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Introduction: the importance of structure 
learning in gene set 

Gene set analysis or pathway analysis tools play an important 
role in exploring the relationship between a group of genes 
and phenotypes of interest (1,2). How genes in this group 
work cooperatively to regulate or stimulate the complex 
biological function in different cellular status, however, 
often remains a mystery. Based on scientific studies or 
other text mining techniques (3,4), several public databases, 
such as KEGG (5), BioGRID (6) and STRING (7), have 
already annotated biological functions as pathways and the 
interactions within the molecular network. Therefore, it is 
possible to examine if the estimated correlation from the 
raw data is in conformity with the information retrieved 
from those public databases. Questions in the following may 
arise: “Can we directly estimate the interactions or learn the 
structure relationship among a group of genes only from 
the data?”; “Is there any statistical implementation that can 
help to answer this question?”

Answers to these questions may provide an opportunity 
for researchers to construct the gene network, and most 
importantly, to discover novel relationships within a group 
of genes (8-11). The graphical lasso (12) is a widely used 
approach in structure learning research as well as a useful 
tool to answer the above questions (13). It was proposed to 
estimate a sparse graph by utilizing the lasso penalty in the 
precision matrix of a multivariate normal distribution. Here 
we discuss how to estimate the network structure based on 
the multivariate normal distribution, and next introduce 
the rationale and the estimation procedure of the graphical 
lasso. Then, we demonstrate the graphical lasso algorithm 

with a real cancer application and conclude with a brief 
summary.

Structure learning with graphical lasso 

Gene set analysis is often considered for microarray gene 
expression levels to investigate the association between 
a set of genes and a complex trait after a collection of 
differentially expressed genes have been identified (14-16). 
It is common to assume that the gene expression values in 
the gene set follow a multivariate normal distribution, also 
known as the Gaussian graphical model for gene network. 
This assumption is popular because of the theoretical 
statistical properties. For a group of P genes, assume the 
P– dimensional vector X follows a multivariate normal 
distribution, 

1 2( , ,..., ) ~ ( , )PX X X MVN µ= ΣX


 [1]

Inside this vector, each component Xi, i=1,2,...,P is a 
random variable representing the gene expression value 
of gene i. This distribution can be used to construct 
the network of these P genes. If a network follows this 
distribution, then the absence of an edge between two 
nodes (two random variables) implies that the two 
random variables are conditionally independent given all 
other variables. In fact, information of this conditional 
independence can be obtained from the precision matrix 
Θ , where 1−Θ = Σ , in this multivariate normal distribution 

( , )MVN µ Σ


 for X = (X1,X2,...,XP). Specifically, if the (i,j) entry 
of Θ  equals zero, it implies that Xi and Xj are conditionally 
independent.  By assuming a mult ivariate normal 
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distribution for the multi-dimensional gene expression 
values, the construction of the gene network structure can 
be based on the estimation of the precision matrix of the 
multivariate normal distribution. The mathematical proof 
and descriptions are detailed in (17). 

The graphical lasso is a fast and efficient algorithm for 
estimating inverse covariance matrices (12,18). It is similar 
to the original lasso approach (19), but the graphical lasso 
focuses on selecting which edge to exist in a network rather 
than which variable to select in a regression problem. The 
graphical lasso adopts the convex optimization strategy to 
estimate the precision matrix by maximizing the following 
penalized log-likelihood

1
log det( ) ( )trace S λΘ − Θ − Θ  [2]

where 1 , jkj k
θΘ =∑  is the element-wise 1  norm of the 

precision matrix, S is the sample covariance matrix, and 
λ is the tuning parameter controlling the sparsity of the 
network. After obtaining the estimated precision matrix 
Θ̂  from the graphical lasso algorithm, the network can be 
constructed based on the non-zero elements in Θ̂ . Figure 1 
is a simple example for illustrating the equivalence between 
the estimated precision matrix and the corresponding 
network structure. Note that no edge appears between 
nodes X1 and X3 and between X2 and X4, since the 
corresponding two entries in Θ̂ are zero. 

Real data application: the lung cancer study

The expression data from a lung cancer study (20) is 
demonstrated here to show the utilization of the graphical 
lasso in estimating the network structure for a selected 
gene set. This data set was downloaded from the Gene 
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.
gov/geo/) and the corresponding accession number in 
NCBI data portal is “GSE19804”. This data set contains 
gene expression values extracted from 60 paired tumor 
and normal tissues. Forty-seven tumor tissue samples 

categorized as tumor stage 1 and 2 were selected into 
the following analysis. The STRING database (https://
string-db.org/; Version 11.0) was considered to determine 
the gene set involving the protein-protein interaction 
(PPI) network of the EGFR gene. The EGFR gene was 
illustrated here because it has been shown in many studies 
that the EGFR gene is associated with tumor progression 
of lung cancer (21,22). In addition, several therapeutic 
drugs have already been developed to target on EGFR 
for lung cancer treatment (23-25). A novel interaction 
between these genes may help to unravel the underlying 
mechanism or improve therapeutic treatments for the 
cancer patients. The following analysis contained the gene 
expression values from 11 genes of the 47 tumor tissues. 
The expression value is the average probe log2 RMA 
signal intensity.

The analysis can be conducted with the function 
“glasso” in R package “glasso” (26). The input is the 
sample variance covariance matrix which can directly be 
calculated with the R basic function “var”, and the lambda 
tuning parameter can be assigned by the option “rho” 
in the “glasso” function. Figure 2 shows the resulting 
network structures constructed by the graphical lasso 
approach corresponding to different lambda tuning 
values. As we can see, when the lambda value increases, 
the degree of the sparsity in the network also increases. 
Some degree of sparsity in the network can reflect 
the underlying biological reality, and is often easier to 
interpret, particularly in the high-dimensional setting (27). 
Some edges in the estimated network, e.g., the connection 
between EGFR and GRB2, are consistent with the reports 
in (5) and (7). Furthermore, the results indicate that GRB2 
and CBL contains more connections than others in the 
estimated graph, implying that these two genes and its 
immediate neighboring nodes may form a potential target 
for future lung cancer genetics research.

Brief summary

This report discusses the importance of structure learning 
in gene set analysis. The graphical lasso approach was 
introduced in constructing the network structure and 
a real data from a lung cancer study was considered to 
demonstrate the use of the graphical lasso. The main 
advantage of the graphical lasso is that it can reconstruct the 
network based on the raw data without incorporating other 
existing network profiles. By applying the graphical lasso 
in gene set analysis, we may discover a novel interaction 

Figure 1 A simple example for illustration.
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Figure 2 Estimated network structure of the 11 protein-protein interaction (PPI) genes of epidermal growth factor receptor (EGFR) with 
the graphical lasso. The upper panel contains heatmaps of the estimated precision matrices with different lambda values. The lower panel 
lists the corresponding graph structures. Note that if the entry in the estimated precision matrix is zero, then the corresponding paired nodes 
will not have a connecting edge between them in the network structure. 

between a set of genes and provide insight into the 
understanding of the complex biological mechanism.
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