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Background: Methyltetrahydrofolate reductase (MTHFR) is a main regulatory enzyme in homocysteine 
(Hcy) metabolism. A common C677T mutation in the MTHFR gene results in decreased enzyme activity, 
which contributes to hyperhomocysteinemia (HHcy). Previous studies have shown that HHcy was correlated 
with various systemic diseases, such as cardiovascular disease, stroke, cancer, renal failure and so on. 
However, we hypothesized that HHcy in different genotype and sex groups may have different risk factors, 
which would lead to various pathologic states. Therefore, the aim of this study was to explore systemic 
information that are correlated with HHcy for specific MTHFR C677T genotypes and sex, which might be 
useful for predicting and preventing systemic diseases.
Methods: This cross-sectional study was performed through November 2017 to July 2019. A total of 4,534 
adults aged 20–75 y were selected for this study. All the participants underwent a physical examination, blood 
tests and MTHFRC677T genotyping. Multivariable linear regression was performed to explore the risk 
factors for HHcy for each sex and genotype.
Results: The average of Hcy level is higher in the TT genotype than CC and CT genotypes (P=0.000). 
Multiple linear regression analysis identified the common protective factors (folate and Vit B12) and risk 
factor (Cr) for HHcy. Besides that, each group has its specific risk factors—female-CT (age, SBP, and Hb), 
female-TT (SBP and AST); male-CC (age, AST and Hb), male-CT (age and AST) and male-TT (SBP, AST, 
and Hb).
Conclusions: HHcy was associated with different risk factors for each specific sex and genotype. These 
risk factors might be useful for predicting and preventing systemic diseases.
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Introduction

The metabolism of Hcy is regulated by various enzymes 
and B vitamins (1). Elevated levels of Hcy can be caused by 
genetic mutation and enzyme deficiency. The enzyme of 
MTHFR is important for the folate metabolism which is 
an integral process for cell metabolism in the DNA, RNA 
and protein methylation (2). The mutation of the MTHFR 
C677T would reduce the activity of this enzyme, and 
predispose to HHcy under conditions of impaired folate 
status (3,4). HHcy can also be caused by deficiencies in the 
folate, vitamin B12 and B6 vitamin (lesser extent) (1,5). 
Furthermore, some physiologic and lifestyle determinants 
have also been identified. For example, increasing age, male 
sex, food intake, smoking, and heavy coffee consumption 
would increase Hcy concentration (6), whereas young age, 
premenopausal state, pregnancy, B vitamin intake, and 
exercise are associated with low Hcy concentrations (7). 

High levels of Hcy, with or without MTHFR C677T 
polymorphism, is associated with various diseases (5), such as 
cardiovascular diseases(CVD) (8,9), stroke (10), and the neural 
tube defects (10), in addition to chronic renal failure (11),  
ulcerative colitis (12), cancers (13-15), dyslipidemia (16),  
infertility (17), and so on (18,19). Therefore, serum Hcy 
level becomes a potential therapeutic target for preventing 
or predicting systemic diseases (20).

We hypothesized that each sex and genotype might have 
specific risk factors associate with HHcy. For example, 
HHcy patients with MTHFR C677T homozygous genotype 
(TT) might have different risk factors from those with 
wild (CC)/heterozygous genotype (CT). In addition, 
some studies have shown an enhanced sex effect of Hcy 
concentration after puberty (>15 y), even though the 
difference was slight at an early age (21). Therefore, we also 
take sex into consideration, as each sex has different average 
of Hcy level and different spectrum of systemic diseases. 

Thus, the aim of this study was to explore the systemic 
risk factors associated with HHcy in specific genotype 
and sex, which might be used for predicting or preventing 
systemic diseases.

We present the following article in accordance with 
the MDAR reporting checklist (available at http://dx.doi.
org/10.21037/atm-20-6587).

Methods

Study design and ethics approval

The Ethics Committee at PLA General Hospital approved 

the protocol of this cross-sectional, observational, non-
randomized study (clinical trial ID: S2016-098-02), which 
was designed following the principle of the Declaration 
of Helsinki (as revised in 2013). All subjects gave their 
informed consent to take part in the study. The study was 
conducted at the Health Management Institute of Chinese 
PLA General Hospital from November 2017 to July 2019. 
Written informed consent was obtained from all patients to 
publish their information in nominate data.

Subjects

A total of 4,770 participants who completed a health 
examination were enrolled in this study. The inclusion 
criteria were: aged between 20 and 80, not taking folic 
acid supplements or using agents that affect vitamin B 
and folic acid metabolism, including methotrexate and 
anticonvulsants, and being free from folic medicine for at 
least 6 months. 

Among those participants, 34 participants with severe 
renal disease, 54 participants with hepatic disease, and 
123 participants with hypothyroidism were excluded 
from the study. Also, 25 participants were excluded from 
the inaccuracy of the results. In all, 1,369 females and  
3,165 males were selected for studying in this cross-
sectional study.

Outcome measures

Assessment of MTHFR C677T genotype
Genetic polymorphisms MTHFR 677 C→T were detected 
using gene chip hybrid analysis. Genomic DNA was 
extracted from the whole blood of the participants using the 
QIAamp®DNAMiniKit (CAT No. 51304, Germany). The 
PCR, hybridization, gene array detection, and analysis were 
conducted according to the manuals of the BaiO genotype 
detecting gene array kits and equipment (BaiO Technology 
Corp). 

Assessment of covariate
The patients were subjected to a health examination, 
including height and weight measurements and blood 
pressure. Fasting blood was extracted for detection. HPLC 
analyzed plasma Hcy with fluorometric detection (22,23). 
Folate concentration was measured using a dual count 
Solid Phase Boil Radio assay (Diagnostic Products, Los 
Angeles, CA). The vitamin (Vit) B12 was detected by liquid 
chromatography-tandem mass spectrometry (24). The blood 
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glucose levels were measured using the hexokinase method, 
serum levels of bilirubin, Alanine aminotransferase (ALT), 
and Asparagine aminotransferase (AST) were measured 
using a BM Hitachi 711 Chemistry Analyzer. The total 
cholesterol (TC), high-density lipoprotein (HDL), low-
density lipoprotein (LDH), and TG levels were measured 
with a colorimetric method (Cobas c, 501 autoanalyzers, 
Roche Diagnostics, Germany). Serum Cr and UA were 
measured by a modified kinetic rate Jaffe reaction method 
using a Dade Dimension Chemistry Analyzer (Siemens). 
Cancer biomarkers of CEA and AFP are measured using 
electrochemiluminescence immunoassay. As the baseline of 
the Hcy level was varied between sexes, HHcy was defined 
distinctively for males (≥15 μmol/L) and female (≥10 μmol/L)  
(25,26). Standard quality control procedures were 
performed each day with standard samples (CV <10%).

Statistical analysis

Sexes and genotypes grouped participants. A comparison of 
the variables was assessed using an ANOVA or Chi-square 
test. Multiple linear regression analyses were performed 
between Hcy and the variables with stepwise methods. The 
standard coefficients for the variables are used to estimate 
the strength of the association. All tests were two-tailed, and 
P values less than 0.05 were considered to show significant 
differences. The statistical analyses were conducted using 
SPSS version 17.0 and SAS version 8.02 or 9.1.

Results

Clinical characteristics

There were 4,534 individuals selected for this study, 
including 3,165 males (CC =724, CT =1,523 and TT =918) 
and 1,369females (CC =320, CT =683 and TT =366). 
There were significant differences between males and 
females in the clinical characteristics (Table S1). 

Further analysis was performed in each sex group 
and stratified by genotypes. For males, the Hcy level is 
significantly different between three genotypes with the 
mean values of 12.30±3.34, 12.94±4.57, and 19.37±9.26 μmol  
for male-CC, male-CT, and male-TT, respectively. Also, 
other factors were shown to be statistically significant, 
including folate, Vit B12, HDL, TG, and height (P<0.05). 

For females, the mean values of Hcy level for female-
CC, female-CT, female-TT were 8.85±3.53, 9.22±3.34, and 
11.39±4.98 μmol, respectively. Also, a significant difference 

exists in the Hcy, Folate, Vit B12, G2h, and HDL between 
the female three genotype groups (P<0.05) (Table 1).

The risk factors for HHcy in each sex and genotype 

In the males, after adjustment of weight, height, BMI, and 
other variables, we found that folate, VitB12, was negatively 
correlated with HHcy, while Cr was positively correlated 
with HHcy. Also, genotype (CC and CT) was a protective 
factor for HHcy (Table S2). After stratified by genotypes, 
we found specific positive risk factors for each genotype, 
even though they have some common negative factors, 
including folate and VitB12. In the male CC group, age, 
AST, and Hb were positive risk factors for HHcy; in the 
male CT group, age and AST are positive risk factors 
for HHcy; in the male TT group, SBP, AST, and Hb are 
positive risk factors for HHcy (Table 2).

In the females, we also found negative risk factors 
(genotype, folate, and VitB12) and positive risk factors 
(Cr) after adjustment of weight, height, BMI, and other 
variables (Table S2). We also found specific risk factors after 
stratifying by genotype, though they share the negative 
factors of folate and VitB12. In the female CT group, one 
positive risk factor (Cr) was determined. In the female CT 
group, four positive risk factors (age, SBP, Hb, and Cr) are 
correlated with the Hcy level. In the female TT group, 
three positive risk factors (SBP, AST, and Cr) were found to 
be correlated with Hcy concentration (Table 3).

Discussion

Plasma Hcy concentration is influenced by a diversity 
of physiologic and acquired factors and by interactions 
between such factors (6). People have found several factors 
that would cause HHcy, including MTHFR C677T 
polymorphism, folate, and vitamin B (27-29). An elevated 
level of the Hcy is connected with cardiovascular disease 
(CVD), stroke (30), and the neural tube defects, in addition 
to chronic renal failure (11), hepatocellular carcinoma (15), 
megaloblastic anemia, osteoporosis, depression, Alzheimer's 
disease, pregnancy problems, and others (5).

In the present study, we found that Cr was a common 
risk factor, which was positively correlated with Hcy 
concentration in all the groups. This positive relationship 
between Cr and Hcy was present in HHcy patients with 
or without hypertension (31,32). Another evidence is that 
Hcy level could be increased in a dose-response effect 
by Guanidinoacetic acid (GAA), an intermediate in the 
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Table 1 Clinical characteristics of the participants for each sex and genotype

Variables
Male Female

CC (n=726) CT (n=1,523) TT (n=918) P† CC (n=320) CT (n=683) TT (n=366) P†

Stroke (n) 6 13 10 0.75 3 3 2 –

CHD (n) 27 78 55 0.12 15 20 16 0.20

HBP (n) 245 468 318 0.07 51 98 72 0.11

Age (y) 48.83±7.76 49.09±7.23 49.22±7.51 0.58 48.95±8.65 48.28±8.73 50.19±8.49 0.94

Height (cm) 172.76±6.07 173.21±5.66 173.41±5.72 0.04 160.95±5.68 161.61±5.25 161.20±5.15 0.10

Weight (kg) 78.24±11.34 78.74±10.53 79.42±10.25 0.08 61.56±8.39 61.55±8.85 62.20±8.84 0.77

BMI 26.13±3.37 26.23±3.64 26.38±3.18 0.38 23.81±3.40 23.56±3.15 23.92±3.14 0.38

WC (cm) 92.34±9.21 92.69±8.35 93.01±8.58 0.42 80.26±9.21 79.92±9.01 81.49±9.09 0.97

SBP (mmHg) 120.54±17.24 121.90±16.72 121.46±16.23 0.44 111.18±18.56 109.49±19.18 111.65±19.47 0.58

DBP (mmHg) 79.44±11.34 79.52±11.42 79.72±11.45 0.78 74.40±10.06 73.43±11.52 74.96±11.64 0.62

Hcy (μmol/L) 12.30±3.34 12.94±4.57 19.37±9.26 0.00* 8.85±3.53 9.22±3.34 11.39±4.98 0.00*

Folate (ng/mL) 10.23±3.32 9.37±3.46 8.28±3.36 0.00* 11.63±3.70 10.29±3.89 9.12±3.69 0.03*

Vit B12 (pg/mL) 584.48±244.87 569.36±236.35 525.85±225.36 0.00* 625.95±275.72 605.19±284.77 589.72±284.14 0.02*

Hb (g/L) 152.31±10.74 154.19±10.32 154.50±9.97 0.79 130.71±12.70 130.59±11.91 130.96±11.81 0.55

ALT (U/L) 28.68±20.66 28.48±22.72 27.53±16.65 0.64 16.69±10.17 17.77±11.45 18.14±12.62 0.26

AST (U/L) 23.45±11.34 22.64±21.81 21.85±8.89 0.43 18.11±5.52 18.52±6.318 18.78±6.92 0.49

FPG (mmol/L) 5.88±1.62 5.89±1.53 5.93±1.70 0.79 5.28±0.77 5.28±0.94 5.32±0.81 0.82

G2h (mmol/L) 7.55±2.78 7.63±2.73 7.70±2.82 0.57 7.38±2.16 7.18±2.02 7.53±1.90 0.04*

TC (mmol/L) 4.77±0.92 4.75±0.89 4.73±0.90 0.71 4.77±0.94 4.72±0.93 4.76±0.91 0.89

TG (mmol/L) 2.12±1.95 2.13±1.86 2.15±1.98 0.04* 1.33±0.90 1.32±0.98 1.26±0.70 0.14

HDL-C (mmol/L) 1.14±0.30 1.11±0.28 1.11±0.28 0.05* 1.44±0.37 1.39±0.34 1.40±0.34 0.02*

LDL-C (mmol/L) 3.06±0.84 3.11±0.78 3.10±0.76 0.89 3.08±0.84 3.08±0.86 3.12±0.82 0.57

AFP (μg/L) 3.23±8.00 3.10±2.10 3.14±1.67 0.74 2.60±1.55 2.72±1.64 2.76±1.75 0.63

CEA (μg/mL) 1.94±1.23 1.96±1.29 2.00±1.52 0.82 1.29±0.95 1.19±0.84 1.22±0.84 0.18

UA (μmol/L) 382.52±78.47 378.79±74.02 375.24±75.88 0.17 265.54±58.26 268.41±56.63 264.69±54.15 0.33

Cr (μmol/L) 74.20±11.48 74.15±12.81 73.68±14.69 0.63 54.51±8.70 54.85±8.17 54.59±8.57 0.97

P†, comparisons between genotypes; *, P<0.05. HBP, hypertension; CHD, coronary heart disease; BMI, body mass index; WC, waist 
circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; Hcy, homocysteine; Hb, hemoglobin; FPG, fasting plasma  
glucose; G2h,postprandial 2 hours blood glucose; TC, total cholesterol; TG, triglyceride; CRP,C-reactive protein; ALT, alanine  
aminotransferase; AST, aspartate transaminase; LDL-C, low-density lipoprotein; HDL-C, high-density lipoprotein; AFP, alpha fetoprotein; 
CEA, carcinoembryonic antigen; UA, blood uric acid; Cr, blood creatinine. 
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biosynthesis of Cr (33). It is documented that Hcy level 
increased in chronic renal failure (CRF), but the cause of 
HHcy is still unclear (34). However, the possibilities include 
decreased glomerular filtrate rate (GFR), defective renal or 
extrarenal metabolism (34). As a consequence of HHcy in 
renal failure, protein and DNA methylation are impaired, 
with an alteration in the allelic expression of genes regulated 
through methylation (35).

Aging was a contributing factor for CC and CT 
genotypes, not for TT genotype. This is unique from the 
other previous studies, which targets the whole genotype 
population (25,31). We observed that participants with 
TT genotype had a peak level of Hcy at the early age of 
20–40 y, with slightly change in the later years (Figure 1). 
The interpretation could be that the activity of the enzyme 

had been mostly lost in TT genotype at an early age, 
while the function was gradually damaged with aging by 
the nutritional and health status in the other two groups. 
Therefore, the intervention of decreasing Hcy should be 
performed at an early age for the TT genotype, while it 
could be intervened later for CC and CT genotypes.

SBP was positively correlated with HHcy in TT and 
CT genotypes. Previous studies have demonstrated that 
both SBP and HHcy are independent predictors for stroke 
morbidity in the hypertension population (36). However, 
the strength of their relationship was quite different 
from various studies. Data from the National Health and 
Nutrition Examination Survey (NHANES) showed that the 
positive relationship between Hcy and SBP was stronger in 
women than in men (37). However, it just showed a weak 

Table 2 Multilinear regression for the risk factors of HHcy for each genotype in males

Sex-genotype Variables B Standard error Standardized coefficient P value

M-CC Folate −0.27 0.03 −0.29 0.00

VitB12 −0.00 0.00 −0.21 0.00

Age 0.07 0.02 0.16 0.00

AST 0.05 0.02 0.20 0.00

Hb 0.03 0.011 0.11 0.01

Cr 0.05 0.01 0.17 0.00

ANOVA: F=25.37, P=0.00; R2=0.25, adjusted R2=0.24

M-CT (Constant) 9.56 1.44 0.00

Folate −0.41 0.03 −0.31 0.00

VitB12 −0.01 0.00 −0.23 0.00

Age 0.04 0.02 0.05 0.02

AST 0.01 0.01 0.05 0.02

Cr 0.08 0.01 0.22 0.00

ANOVA: F=51.01, P=0.00; R2=0.25, adjusted R2=0.25

M-TT (Constant) 10.35 5.13 0.04

Folate −0.99 0.08 −0.38 0.00

VitB12 −0.01 0.00 −0.27 0.00

SBP 0.04 0.02 0.07 0.02

Hb 0.09 0.03 0.09 0.00

AST 0.09 0.03 0.08 0.00

Cr 0.11 0.02 0.17 0.00

ANOVA: F=53.87, P=0.00; R2=0.35, adjusted R2=0.35
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Figure 1 The correlation between age and the Hcy for each sex and genotype.

Table 3 Multilinear regression analysis for the risk factors of HHcy for each genotype in females

Sex-genotype Variables B Standard error Standardized coefficient P value

F-CC (Constant) 7.15 2.42 0.00

Folate −0.12 0.05 −0.13 0.03

VitB12 −0.00 0.00 −0.33 0.00

Cr 0.08 0.02 0.21 0.00

ANOVA: F=14.39, P=0.00; R2=0.28, adjusted R2= 0.26

F-CT Folate −0.17 0.03 −0.20 0.00

VitB12 −0.00 0.00 −0.33 0.00

Age 0.06 0.02 0.16 0.00

SBP 0.02 0.01 0.09 0.03

Hb 0.03 0.01 0.10 0.01

Cr 0.08 0.02 0.18 0.00

ANOVA: F=35.46, P=0.00; R2=0.28, adjusted R2=0.27

F-TT (Constant) 5.06 2.06 0.02

Folate −0.45 0.06 −0.33 0.00

VitB12 −0.01 0.00 −0.27 0.00

SBP 0.05 0.01 0.19 0.00

AST 0.11 0.03 0.15 0.00

Cr 0.12 0.03 0.22 0.00

ANOVA: F=33.86, P=0.00; R2=0.34, adjusted R2=0.33
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positive between Hcy and SBP in the Hordaland study (38).  
In the present study, we discovered that SBP was positively 
correlated with Hcy in TT and CT genotypes, but not 
in CC groups for both sexes (Table 4). This can partially 
explain the inconsistence of the studies. And it also 
suggested that HHcy with TT and CT genotypes are more 
prone to have H-type hypertension. However, it does not 
mean that HHcy would not influence SBP for the CC 
group, only showing that some other risk factors might 
outweigh this relationship.

AST is a positively correlated with Hcy for males (CC, 
CT, and TT) and female (TT). AST is an important index 
for hepatic function, and its concentration will rise when 
liver is damaged. Studies have shown that the plasma Hcy 
concentrations were significantly higher in patients with non-
alcoholic fatty liver disease (39), while the Hcy concentrations 
were not affected by chronic viral  hepatit is  (40).  
However, the association between Hcy and AST was 
still controversial. Li et al. (41) did not find a significant 
correlation between Hcy and AST when they tried to 
investigate the effect of MTHFR gene polymorphisms and 
serum Hcy and folate levels on the hepatic functions in 
a hypertensive population. On the contrary, Huang et al.  
found an inverse relationship between Hcy and AST in 
hemodialysis patients, whose remethylation of Hcy was 
impaired (42). The nonconformity of these studies was 
probably from the selection criteria of the subject.

We also found a positive correlation between Hb and 
HHcy in males (CC and TT) and females (CT). At present, 
few studies have focused on the association between Hcy 
and Hb, without uniform conclusion. A positive relationship 
has been reported in a group of patients with CVD (43). 
However, a negative relationship was presented in Behcet’s 
disease and atrophic glossitis, which might be result from 

nutrition deficiency. It is still unclear for this positive 
relationship between Hb and HHcy, and further studies are 
needed to explore its mechanism.

The strength of this study is that we classify people into 
separate sex and genotype groups, both of which are strong 
independent variables for HHcy. There are several benefits 
to this classification. First, we exclude some confound 
bias among groups, including age, which shows different 
influential strength among groups. Second, we discovered 
some new variables that may influence the Hcy level, 
even though they still need further prospective studies to 
confirm.

However, there are still some limitations to this study. 
First, there might be more risk factors to be discovered 
in addition to our findings. The variable selected for this 
study was only the physical and laboratory examination. 
Other factors should be taken into consideration as they 
were proved to be essential for Hcy metabolism, including 
smoking, drinking, nutrition, physical exercise, etc. Second, 
the correlation between HHcy and the risk factors in this 
cross-section study cannot reflect the causal relationship. 
A well-designed cohort study or randomized clinical trial 
is needed to confirm the causality. Third, the result of this 
single-center study would be corroborated by multi-center 
collaborations, and it would be more authentic if the result 
can be verified in different centers in the future.

In summary, we have found that except the common 
protective factors (folate and Vit B12) and risk factor (Cr), 
each sex and genotype group has its specific risk factors for 
HHcy: female-CT (age, SBP, and Hb), female-TT (SBP 
and AST), male-CC (age, AST and Hb), male-CT (age 
and AST) and male-TT (SBP, AST, and Hb). These results 
might be useful for predicting or prevention of systemic 
diseases.

Table 4 Risk factors for HHcy for each sex and MTHFR C677T genotype*

Variables F-CC F-CT F-TT M-CC M-CT M-TT

Folate −0.12 −0.17 −0.45 −0.27 −0.41 −0.99

VitB12 −0.00 −0.00 −0.01 −0.00 −0.01 −0.01

Cr 0.08 0.08 0.12 0.05 0.08 0.11

Age – 0.06 – 0.07 0.04 –

SBP – 0.02 0.05 – – 0.04

AST – – 0.11 0.05 0.01 0.09

Hb – 0.03 – 0.03 – 0.09

*, all these risk factors are significantly associated with HHcy levels (P<0.05).
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