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Background: Hepatocellular carcinoma (HCC) is understood to be an immunogenic tumor caused by 
chronic liver disease. Emerging research has indicated close interaction between various immune cells and 
tumor cells. Immunophenotyping, which has shown potential predictive value for the prognosis of various 
human malignancies, might allow responsive and non-responsive patients to be identified based on the extent 
and distribution of immune cell infiltration. Several novel immunotherapeutic approaches have been trialed 
and have shown promising efficacy. However, the efficacy of immunotherapies in HCC is limited by several 
factors. This study aimed to investigate tumor-infiltrating immune cells in HCC.
Methods: Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) 
allows immune cell profiling analysis by deconvolution of gene expression microarray data. In this study, we 
analyzed the proportions of immune cells in 14 paired samples of HCC tissues obtained from GSE84402 in 
Gene Expression Omnibus (GEO) database.
Results: In the 14 paired samples, HCC tissues showed significant infiltration by regulatory T cells (Tregs), 
activated natural killer (NK) cells, and M0 macrophages (P<0.001, P=0.007 and P=0.001, respectively), 
which were validated in CIBERSORT with the P value set at ≤0.05. In four paired samples identified 
from those selected by CIBERSORT, HCC tissues were found to have significant Treg and activated 
NK cell infiltration compared to non-tumor tissues (P=0.007 and P=0.015, respectively). Additionally, 
Pearson correlation analysis revealed Tregs to be positively correlated with activated NK cells (Correlation  
coefficient =0.41).
Conclusions: HCC tumor tissues were markedly infiltrated by Tregs and activated NK cells, which should 
be considered as candidate therapeutic targets in HCC multidisciplinary treatments.
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Introduction

Hepatocellular carcinoma (HCC) is understood to be an 
immunogenic tumor caused by chronic liver disease. HCC 
develops when the liver becomes chronically inflamed and 
the intra-hepatic immunosuppressive microenvironment 
occurs (1-3). Emerging research has indicated close 
interaction between various immune cells and tumor cells. 
Many molecular mechanisms involved in the biological 
properties of tumor cells during hepatocarcinogenesis also 
have considerable implications on the immune system (4).

Although a variety of tumor-associated antigens are 
expressed in HCC, no immune therapies have proved 
beneficial in the treatment of HCC (5). Several novel 
immunotherapeutic approaches have been trialed and have 
shown promising efficacy (6,7). However, the efficacy of 
immunotherapies in HCC is limited by several factors. More 
focused studies into how tumor response can be accurately 
assessed and predicted, as well as how the immunosuppressive 
effects of the tumor microenvironment can be overcome, 
are urgently needed (8,9). Immunophenotyping, which has 
shown potential predictive value for the prognosis of various 
human malignancies (10,11), might allow responsive and 
non-responsive patients to be identified based on the extent 
and distribution of immune cell infiltration (10,12,13). 
Bioinformatic analysis of tumor-infiltrating immune cells 
in HCC tissues have been addressed in previous studies 
(14,15). In a study reported by Rohr-Udilova et al., total 
B cells, memory B cells, T follicular helper cells and M1 
macrophages were strongly infiltrated into HCC (14). 
Since the efficacy of immunotherapy for HCC is not  
satisfactory (16), the supplementary assessment of tumor-
infiltrating immune cells should be addressed further.

Recent reports have demonstrated that deconvolution 
of gene expression data by Cell-type Identification 
By Estimating Relative Subsets Of RNA Transcripts 
(CIBERSORT) can provide crucial information regarding 
immune cell composition in HCC (14,17). In this analysis, 
we selected microarray dataset GSE84402 with 14 paired 
tumor and the corresponding non-cancerous tissues 
and aimed to investigate the relative proportions and 
distribution of tumor-infiltrating immune cells in HCC 
patients using CIBERSORT. We present the following 
article in accordance with the MDAR reporting checklist 
(available at http://dx.doi.org/10.21037/atm-20-5830).

Methods

Data source

The GSE84402 series comprising 14 pairs of HCC tissues 
and the corresponding non-cancerous tissues was obtained 
from the Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/). Double-stranded 
complementary DNA (cDNA) was synthesized using 5 μg of 
total RNA from each sample, before amplification, labeling 
with biotin, and hybridization to GeneChip Human 
Genome U133 Plus 2.0 Array (18). As declared by Wang 
et al., ethical approval was obtained from the Zhongshan 
Hospital Research Ethics Committee, and written informed 
consent was obtained from each patient (18).

The GSE84402 series matrix f i le and platform 
documents (GPL570) were downloaded. The Perl 
programming language was used to translate gene probe 
IDs to gene symbol ID. The limma package (19,20) in R 
program was used to normalized the gene expression levels 
of the tumor and non-tumor tissue samples from HCC 
patients. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). 

CIBERSORT analysis

Cell-type Identification by Estimating Relative Subsets 
of RNA Transcripts (CIBERSORT), created by Newman 
et al., is an analytical tool that allows the abundance 
of member cell types in a mixed cell population to be 
estimated using gene expression data (17). CIBERSORT 
gene signature matrix, termed LM22, contains 547 genes 
and distinguishes 22 human hematopoietic cell phenotypes, 
including 7 T cell types, naïve and memory B cells, plasma 
cells, NK cells, and myeloid subsets. CIBERSORT was 
used to obtain the immune cell profile of each sample from 
GSE84402, with the number of permutations set at 100 (17).  
Table 1 shows the complete samples from GSE84402. 
For each sample, 22 types of immune cell, along with 
CIBERSORT metrics including the Pearson correlation 
coefficient, CIBERSORT P value, and root mean squared 
error (RMSE), were quantified. The CIBERSORT P value 
represents the statistical significance of the deconvolution 
results across all cell subsets and can be used to filter out 
deconvolution with less significant fitting accuracy. From 
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the samples analyzed, 8 non-tumor samples and 7 tumor 
samples were identified when a CIBERSORT P value 
≤0.05 was required. Table 2 lists the samples selected. SPSS 
23.0 software (SPSS Inc., Chicago, USA) was employed 
to compare CIBERSORT immune cell fractions between 
tumor and non-tumor tissues from HCC patients.

The pheatmap package in R program, (https://cran.
r-project.org/web/packages/pheatmap/) was used to 
perform heatmap analysis of immune cells in tumor and 
non-tumor tissues. Correlation analysis of immune cells 
was conducted using the corrplot package (https://cran.
r-project.org/web/packages/corrplot/index.html). Four 
paired samples from the samples selected by CIBERSORT 

were used to calculate the difference between candidate 
infiltrating immune cells.

Results
Comparison of CIBERSORT immune cell fractions

The CIBERSORT immune cell fractions of the tumor and 
non-tumor tissues from HCC patients from GSE84402 
were compared (Table 1). The tumor tissues showed 
significant infiltration by regulatory T cells (Tregs), 
activated natural killer (NK) cells, and M0 macrophages 
compared to non-tumor tissues (P<0.001, P=0.007, and 
P=0.001, respectively, Table 1 and Figure 1A).

Table 1 Comparison of CIBERSORT immune cell fractions between tumor and non-tumor tissues from HCC patients

Immune cell type
CIBERSORT fraction in % of all infiltrating immune cells (mean ± SD)

Tumors (n=14) Non-tumors (n=14) P value

T cells CD8 0.140±0.071 0.192±0.073 0.075

T cells CD4 naive 0.0±0.0 0.0±0.0 1.0

T cells CD4 memory resting 0.071±0.082 0.088±0.066 0.553

T cells CD4 memory activated 0.002±0.008 0.0±0.001 0.408

T cells follicular helper 0.074±0.030 0.066±0.030 0.545

T cells regulatory (Tregs) 0.066±0.040 0.011±0.017 <0.001

T cells gamma delta 0.004±0.009 0.012±0.017 0.109

B cells naive 0.013±0.017 0.020±0.027 0.454

B cells memory 0.022±0.026 0.008±0.016 0.133

Plasma cells 0.065±0.025 0.061±0.022 0.658

NK cells resting 0.008±0.016 0.006±0.009 0.709

NK cells activated 0.040±0.021 0.017±0.019 0.007

Macrophages M0 0.043±0.041 0.0±0.003 0.001

Macrophages M1 0.090±0.030 0.090±0.033 0.965

Macrophages M2 0.143±0.081 0.169±0.054 0.351

Monocytes 0.033±0.024 0.056±0.034 0.056

Dendritic cells resting 0.074±0.059 0.043±0.024 0.085

Dendritic cells activated 0.003±0.007 0.0±0.0 0.160

Mast cells resting 0.003±0.011 0.001±0.003 0.505

Mast cells activated 0.081±0.055 0.125±0.144 0.318

Eosinophils 0.0±0.0 0.0±0.0 1.0

Neutrophils 0.026±0.020 0.033±0.015 0.313

Italic P values indicate significance between individual groups. HCC, hepatocellular carcinoma.

https://cran.r-project.org/web/packages/pheatmap/
https://cran.r-project.org/web/packages/pheatmap/
https://cran.r-project.org/web/packages/corrplot/index.html
https://cran.r-project.org/web/packages/corrplot/index.html
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From the samples analyzed, 8 non-tumor and 7 tumor 
samples were selected when the CIBERSORT P value was 
set at ≤0.05. Table 2 compares the CIBERSORT immune 
cell fractions of the tumor and non-tumor tissues from 
HCC patients. Consistent with above, there was significant 
infiltration by regulatory T cells, activated NK cells, and 
M0 macrophages in HCC tumor tissues (P=0.007, P=0.05, 
and P=0.025, respectively; Table 2 and Figure 1B). The 
landscape and heatmap of immune cells in the tumor and 
non-tumor tissue samples are presented in Figure 2.

Comparison of CIBERSORT immune cell fractions in 
paired samples

Four paired tumor and non-tumor samples from HCC 
patients (GSM2233092/GSM2233093, GSM2233098/
GSM2233099,  GSM2233110/GSM2233111,  and 
GSM2233112/GSM2233113) were identified from the 
samples selected by CIBERSORT. As shown in Figure 3, 
infiltration by regulatory T cells and activated NK cells was 
more significant in tumor tissues than in non-tumor tissues 
(P<0.01 and P<0.05, respectively; Figure 3A). Moreover, 

Table 2 Comparison of CIBERSORT-selected immune cell fractions between tumor and non-tumor tissues from HCC patients

Immune cell type
CIBERSORT fraction in % of all infiltrating immune cells (mean ± SD)

Tumors (n=8) Non-tumors (n=7) P value

T cells CD8 0.164±0.066 0.198±0.080 0.422

T cells CD4 naive 0.0±0.0 0.0±0.0 1.0

T cells CD4 memory resting 0.043±0.065 0.058±0.047 0.64

T cells CD4 memory activated 0.005±0.011 0.001±0.002 0.372

T cells follicular helper 0.069±0.033 0.077±0.031 0.675

T cells regulatory (Tregs) 0.052±0.035 0.008±0.009 0.007

T cells gamma delta 0.007±0.011 0.020±0.019 0.152

B cells naive 0.018±0.018 0.023±0.030 0.479

B cells memory 0.017±0.028 0.0±0.001 0.132

Plasma cells 0.069±0.031 0.064±0.028 0.759

NK cells resting 0.005±0.012 0.002±0.004 0.578

NK cells activated 0.042±0.027 0.015±0.019 0.05

Macrophages M0 0.047±0.049 0.0±0.0 0.025

Macrophages M1 0.104±0.029 0.094±0.039 0.605

Macrophages M2 0.126±0.053 0.155±0.050 0.326

Monocytes 0.031±0.028 0.055±0.033 0.184

Dendritic cells resting 0.082±0.065 0.035±0.019 0.09

Dendritic cells activated 0.003±0.006 0.0±0.001 0.31

Mast cells resting 0.0±0.0 0.002±0.004 0.369

Mast cells activated 0.093±0.059 0.154±0.183 0.444

Eosinophils 0.0±0.0 0.0±0.0 1.0

Neutrophils 0.021±0.010 0.032±0.012 0.097

Italic P values indicate significance between individual groups. HCC, hepatocellular carcinoma.
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Figure 1 CIBERSORT immune cell fractions of tumor and non-tumor tissues from all samples (A) and selected samples (B) in 
hepatocellular carcinoma patients in the GSE84402 series. *, P<0.05; **, P<0.01; ***, P<0.001.

the levels of regulatory T cells and activated NK cells 
were significantly increased in each tumor tissue sample 
compared with those in the corresponding non-tumor tissue 
sample (P=0.007 and P=0.015, respectively; Figure 3B,C).

Correlation of immune cells

Figure 4 shows a correlation map displaying the Pearson 

correlation values for each comparison between the 
immune cells in the CIBERSORT-selected samples. 
As shown in Figure 4, regulatory T cells had a positive 
Pearson correlation value of 0.77 with resting dendritic 
cells and 0.46 with macrophages M0 cells. Furthermore, 
activated NK cells had positive Pearson correlation values 
of 0.67 and 0.41 with memory B cells and regulatory T 
cells, respectively.
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Figure 2 Landscape (A) and heatmap (B) of immune cells between tumor and non-tumor samples in samples selected by CIBERSORT.
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Discussion

Several computational tools, including microarray 
microdissection with analysis of differences (MMAD) (1,21), 
linear least-square regression (LLSR) (22) and digital sorting 
algorithm (DSA) (23), have been used to deconvolute 
complex gene expression profiles mixtures to infer cellular 
composition. However, their sensitivities to experimental 
noise and cell types, and high unknown mixture content 

limited the utility for tumor infiltrating immune cells 
assessment. CIBERSORT is a widely useful approach for 
high throughput characterization of tumor infiltrating 
immune cells assessment from complex tissues (24). 

Tumor-infiltrating immune cells have been associated 
with the aggressiveness of many cancers (25,26), and their 
prognostic correlation with HCC has been extensively 
investigated (14,27,28). In HCC patients, abundant T 
lymphocytes (29,30), B cells (31), NK cells (32), and 
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Figure 3 Validation for CIBERSORT immune cell fractions in four pairs of tumor and non-tumor tissues. *, P<0.05; **, P<0.01.
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dendritic cells (33,34) have been found to contribute to 
favorable prognosis. In contrast, high levels of regulatory 
T cells (35), neutrophils (36,37), monocytes (38), and 
CXCR3+ subtype B cells (39) have been associated with 
poor outcomes in HCC patients. Moreover, a link has 
been reported between the proportions of different types 
of macrophages and the prognosis of HCC (40,41). 
Therefore, uncovering the diverse composition of tumor-
infiltrating immune cells in tumor immunology might be 
helpful in overcoming the limitations and barriers faced by 
immunotherapies in HCC (42).

 In this analysis, we found significant infiltration by 
Tregs and activated NK cells in HCC tumor tissues. In the 

GSE84402 series, 13 out of 14 cases were HBsAg positive. 
Consistent with our findings, a previous study revealed 
that Tregs in tumor tissues displayed higher frequencies 
and more suppressive phenotypic functions than those in 
peritumoral and peripheral tissues (43). The higher Treg 
levels in patients with chronic hepatitis B (CHB) exerted 
a suppressive effect on the specific immune responses 
induced by HBV antigens, as well as by HCC tumor 
antigens. Furthermore, Tregs could inhibit tumor immuno-
surveillance against HCC, which potentially plays a role in 
the immunopathogenesis from CHB to HCC (44). Tregs 
have crucial involvement in forming and maintaining the 
hepatic inhibitory microenvironment, as well as in the 
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Figure 4 Correlation of immune cells in the samples selected by CIBERSORT.
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development of cirrhosis, the transformation of cirrhosis to 
HCC, and HCC progression and metastasis (45). Moreover, 
various studies have demonstrated that high quantities of 
tumor-infiltrating Tregs are considered to be an unfavorable 
prognostic indicator for advanced tumor biological 
behaviors and poor survival in HCC patients (46-49).

NK cell regulation of antigen-specific T lymphocytes 
occurs during viral infection. When NK cells become 
depleted, the number of antigen-specific T lymphocytes 
increases; therefore, these NK cells may reduce T cell levels, 
leading to a weaker antitumor immune response (50). NK 
cell activator has been shown to induce liver inflammation 
by significantly increasing the levels of infiltrating 
lymphocytes, along with concurrently increasing apoptosis 
and proliferation of hepatocytes; consequently, epithelial-to-

mesenchymal transition of hepatocytes is accelerated (51).  
Decreased NK cell counts have also been reported in 
HCC patients (52). NK cell deficiency is believed to be 
a key mechanism underlying tumor cell evasion of the 
host’s immune system. In HCC, NK cells appear to have 
reduced function. A growing bank of evidence suggests that 
impaired NK cell function leads to the body’s failure to 
eliminate tumor cells, which indicates that tumor cells could 
be killed more effectively through enhancing the activity 
of dysfunctional NK cells (32,53). Our results also showed 
that Tregs were positively correlated with activated NK 
cells. Current evidence showed that Tregs are closely linked 
to the homeostasis of NK cells and attenuate the sensitivity 
of target cells through minimizing interleukin (IL)-2 to 
NK cells (50). In contrast, in chronic myeloid leukemia, 
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the degree of NK cell differentiation was closely and 
inversely correlated with the proportion of Treg cells (54).  
Considered these conflicting results regarding the 
correlation of tumor-infiltrating NK cells with Tregs, more 
mechanism investigations on tumor-infiltrating NK cells in 
HCC development should be carried out in future.

Our study has some limitations. The primary is 
that this study is based on relatively small samples, the 
external validation of our results should be considered. 
Secondly, the associations between Tregs and NK cells 
and prognosis in HCC patients were not addressed in this 
study. Thirdly, this study was a preliminary bioinformatic 
analysis, no experimental data was available. Even though, 
the CIBERSORT approach to analyzing HCC samples 
from the GSE84402 series revealed that tumor tissues 
were markedly infiltrated by Tregs and activated NK cells. 
Therefore, these cells should be considered as candidate 
therapeutic targets in multidisciplinary treatment for HCC.
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