as RCC with a papillary pattern based 
on pathologic finding (1). Type 2 PRCC is lined by large 
cells with abundant eosinophilic cytoplasm compared to 
the small cells with clear to basophilic cytoplasm present in 
type 1 PRCC. The best-known genetic alteration of type 1 
PRCC is MET mutation, whereas FH nutation is common 
in type 2, especially in familial cases (30). However, with 
the exception of familial cases of PRCC, genetic alterations 
that drive tumorigenesis of PRCC2 have not been revealed. 
Recent genetic analysis showed that PRCC2 could be 
classified into three subgroups according to molecular 
differences (7). One subgroup represented by FH mutation 
and CDKN2A silencing due to hypermethylation of the 
CDKN2A promoter had a relatively small number of 
PRCC2 (13.3%). This subgroup was characterized by 
relatively young patients and extremely short survival 
duration compared to other subtypes. In our study, two 
young patients with FH mutated PRCC2 had similar 
clinical characteristics to this subtype.

FH, a tricarboxylic acid cycle (TCA) enzyme, catalyzes 
the hydration of fumarate into malate. Deficiency of 
FH causes accumulation of fumarate and activation of 
hypoxia inducible factor (HIF) under normal oxygen  
levels (31). VEGF and glucose transporter-1 (GLUT-1) are 
upregulated by an excess of intracellular fumarate through 
the HIF-dependent pathway. Therefore, inhibition of the 
VEGF pathway and glucose transport has been suggested as 
a therapeutic approach in FH mutant cancer (31,32). In our 
study, we identified two patients with PRCC2 harboring FH 
mutation characterized by rapid progression. One patient 
with germline FH mutation did not respond to axitinib, a 
selective VEGFR inhibitor, but did respond to bevacizumab 
and erlotinib combination therapy (33). Another patient 
was treated using pazopanib, a multi-targeted receptor TKI 
whose targets include VEGFR, and she only responded 
to this treatment. The mechanism of action of pazopanib 
does not include glucose metabolism, but hypoglycemia 
frequently occurs during pazopanib treatment (34). With 
regard to this adverse event, pazopanib might modify 
glucose metabolism in FH mutant PRCC2. Therefore, 
based on our clinical experience, a therapeutic strategy 
for FH mutant PRCC2 should consider targeting glucose 
metabolism in addition to inhibition of the VEGF pathway. 

The Warburg effect (35), a metabolic shift to aerobic 
glycolysis in normoxia status, is one of the characteristics 
of FH mutant RCC (33). This ineffective metabolism 

https://cdn.amegroups.cn/static/public/ATM-20-3466-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-20-3466-supplementary.pdf
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Figure 4 Precision treatment of PRCC2 patient with next generation sequencing data. (A) Treatment response after 1cycle of bevacizumab 
with erlotinib treatment in patient with HLRCC (PRCC type 2); (B) treatment response after pazopanib in PRCC2 with somatic FH 
mutation; (C) treatment response after axitinib in PRCC2 with PBRM1 and SETD2 mutation. PRCC2, PRCC type 2.

PRCC2
Diagnosis

PRCC2
Diagnosis

PRCC2
Diagnosis

Axitinib

after 8 weeks

Pazopanib

after 8 weeks

1 cycle of
Bevacizumab
+ Erlotinib

Temsirolimus

Temsirolimus

Temsirolimus

High dose IL-2 Pazopanib

Axitinib

PFS: 2 months
Best response: PD

PFS: 21 months
Best response: PR

PFS: 5 months
Best response: SD

PFS: 1 month
Best response: 

PD

PFS: 1 month
Best response: 

PD

PFS: 3 week
Best response: 

PD

PFS: 3 week
Best response: 

PD

PFS: 9 months
Best response: 

SD

PFS: 1 months
Best response: 

PD

PFS: 4 months
Best response: SD

PFS: 13 months
Best response: PR

FH mut

FH mut

SETD2
PBRM1

Axitinib Gem/Cis Pembro
lizumab

Bevacizumab
Erlotinib

Nivolumab
lpilimumab

A

B

C



Kim et al. Precision treatment for metastatic PRCC2

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(21):1389 | http://dx.doi.org/10.21037/atm-20-3466

Page 10 of 13

in tumor cells resulting from the rapid proliferation of 
cancer cells might induce cachexia of patients (36). In 
our study, the patient treated with pazopanib suffered 
cancer-related cachexia even though her disease was well 
controlled. Consequentially, her general condition gradually 
deteriorated, and she could not undergo further treatment.

Pathogenic germline alteration of C7, FH, MAK, NBEA, 
NDUFS1 and TTC37 were also detected in this study. 
Mutations in NDUFS1, the largest subunit of mitochondrial 
complex I, are known to reduce the activity of complex I (37). 
We also identified ten likely pathogenic germline mutations 
in ALDH1A3, ALDH2, APOE, BCR, CCNL1, COL4A2, 
EYS, ITGB3, NMNAT1 and PLCZ1. Gao et al. have found 
that von Hippel-Lindau tumor suppressor (VHL) was 
directly binding to the promoter of ALDH2 to regulate the 
transcriptional activity of hepatocyte nuclear factor 4 alpha 
(HNF4A) in clear-cell RCCs (38). Loss of HNF4A binding 
activity was often observed in renal cell carcinogenesis (39).

Germline alteration of BRCA1, BRCA2 and PMS2 were 
also detected in this study. Germline BRCA1 and/or BRCA2 
deleterious mutation caused hereditary breast and ovarian 
cancer as well as other types of familiar cancer syndrome 
(40). Moreover, cancer caused by BRCA1 mutation was 
sensitive to PARP1 inhibitors, such as olaparib and 
talazoparib. Recent clinical trials showed that PARP1 
inhibitor prolonged duration of survival in patients with 
metastatic breast cancer with pathogenic BRCA1 and/or 
BRCA2 mutations (41,42). We found a deleterious mutation 
of PMS2, one of mismatch repair (MMR) genes associated 
with Lynch syndrome (43). With regard to immune 
checkpoint blockade had more clinical benefit in MMR 
deficient cancers compared to MMR proficient cancers, 
anti-PD-1 antibody wound be considered as a therapeutic 
option in PRCC2 with PMS2 mutation.

Recent genetic study using targeted deep sequencing 
determined that approximately 20% of advanced RCCs 
had a germline mutation even though almost all cases were 
sporadic rather than hereditary cancer. That study found 
BRCA1, BRCA2, and CHEK2 germline mutations and 
suggested that half of germline mutations could be potential 
targets for direct systemic treatment (44). Therefore, these 
germline mutations are potential therapeutic targets in 
advanced PRCC2.

Somatic mutations in PRCC2 also indicated disease 
prognosis. One patient with metastatic disease harboring 
SETD2 and PBRM1 somatic mutations had overall survival 
of about 5 years despite having stage IV PRCC2. His disease 
showed a durable response to axitinib and had a relatively 

good prognosis. Both SETD2 and PBRM1 were SWI/SNF 
complex genes associated with chromatin remodeling. In 
clear cell RCC, SETD2 was associated to poor prognosis 
while PBRM1 had no impact on patient’s survival or also 
indicated poor prognosis (45,46). Moreover, in terms of 
prognostic risk group according to clinical characteristics, 
this patient was categorized into intermediate risk group, 
not poor risk group in which other two patients with 
metastatic PRCC2 harboring FH mutation (27). Therefore, 
we treated PRCC2 as clear cell RCC with axitinib and he 
might be having favorable treatment outcome in this case. 

The relationship between genetic alteration and clinical 
characteristics including risk groups have not been revealed 
neither previous studies nor our study. Further large 
scaled genetic studies of metastatic PRCC2 would give the 
information of the relationship between genetic and clinical 
characteristics to guide treatment of metastatic PRCC2. 

Conclusions

Our results indicate the role of genetic alterations in 
precision systemic treatment of PRCC2. FH alterations 
were found in not only HLRCC, but also in sporadic 
PRCC2. Sporadic PRCC2 with somatic FH frameshift 
deletion had similar clinical outcome to HLRCC. In 
addition, genetic alterations of PBRM1 and SETD2 had a 
predictive role of PRCC2 prognosis. 

In this genetic study, we successfully applied genetic 
information to patient treatment and prolonged survival. 
Therefore, genome sequencing should be performed to 
identify candidates for targeted therapy in PRCC2, a 
genetically heterogeneous disease.
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