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Background: As a particularly dangerous and rare cardiovascular disease, aortic dissection (AD) is 
characterized by complex and diverse symptoms and signs. In the early stage, the rate of misdiagnosis and 
missed diagnosis is relatively high. This study aimed to use machine learning technology to establish a 
fast and accurate screening model that requires only patients’ routine examination data as input to obtain 
predictive results.
Methods: A retrospective analysis of the examination data and diagnosis results of 53,213 patients with 
cardiovascular disease was conducted. Among these samples, 802 samples had AD. Forty-two features were 
extracted from the patients’ routine examination data to establish a prediction model. There were five 
ensemble learning models applied to explore the possibility of using machine learning methods to build 
screening models for AD, including AdaBoost, XGBoost, SmoteBagging, EasyEnsemble and XGBF. Among 
these, XGBF is an ensemble learning model that we propose to deal with the imbalance of the positive and 
negative samples. The seven-fold cross validation method was used to analyze and verify the performance of 
each model. Due to the imbalance of the samples, the evaluation indicators were sensitivity and specificity.
Results: Comparative experiments showed that the sensitivity of XGBF was 80.5%, which was better 
than the 16.1% of AdaBoost, 15.7% of XGBoost, 78.0% of SmoteBagging and 77.8% of EasyEnsemble. 
Additionally, XGBF had relatively high specificity, and the training time consumption was short. Based on 
these three indicators, XGBF performed best, and met the application requirements, which means through 
careful design, we can use machine learning technology to achieve early AD screening.
Conclusions: Through reasonable design, the ensemble learning method can be used to build an effective 
screening model. The XGBF has high practical application value for screening for AD.
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Introduction

Aortic dissection (AD) is a very dangerous cardiovascular 
disease. The main causes of AD are hypertension, Marfan 
syndrome and aortic atherosclerosis (1-3). The blood in the 
aortic cavity enters the arterial wall through the cracked 
intima that causes intimal separation from the medial 

membrane and hematoma. The hematoma mass is driven 
by high blood pressure and spreads along the long axis of 
the artery (4). AD usually results in high morbidity and 
mortality (5,6). Once AD is onset, it will quickly lead to 
death. The mortality rate within 24 hours after the onset 
is about 1% to 2%, 50% within 48 hours, and 60% to 
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70% within one week. Its five-year natural survival rate is 
only 10% to 15% (7-9). Due to the different locations in 
which tears can occur and the extent of the tear, patients’ 
symptoms and signs are complex and diverse, making 
the rate of misdiagnosis and missed diagnosis reach 30% 
to 40% (10,11). Many patients miss the best treatment 
period for these reasons. It has been reported that 10.6% 
of patients with AD are misdiagnosed as having acute 
coronary syndrome (ACS) on first diagnosis (12). About 1% 
to 2% of patients with AD may develop acute myocardial 
infarction (AMI); however, AD and AMI are completely 
different in terms of treatment (13). Once AD patients get 
the wrong treatment, such as antithrombotic, thrombolytic, 
or emergency CAG/PCI, which are methods to treat AMI, 
all are associated with poor prognosis and increased risk of 
death due to AD. Therefore, if a patient is misdiagnosed 
or a diagnosis is missed, the patient is likely to be unable to 
obtain a further accurate diagnosis, or timely and accurate 
treatment. In China, the overall treatment level of AD 
is still low; the rate of missed diagnosis, hospitalization 
and preoperative mortality is comparatively high, and 
the age of patients is getting younger (14). Moreover, the 
development of medical resources and technology in China 
is imbalanced. In primary and underdeveloped hospitals, 
the lack of medical facilities and experienced doctors means 
higher rates of misdiagnosis and missed diagnosis, as well 
as higher mortality. Thus, a simple and effective early 
screening method is very necessary. 

With the development of information technology and 
the popularity of electronic medical records, machine 
learning is constantly being applied to medical diagnosis 
to improve diagnostic accuracy, provide early prediction, 
reduce doctor pressure, and inspection costs. For example, 
Dwivedi (15) used six machine learning algorithms to 
assist in the diagnosis of ischemic heart disease. The best 
performance of his study was logistic regression with 
accuracy, sensitivity and specificity of 85%, 89% and 81%, 
respectively. Gatuha and Jiang (16) used machine learning 
algorithms to diagnosis breast cancer, and their best result 
had an accuracy of 97%. Liu et al. (17) established machine 
learning models to predict embryonic development. All of 
these methods have achieved better results than traditional 
methods. Machine learning diagnostic methods for AD 
have also attracted people's attention. Huo et al. used the 
Bayesian network, Naive Bayes, decision tree J48 and SVM 
algorithms to classify AD emergency patients (18). Their 
study contained 492 samples, including 330 patients with 

AD and 162 patients misdiagnosed as AD, which means 
the misdiagnosis rate reached 33%, and the sample ratio 
between AD patients and non-patients was close to 2:1. 
However, the purpose of their research was to find the 
misdiagnosed patients from the patients diagnosed with AD, 
rather than to screen out high-risk groups. The sample size 
was small. Liu et al. (19) analyzed the performance of several 
machine learning models in AD screening, among which 
the SmoteBagging was the best, and the sensitivity reached 
78.1%. Wu et al. (20) used the Random Forest model to  
investigate the risk of in-hospital rupture in type A AD.

The purpose of our study is to explore if the patients’ 
routine examination data can be used to establish a rapid 
early screening model to advise doctors or patients on 
whether further examination is required.

We present the following article in accordance with the 
TRIPOD reporting checklist (available at http://dx.doi.
org/10.21037/atm-20-1475).

Methods

Clinical information 

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). The study was approved 
by the Ethics Board of Xiangya Hospital, Central South 
University (201502042). This study is a retrospective study, 
all data were desensitized data from hospital’s electronic 
medical records, which did not contain patient identification 
information, and the consent was waived.

The registry data of 53,213 inpatients in the Cardiovascular 
Department of Xiangya Hospital from January 2008 
to December 2016 were analyzed. There were 802 AD 
patients in this database, and the rest were hospitalized 
patients with other cardiovascular diseases including viral 
myocarditis, myocardial infarction and coronary heart 
disease. The diagnosis of AD was mainly based on medical 
imaging methods: (I) The Computed Tomography (CT) 
image showed one or more torn aortic intima and both true 
and false cavities could be found on the aortic; a series of 
complications may have been seen based on AD leakage 
or rupture, such as pericardial, mediastinal and pleural 
effusions, blood accumulation or aortic valve regurgitation. 
(II )  Magnetic  Resonance Imaging (MRI)  showed 
differentiable high-signal true and false cavity images; in the 
Field Echo (FE) sequence scan image, both the true cavity 
and the false cavity may have been shown as high signals, 
and the low signal inner diaphragm could be seen between 
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them; (III) Contrast agent overflow or ejection from aortic 
incision could be seen in the Computed Tomography 
Angiography (CTA); the shunt signals of the contrast agent 
dividing into two cavities with the blood flow could be 
observed; low-density linear endometrial flap could be seen 
between the true cavity and the false cavity. (IV) Incision 
and differentiable cavities could be directly observed in the 
intima or meniscus of the aortic during aortic surgery and 
postmortem of patients.

 

Model introduction

AD is a relatively rare cardiovascular disease, so the 
proportion of AD patients to non-AD patients is low, and 
the distribution of the two types of samples is extremely 
imbalanced. The purpose of the study is to screen for 
patients with AD from a large number of possible patients. 
Therefore, a major challenge of machine learning research 
for this work is how to deal with the problem caused by 
imbalance. Traditional prediction methods focus on global 
accuracy, and the formula is as follows:

accuracy TP TN
P N
+

=
+

Where TP is the number of true positives; TN is the 
number of true negatives; P is the number of positive 
samples; N is the number of negative samples, and FP is the 
number of false positives.

According to the formula, when P>>N or N>>P, even if 
none of the samples’ predictions is correct, the accuracy can 
still be high. The imbalance causes the predictor to ignore 
the minority. This means that the predictor always prefers 
to discriminate some ambiguous samples into the majority 
class.

In view of the shortcomings of traditional algorithms, 
our study proposes an oversampling ensemble algorithm 
named Extreme Gradient Boosting Forest (XGBF). XGBF 
is an ensemble learning model which is composed of several 
XGBoost classifiers (21). The specific structure of the 
XGBF model is shown in Figure 1.

Since XGBoost has a fast convergence rate, the training 
speed of XGBF can be guaranteed. The training data 
entered into each XGBoost classifier were composed with 
some undersampled majority data and oversampled minority 
data. The oversampling operations included duplicating 
and Smote (22), so the learning model could get more 
information from the minority samples. The undersampling 
operation used non-replacement sampling to draw a certain 

amount of samples from the majority class set each time 
to make the distribution of positive and negative samples 
be similar. Finally, each weak classifier was enhanced by 
ensemble methods to achieve better predictions.

The XGBF algorithm combines the advantages of the 
oversampling, undersampling and ensemble methods so 
that the predictor can fully learn the characteristics of the 
samples and produce better results. 

Cross-validation of predictors

We used seven-fold cross-validation to verify the stability 
of the classifier. Before the training and verification (cross-
validation), we randomly divided the AD patient set and 
non-AD patient set into seven disjointed subsets of the same 
size. Then one AD subset and one non-AD subset were 
merged together to get seven new subsets. The training 
and testing procedures were repeated seven times. Each 
time, one of the seven subsets was picked as a test set, and 
the others were merged together as a training set. A total of 
687 AD patients and 44,924 non-AD patients were included 
in six training sets, and the test data set included 115 AD 
patients and 7,487 non-AD patients. In order to avoid the 
accident of the experiment, this study evaluated the average 
of ten experiments. In different experiments, the training 
set and test set were randomly split, so they were different 
in each experiment.

Comparison methods and evaluation parameters

The experimental study applied four ensemble learning 
algorithms including AdaBoost, XGBoost, SmoteBagging 
and EasyEnsemble  to  compare  with  XGBF.  The 
introduction of these algorithms is introduced in the 
Supplementary file 1. The computer configuration of these 
experiment was: 64-bit Windows10 OS, Python3.6, 16G 
RAM, and CPUi5-6500.

A confusion matrix, as shown in Table 1, was used to 
show some basic evaluation indicators. A sample can be 
divided into true positive cases (TP), false positive cases 
(FP), true negative cases (TN) and false negative cases 
(FN) according to the combination of its real category and 
prediction category. In our case, the positive sample refers 
to the minority class of patients with AD, and the negative 
sample refers to the majority class of patients with non-AD.

As we mentioned, the proportion of the positive 
and negative samples was extremely imbalanced. The 
traditional evaluation indicators, such as accuracy and 
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positive predictive value (PPV), were no longer suitable. For 
example, there was a predictor that predicted all samples as 
majority class, while the accuracy was still high, this kind of 
predictor is meaningless in this study. The situation of PPV 
is similar. Even if we have a predictor that can accurately 
predict all minority classes and has a low false positive rate, 
it is still possible to get a lower PPV, because there are far 
more majority than minority classes, resulting in the number 
of FPs being greater than the number of TPs. Therefore, 

the evaluation indicators used in this study were sensitivity 
and specificity. After all, the purpose of screening is to find 
as many of the high-risk groups as possible. Compared with 
false positives, the risk of false negatives is higher.

Statistics 

Python3.6 software was used for statistical analysis of 
the data in this study. Measurement data are expressed 
as mean ± standard deviation. Count data are a ratio or 
percentage. The differences in count data between the 
two groups were compared by the chi-squared test. The 
differences in measurement data were compared using the 
two-independent-sample t test. P<0.05 was considered 
statistically significant. The diagnostic performance of the 
classifiers was described using sensitivity and specificity.

Figure 1 The specific structure of the XGBF model. This is the structure of XGBF model. In the algorithm, P represents positive (the 
minority class) dataset, which is the patient set; N represents negative (the majority class) dataset, which is the non-patient set; and 
T represents the number of XGBoost classifiers. The training data entered into each XGBoost classifier were composed with some 
undersampled majority data and oversampled minority data. In the XGBF algorithm, the oversampling operations were performed on 
the minority class, which included duplicating and smote. The minority samples were strengthened by these two methods, so the learning 
model could get more information from the minority samples. The undersampling operation was performed on the majority class so that 
the distribution of each kind of sample was balanced. Finally, each weak subclassifier was enhanced by ensemble methods to achieve better 
classification results.

Table 1 Confusion matrix
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Results

Study cohort

Our AD dataset was obtained from Xiangya Hospital of 
Central South University. All sample data were extracted 
from electronic medical records (EMR), including patients’ 
information documents, hospitalization records and 
laboratory medical records. The information contained in 
the documents included patients’ symptoms, habits, medical 
history, examination results, and diagnostic results. We 
recruited six undergraduates and one master’s student who 
is a professional in the cardiovascular field to annotate and 
extract data from the text. After that, we got a structured 
dataset through the work of data extraction (23). However, 
the dataset was still missing data. Some features with a 
missing rate of more than 30% were deleted. Then we used 
a hierarchical mean filling method to fill in the rest of the 
data and obtained the final dataset. 

In the dataset, each sample contains 62 features, which 
came from the patients’ routine blood examinations, 
complete biochemical examinations, routine blood 
coagulation examinations, living habits and family genetic 
history. Some of these features have been found to be highly 
correlated with AD, such as D-dimer and Serum potassium 
(24,25). Through the t-test, we chose 42 features with  
P value less than 0.005 as shown in Table 2. 

A total of 53,213 patients’ data were collected from 2008 
to 2016. There were 802 patients diagnosed with AD, the 
imbalance ratio was about 1:65. In addition, in this dataset, 
the incidence of AD in men and women was about 2:1; the 
average age of patients suffering from AD was 56 years old; 
patients usually had hypotension or hypertension; 33% of 
the patients suffered from chest pain or abdominal pain. 

The prediction performance of predictors

The experimental results are shown in Tables 3-8 include 
the average results of ten experiments. In each experiment, 
the test data set was different, but the size was the same; 
each included 115 AD patients and 7,487 non-AD patients. 
After training the predictors, 42 features of each patient 
in the test set were input into each of the predictors to 
determine which patients had AD. Tables 3-7 show the 
confusion matrix of the prediction results for AdaBoost (26),  
XGBoost, SmoteBagging (27), EasyEnsemble (28) and 
XGBF.

Comparing Tables 3-7, it can be seen that the results 
obtained by AdaBoost and XGBoost are very close, while 

the latter three, SmoteBagging, EasyEnsemble and XGBF, 
are significantly different from the first two. For example, 
in Table 2, AdaBoost found 18 AD patients successfully, 
but 97 AD patients were predicted as non-AD patients; 15 
non-AD patients were predicted as AD patients, and 7,472 
non-AD patients were predicted correctly. The first two 
had high accuracy in determining a non-patient was a non-
patient. But for patients, their performance was poor and 
they failed to achieve the purpose of screening. The latter 
three correctly identified more AD patients. Although they 
also predicted more non-AD patients as AD patients, the 
false positive rate was still low considering the large number 
of negative collections. Such classifiers are obviously more 
meaningful in disease screening. They greatly reduced the 
missed diagnosis rate. In the latter three classifiers, XGBF 
had the best results with the maximum number of correctly 
predicted AD patients as AD patients. Table 8 shows the 
different evaluation results for each algorithm.

The effectiveness of the improved AD screening 
algorithm XGBF is visualized in Tables 2-7. Compared 
with the traditional ensemble methods of AdaBoost 
and XGBoost, our method greatly improved sensitivity. 
AdaBoost and XGBoost cannot deal with imbalanced data. 
Specificity was higher than 99%, but sensitivity was only 
about 15% or 16%, which means these algorithms tended 
to classify all data as non-AD patients. In other words, 
they did not classify these data at all. Considering two 
imbalanced data classification methods—SmoteBagging and 
EasyEnsemble—although the specificity of our results is not 
obviously dominant, the sensitivity was still higher. In fact, 
the sensitivity and specificity of XGBF were the highest of 
all the algorithms. The SmoteBagging model adds extra 
training data, and the training time became very long. 
Considering time and sensitivity, EasyEnsemble was better 
than SmoteBagging. XGBoost was the fastest model, but 
the sensitivity was poor. AdaBoost was similar to XGBoost. 
Although the time consumption of XGBF was not the 
shortest, it was acceptable. Considering all the factors, it 
achieved the best results. 

Discussion

The aim of this study was to develop a machine learning 
model to screen for early AD from routine medical 
examination data. Currently, the application of machine 
learning technology in the medical field has received 
substantial attention. Wu et al. (20) investigated the risk of 
in-hospital rupture in type A AD patients with a Random 
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Table 2 t-test statistical table of features

Features AD patient(N=802) Non-AD patient (N=52,411) χ2/t P

Age 55.57±12.90 62.56±13.06 15.03 <0.001

Sex 574 (71.57%) 29,994 (57.23%) 66.47 <0.001

Chest pain 206 (25.79%) 9,460 (18.05%) 30.99 <0.001

Stomachache 66 (8.23%) 2,996 (5.72%) 9.2 0.002

Heart disease 63 (7.86%) 6,106 (11.65%) 11.1 0.001

Dizziness and headache 62 (7.73%) 7,803 (14.89%) 32.13 <0.001

Aortic valve area murmur 23 (2.87%) 377 (0.72%) 48.88 <0.001

Family history of hypertension 92 (11.47%) 4,798 (9.15%) 5.08 0.024

Chest trauma history 11 (1.37%) 206 (0.39%) 18.62 <0.001

Smoking and duration 10.22±14.39 7.34±13.88 −5.63 <0.001

Hypertension 530 (66.08%) 31,571 (60.24%) 11.29 0.001

Hypertension and duration 6.01±6.47 6.10±7.09 0.36 0.72

Diabetes 88 (10.97%) 11,910 (22.72%) 62.47 <0.001

Diabetes and duration 0.85±2.87 1.82±3.83 9.4 <0.001

Heart rate 81.74±13.87 78.73±14.20 −6.1 <0.001

Systolic pressure 142.41±26.71 136.86±21.90 −5.85 <0.001

Diastolic pressure 83.20±16.59 80.46±13.01 −4.66 <0.001

HGB 119.76±21.57 119.95±22.47 0.24 0.814

NEUT 7.16±4.08 4.79±3.47 −16.35 <0.001

NEUT% 72.83±10.79 65.30±12.09 −19.59 <0.001

LYMPH% 16.94±9.10 24.22±10.44 22.43 <0.001

LYMPH 1.36±0.60 1.57±2.03 9.07 <0.001

MCV 91.84±6.82 92.10±7.17 1.09 0.275

MPV 8.93±1.39 9.36±1.58 8.6 <0.001

TP 64.58±7.06 65.43±8.04 3.41 0.001

ALB 37.08±5.67 38.61±6.26 7.6 <0.001

GLO 27.57±5.19 26.94±5.32 −3.39 0.001

A/G 1.40±0.36 1.49±0.37 6.77 <0.001

TBIL 16.19±21.62 13.20±26.81 −3.86 <0.001

DBIL 6.65±11.52 5.39±13.53 −3.07 0.002

TBA 6.22±13.32 7.55±15.04 2.49 0.013

ALT 66.50±296.27 32.47±108.73 −3.25 0.001

AST 85.34±510.27 36.33±155.39 −2.72 0.007

CRE 136.87±156.07 138.98±213.75 0.28 0.781

Table 2 (continued)
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Table 2 (continued)

Features AD patient(N=802) Non-AD patient (N=52,411) χ2/t P

GSP 2.25±0.62 2.03±0.73 −9.79 <0.001

CHO 4.33±0.43 4.37±0.55 2.19 0.029

HDL 1.12±0.17 1.12±0.17 0.28 0.782

LDL 2.60±0.35 2.63±0.46 1.98 0.048

LDH 322.03±684.10 236.51±283.48 −3.54 <0.001

CK 538.04±5,272.64 162.57±567.45 −2.02 0.044

CKMB 35.93±299.32 19.33±33.08 −1.57 0.117

MB 72.69±84.95 57.60±59.02 −5.01 <0.001

K 3.83±0.56 3.97±0.52 7.52 <0.001

Na 139.37±4.28 140.71±3.79 8.77 <0.001

Cl 101.08±4.95 102.59±4.62 8.56 <0.001

CO2 23.14±3.21 23.20±3.65 0.51 0.609

AG 15.23±3.68 14.95±3.35 −2.38 0.017

Ca 2.16±0.16 2.21±0.18 8.88 <0.001

P 1.19±0.39 1.19±0.34 0.55 0.581

Mg 0.90±0.13 0.89±0.13 −2.38 0.017

ESR 34.94±10.81 35.40±13.92 1.17 0.241

PT% 99.83±18.59 106.62±17.36 10.28 <0.001

INR 1.06±0.39 1.01±0.28 −3.91 <0.001

APTT 37.66±11.29 35.54±9.68 −5.29 <0.001

FIB 4.44±1.81 3.77±1.22 −10.45 <0.001

D-Dimer 1.37±1.94 0.97±1.27 −5.49 <0.001

PLG 252.01±24.57 255.86±27.68 4.4 <0.001

TT 18.92±14.17 19.11±12.91 0.4 0.691

PT 13.57±4.39 13.02±3.06 −3.58 <0.001

ATAG 271.19±17.23 271.18±21.52 −0.01 0.99

FT3 3.91±0.44 3.96±1.15 3.33 0.001

TSH 3.35±2.51 3.41±3.74 0.672 0.502

NEUT, neutrophils; LYMPH, lymphocytes; MCV, mean corpuscular volume; MPV, mean platelet volume; TP, total protein; ALB, albumin; GLO, 
globulin; A/G, ALB/GLO ratio; TBIL, total bilirubin; DBIL, direct bilirubin; TBA, total bile acid; ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; CRE, creatinine; GSP, glycosylated serum protein; CHO, cholesterol; HDL, high-density lipoprotein; LDL, low-density 
lipoprotein; LDH, lactate dehydrogenase; CK, creatine kinase; ESR, erythrocyte sedimentation rate; PT, prothrombin time; INR, international 
normalised ratio; APTT, activated partial thromboplastin time; FIB, fibrinogen; TT, thrombin time; PT, prothrombin time; ATAG, antithrombin 
III antigen; FT3, free triiodothyronine-T3; TSH, thyroid-stimulating hormone.
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Forest model. They used 16 features, including some 
features extracted from CT images. But there have been 
no studies specifically developing a screening model from 
routine examination data. In our study, patients’ routine 
blood tests, biochemical tests and routine tests for blood 
coagulation were chosen as the candidate features; all of 
these are basic inspections and can be performed in any 
hospital, including most rural hospitals with weak facilities. 
The cost of conducting these inspections is relatively low, 
and the inspection time is relatively short. At the same 
time, according to the doctor's experience, some patients' 
living habits, family history of genetic diseases and other 
data are also selected. We have used these features to build 
a machine learning model to predict patients’ medical 
condition. It can achieve higher sensitivity and will help 
people detect AD in a basic, cheap, and fast way. 

In our study, an ensemble learning model XGBF was 
proposed to get better prediction results. Compared with 
AdaBoost, XGBoost, SmoteBagging and EasyEnsemble, 
XGBF combined undersampling, oversampling and 
the ensemble method to obtain the best results. The 
average sensitivity of the XGBF algorithm was 80.5%, 
and the specificity was 79.5%. The results show that the 
misdiagnosis rate of the XGBF algorithm is lower than that 
of the other four algorithms. At the same time, the screening 
results of XGBF were also better than the best results 
obtained by using Smotebagging in the literature (19),  
and also better than the clinical misdiagnosis rate (29,30). In 
particular, the improved algorithm XGBF made the missed 
diagnosis rate less than 20%, which is less than the missed 
diagnosis rate of 21.9% (19), 35.5% (29) and 39.69% (30). 

This study has some limitations: (I) This study is a 
retrospective study, so there may be some biases. (II) 
There are some missing values in the data set. We filled 

Table 3 Confusion matrix for seven-fold cross validation using 
AdaBoost

a

Predicted  
positive class

Predicted  
negative class

Actual positive class 18 97

Actual negative class 15 7,472
a
,
 
in AdaBoost, the number of iterations is 400.

Table 4 Confusion matrix for seven-fold cross validation using 
XGBoost

a

Predicted  
positive class

Predicted  
negative class

Actual positive class 18 97

Actual negative class 6 7,481
a
,
 
in XGBoost, the parameter of depth is 4.

Table 5 Confusion matrix for seven-fold cross validation using 
SmoteBagging

a

Predicted  
positive class

Predicted  
negative class

Actual positive class 89 26

Actual negative class 1,557 5,930
a
,
 
in SmoteBagging, the number of base classifiers is 100.

Table 6 Confusion matrix for seven-fold cross validation using 
EasyEnsemble

a

Predicted  
positive class

Predicted  
negative class

Actual positive class 89 26

Actual negative class 1,550 5,937
a
,
 
in EasyEnsemble, the number of base classifiers is 40. 

Table 7 Confusion matrix for seven-fold cross validation using 
XGBF

a

Predicted  
positive class

Predicted  
negative class

Actual positive class 92 23

Actual negative class 1,535 5,952
a
,
 
in XGBF, the number of XGboost is 40; m is 1.5; t is 2; n is 2, 

and k is 5.

Table 8 Seven-fold cross-validation average of five comparison 

methods

Sensitivity Specificity Time (s)

AdaBoost 16.1% 99.8% 9

XGBoost 15.7% 99.9% 1

SmoteBagging 78.0% 79.2% 1,873

EasyEnsemble 77.8% 79.3% 98

XGBF 80.5% 79.5% 117
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and preprocessed the data manually, so there may be some 
biases. (III) The parameters of the predictor variables 
affect the prediction results, but most of the parameters 
in the experiment were adjusted based on experience 
or experiment. Therefore, due to the limitation of the 
number of experiments, this result is the best result we have 
obtained so far, there may be better results in future.

Conclusions

This study has proposed a machine learning model XGBF 
to predict the condition of AD with routine medical 
examination data. This predictor has better prediction effect 
on imbalanced AD data set than other ensemble algorithms. 
Therefore, XGBF has practical application value for 
screening for AD.
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Supplementary

The following is a brief introduction to the algorithms 
we used. 

1. AdaBoost

AdaBoost, which is called Adaptive Boosting, is a machine 
learning algorithm based on the boosting idea. AdaBoost 
is an iterative algorithm. The core idea is to use different 
learning algorithms for the same training set, train different 
weak classifiers, and then combine these weak classifiers to 
construct a final strong classifier.

Most Boosting methods change the distribution of data 
by changing the weight of the training data so that it can 
learn a series of different weak classifiers. In AdaBoost, there 
are two weights. The first is that each sample in the training 
set has a weight. For each sample that is misclassified by 
the weak classifiers in the last round of training, the weight 
is increased and the weight of the correct classification 
sample is reduced. Thus, in the next round of training, 
the misclassified sample is highly attended. In the second, 
each weak classifier has a weight. For a weak classifier with 
a relatively small classification error rate, the weight is 
increased, and the weight of the weak classifier which has a 
large classification error rate is reduced. Thus, the accuracy 
of the strong classifier in improved when the algorithm is 
finally integrated.

2. XGBoost 

XGBoost is a gradient boosting decision tree. Its full name 
is Extreme Gradient Boosting, which is an extension of 
Gradient Boosting. The Boosting classifier is an ensemble 
learning model, whose basic idea is to combine hundreds 
of tree models that have lower classification accuracy into 
a model with high accuracy. The model is continuously 
iterated and generates a new tree for each iteration. 
Determining how to generate a reasonable tree at each 
step is the core of the Boosting classifier. The Gradient 
Boosting algorithm uses the idea of gradient descent in 
generating each tree. Then based on all the trees generated 
in the previous step, it moves in the direction of minimizing 
the given objective function. Under reasonable parameter 
settings, a certain number of trees need to be generated to 
achieve the expected accuracy. When the data set is large 
and complex, the Gradient Boosting algorithm has a huge 
amount of computation. XGBoost is an implementation of 
Gradient Boosting that automatically uses multithreading 
of the CPU for parallel operations and it could improve 

accuracy by improving the algorithm. 
XGBoost's base learners are regression trees. Its loss 

function uses second-order Taylor expansion. It has high 
accuracy, and is not easy to overfitting, and is scalable. It 
can process high-dimensional sparse features distributedly. 
Therefore, Xgboost is 10 times faster than similar 
algorithms under the same circumstances. 

3. SmoteBagging

SmoteBagging is an ensemble learning algorithm that 
uses voting strategies. As you can see from the name, the 
SmoteBagging algorithm is a method that uses the Smote 
and Bagging methods. Smote is a method that could 
artificially synthesize new samples, while Bagging samples 
the training set in a way that sampling with replacement 
to construct different training sets for each base classifier, 
and it usually adopts a simple voting method for decision 
output. When creating each base classifier for voting, the 
Nn majority sample will be sampled first, and then the 
same number of Nn minority samples will be constructed. 
The minority samples are obtained by sampling with 
replacement and smoting, and the proportion is determined 
according to the percentage b%, where b% is a multiple 
of 10% between 10% and 100%. That is, in each base 
classifier, a few samples are sampled by sampling with 
replacement whose ratio is Nn*b%, while the proportion 
of the artificially synthesized samples using Smote is 
Nn*(1-b%).

In each iteration, SmoteBagging can choose the method 
for multiplying the number of samples of majority class. 
In this process, the minority samples with an insufficient 
number are generated by smote algorithm, and selecting 
different numbers of majority samples in each iteration 
improves the difference of base classifiers. SmoteBagging is 
an algorithm that uses the idea of oversampling, but it does 
not simply use one of the methods of Smote or Bagging. It 
not only reduces the overfitting that the Bagging method 
may produce, but also reduces the negative impact of the 
sample of the artificial synthesis in the Smote method. 
In addition, since b% is a multiple of 10% between 10% 
and 100%, the diversity of base classifiers is guaranteed. 
Diversity is very important in the improvement of 
classification accuracy and generalization of the model.

4.EasyEnsemble

EasyEnsemble  i s  a  common a lgor i thm that  uses 
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undersampling to deal with the imbalance problem. Unlike 
direct undersampling, it undersamples multiple balanced 
data sets and uses these data sets to train multiple classifiers. 
Finally, these classifiers are combined by some strategies.

EasyEnsemble can be described as follows. Suppose that 
the minority of the training data set is P, the majority is N, 
and |N| >> |P| is satisfied. The data sets of the majority 
are divided into N sub-data sets of N1, N2, N3...NT, and 
satisfy |Ni| =|P|. For each data set Ni, we combine it with 
P as a training set to train a classifier Hi, in which AdaBoost 
is used to train the classifier Hi. Finally, T classifiers are 
obtained and combined to form the final model.

The idea behind EasyEnsemble is very simple. In order 
to avoid data imbalance, the algorithm samples T-balanced 
sub-data sets. Each of them includes all minority and partial 
majority of the initial samples. In addition, a simple average 
method, rather than a voting method, is used in constructing 
the final classifier so that we can obtain information from all 
samples. Besides, EasyEnsemble is an ensemble algorithm 
based on AdaBoost, and because the AdaBoost algorithm is 
also an ensemble algorithm, the EasyEnsesmble algorithm 
is also called ensemble of ensemble algorithm.

5.Extreme Gradient Boosting forest(XGBF)

The EasyEnsesmble algorithm does not generate new data, 
so it learns quickly. The information provided by each 
sample is completely obtained by using it. However, since 
there are too few samples of majority class in each subset, 
the subclassifier cannot obtain more majority information. 
In addition, due to the objective distribution of data 
and the objective conditions of data collection, different 
types of samples tend to have similar values on certain 
features. Because these samples are located in overlapping 
areas of the feature space, they are called overlapping 
samples, and the problems caused by them are also called 
class overlapping problems, which may result in poor 
classification. The EasyEnsesmble algorithm is not ideal for 
this problem.

AdaBoost and XGBoost are currently better algorithms 
for processing general data. They are not targeted on large-
scale unbalanced data sets, so it is very likely that their 
performance will be poor. 

SmoteBagging consumes a lot of time due to its excessive 
smote operation and may affect the true distribution of data.

Therefore, in view of the shortcomings of the above 
algorithms, our study proposes an oversampling ensemble 
algorithm named Extreme Gradient Boosting Forest 

(XGBF). The algorithm combines the strong points of 
undersampling, oversampling and ensemble. At the same 
time, it also merges with XGBoost because it has the 
advantage of flexibility, high precision, short training time, 
and prevention of over-fitting.

XGBF, as an ensemble learning algorithm, is composed 
with several XGBoost classifiers. XGBoost itself is a 
boosting ensemble model using decision trees as its base 
classifier. The specific structure of the XGBF model is 
shown in Figure S1.

Since XGBoost has a fast convergence rate, the 
operation speed of XGBF can be guaranteed. The training 
data entered into each XGBoost classifier are composed 
with some undersampled majority data and oversampled 
minority data. In the XGBF algorithm, the oversampling 
operations are performed on the minority class, which 
includes duplicating and smote. The minority samples are 
strengthened by these two methods, so the learning model 
can get more information from the minority samples. The 
undersampling operation is performed on the majority class 
so that the distribution of each kind of sample is balanced. 
Finally, each weak subclassifier is enhanced by ensemble 
methods to achieve better classificion results.

Algorithm 1 XGBF Algorithm

1. i=0
2. Duplicate all minority samples in P t times to get 

duplicate dataset DP
3. For each sample x in DP, repeat somte operation n 

times to get dataset P'
4. While i<= tb repeat

4.1 i=i+1
4.2 Sampling m * |P| samples into Ni from N without 

replacement
4.3 Using Ni and P’ train an XGBoost classifier Hi 

5. Output a weighted average of the results of tb  
classifier H

The XGBF algorithm combines the advantages of the 
oversampling, undersampling and ensemble methods 
so that the classifier can fully learn the characteristics of 
the samples and produce better results. The pseudo code 
for the XGBF algorithm is shown in algorithm 1. In the 
algorithm, P represents the minority class dataset, which 
is the patients’ set; N represents the majority class dataset, 
which is the non-patient’s set; and tb represents the number 
of XGBoost classifiers. |P| and |N| mean the cardinality 
of the set P and N, respectively 
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Figure S1 The specific structure of the XGBF model.
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