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Identification of the tubulointerstitial infiltrating immune cell 
landscape and immune marker related molecular patterns in lupus 
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Background: Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease that commonly 
affects the kidneys. Research into markers that can predict the prognosis of tubulointerstitial lupus nephritis 
(LN) has been impeded by the lack of well-designed studies. 
Methods: In this study, we selected and merged 3 sets of renal biopsy tubulointerstitial data from 
GSE32591, GSE69438, and GSE127797, including 95 LN and 15 living healthy donors. CIBERSORTx 
was utilized for differentially infiltrating immune cell (DIIC) analysis. Weighted Gene Co-Expression 
network analysis (WGCNA) was employed to explore differentially expressed gene (DEG) related modules. 
Combined WGCNA hub genes and protein-protein interaction (PPI) validation was used for immune 
marker identification. Lastly, unsupervised clustering was carried out to validate the correlation between 
these markers and clinical characteristics. 
Results: Our findings unveiled TYROBP, C1QB, LAPTM5, CTSS, PTPRC as the 5 immune markers, 
which were negatively correlated with glomerular filtration rate (GFR). Specifically, the expression levels 
of TYROBP and C1QB were significantly different between proliferative LN (PLN) and membranous LN 
(MLN). Unsupervised clustering could aggregate LN by these immune marker expression spectrums. 
Conclusions: This study is the first to identify infiltrating immune cells and associated molecular patterns 
in the tubulointerstitium of LN by utilizing bioinformatics methods. These findings contribute to a better 
understanding of the mechanisms behind LN, and promote more precise diagnosis.

Keywords: Lupus nephritis (LN); bioinformatic analysis; CIBERSORTx; weighted gene co-expression network 

analysis (WGCNA); Immune infiltration; Unsupervised clustering

Submitted Oct 10, 2020. Accepted for publication Dec 01, 2020.

doi: 10.21037/atm-20-7507

View this article at: http://dx.doi.org/10.21037/atm-20-7507

1596

Original Article

 
^ ORCID: 0000-0002-1911-8696.

https://crossmark.crossref.org/dialog/?doi=10.21037/atm-20-7507


Zhang et al. Immune cell infiltration in lupus nephritis tubulointerstitium

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2020;8(23):1596 | http://dx.doi.org/10.21037/atm-20-7507

Page 2 of 18

Introduction

Systemic lupus erythematosus (SLE) is heterogeneous 
disease with a broad range of clinical signs and symptoms 
including autoimmune manifestations, of which lupus 
nephritis (LN) is the most common cause of kidney disease 
in SLE. Approximately 50–60% patients have onset 
renal injury when SLE is diagnosed (1), and renal disease 
constitutes a major risk factor for SLE morbidity and 
mortality (1,2). Diagnostic pathological classification, as 
stipulated by the International Society of Nephrology/Renal 
Pathology Society (ISN/RPS) 2018 guidelines (3), relies on 
microscopic descriptions which mainly focus on glomeruli, 
therefore tubulointerstitial changes are rarely paid attention 
to. Although more and more nephrologists recognize that 
interstitial inflammatory cell infiltration and subsequent 
tubular cell necrosis can help predict poor prognosis (4-6),  
these processes are not fully understood. Extensive research 
has shown that SLE can be attributed to genetic factors and 
environmental triggers (1,2). Several risk alleles associated 
with SLE have been implicated in LN, but genetic studies 
or transcriptome studies that identify risk genes in LN 
but not in SLE are rare. These novel findings include 
apolipoprotein L1 (APOL1), platelet-derived growth factor 
receptor alpha (PDGFRA), and hyaluronan synthase 2 
(HAS2) (1). The 2 risk alleles for APOL1 have more than 
2.5-fold increased risk for renal failure compared with other 
markers (7,8). Genetic modifications and polymorphisms 
also identified HLA-DR3, HLA-DR4, HLA-DR11, and 
HLA-DR15, which have been proposed to protect or 
aggravate LN separately (9,10). Risk alleles alone only 
confer a small contribution to the development of SLE, 
or even LN and renal failure. Hence, larger studies or 
comprehensive analyses of the transcriptome are needed 
to better clarify the transcriptomic or translational change 
in LN. Previous studies have linked abnormal immunity 
to the pathogenesis of LN, as well as processes including 
aberrant podocyte apoptosis, autoantibody production, 
and immune complex (IC) deposition in the mesangial 
matrix under endothelial cells and epithelial cells following 
complement activation (11). So far, however, the activation 
of intrarenal immunity is still unclear, and the interaction 
with endogenous renal cells is also unknown. Apart from 
glomerular infiltration, the interstitial microenvironment 
(including tubules and interstitium) can produce clonally 
restricted autoantibodies as well (12), however, studies on 
this topic are lacking. Treat-to-target (T2T) strategies for 
SLE have been raised in last decade (13-15), and further 

research into LN mechanisms can help to treat patients 
more precisely and effectively (16). The classification 
system and pathological diagnosis can be refined by disease 
molecular patterns, such as B cell activation dominant 
(17,18), interferon (IFN)-opathy (IFN pathway dominant) 
(19,20), NETosis (neutrophil extracellular traps activation 
and release dominant) (21,22), and complement activation 
dominant (23), which can be treated by B-cell therapy 
such as anti-BAFF (B cell activating factor) (24), JAKi 
(JAK/STAT inhibitor), CTX/MMF (cyclophosphamide/
mycophenolate), and anti-C5 antibody separately (1). 
Hence, further studies which address molecular progression 
are required. 

Bioinformatics analysis is a practical tool for deeply 
probing transcriptomic data. Our study set out to identify 
differentially expressed genes (DEGs) and differentially 
infiltrating immune cells (DIICs) which can help identify 
the key regulators of LN. Additionally, weighted gene 
co-expression network analysis (WGCNA) (25) and 
unsupervised clustering are powerful tools that can offer 
fresh perspectives for our project. Overall, we identified 
DIICs from 3 LN tubulointerstitium datasets and 
summarized the main immune markers by constructing 
protein-protein interaction (PPI) networks by DEGs and 
WGCNA. The overlapping gene sets of PPI and hub genes 
from WGCNA were recognized as immune markers for 
LN interstitial lesions. The final section validates the main 
findings of immune markers using unsupervised clustering. 
The selected immune markers distinguished LN samples 
into 5 clusters by their expression levels, and all of them 
were negatively correlated with glomerular filtration rate 
(GFR). In this paper, we identified 5 immune markers 
for LN tubulointerstitial immune infiltration, which are 
potential biomarkers and warrant further study to improve 
LN diagnosis and prognosis.

We present the following article in accordance with 
the MDAR reporting checklist (available at http://dx.doi.
org/10.21037/atm-20-7507).

Methods

Microarray data acquisition and processing

Gene expression datasets from three previously published 
studies that compared LN with living healthy donors 
were identified from publicly available gene expression 
repositories, namely, the Gene Expression Omnibus (GEO) 
https://www.ncbi.nlm.nih.gov/geo/ (26). To begin this 
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process, the first step was to set “lupus nephritis” as the 
keyword for searching. The enrolment criteria had to obey 
the rules as follows: (I) the study object must be human 
renal biopsy microarray or RNA-seq data; (II) samples 
must be divided into glomeruli and tubulointerstitium from 
kidney biopsy samples instead of whole cortex tissue; (III) at 
least one of them must include LN renal biopsy pathological 
classification. In accordance with the above criteria, 
GSE32591 (27), GSE69438 (28), and GSE127797 (29)  
were finally enrolled. The first GSE32591 screened 94 
samples in total (32 LN patients vs. 15 living donors, 
everyone had both glomeruli and tubulointerstitium 
tissues), and only tubulointerstitium data from both groups 
were extracted for further experiments. This dataset 
was performed on Affymetrix Genechip HG-U133A 
GPL14663. GSE69438 had only 16 LN tubulointerstitium 
samples that met our criteria. This microarray dataset 
was performed on Affymetrix Human Genome U133 
plus 2.0 Array GPL11670. The GSE127797 had 88 
samples, including 47 LN tubulointerstitium tissues and 
41 glomerular tissues. Only tubulointerstitium tissue 
was extracted for further study, and the sequencing was 
performed on Affymetrix Human Transcriptome Array 
2.0 GPL24299. Only this dataset covered patients’ biopsy 
pathological classifications. The identified samples (95 LN  
tubulointerstitium tissues and 15 normal controls) from 
these resources were normalized by RMA and merged 
together. For the purposes of batch correction, the 
combat function of Sva on R software was employed (30). 
Subsequently, gene ENTREZID labels were transformed to 
gene SYMBOLs using the DAVID online database (https://
david.ncifcrf.gov/). Finally, we obtained 11,802 genes from 
3 GSE datasets, and 2 genes failed to be transformed. 
Following deletion of the 2 nonsense genes, 11,800 gene 
SYMBOLs were collected for subsequent analysis. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Evaluation of immune cell infiltration by CIBERSORTx

CIBERSORTx is a novel tool to analyze cell types and 
expression in tissue. It can also be applied to formalin 
fixed paraffin embedded (FFPE) samples instead of 
CIBERSORT. The gene expression datasets of the 3 GSEs 
were uploaded to the CIBERSORTx web portal (https://
cibersortx.stanford.edu/). We chose the signature gene 
matrix file LM22, which is a validated leukocyte gene 

signature matrix that contains 547 genes distinguishing 22 
humans hematopoietic cell phenotypes (31). We then set 
run mode as bulk-mode, disabled quantile normalization, 
and set 500 permutations for significance analysis. Once 
the computational analysis was finished, only P value <0.05 
results were included for differentially infiltrating analysis. 
The Wilcoxon signed-rank test was conducted to find the 
significantly different infiltrating immune cell types. 

DEG screening and enriched GO and KEGG pathway 
analysis

Prior to further analysis of the significant DEGs, the limma 
R package based on R-3.6.2 was used, which can construct 
an analysis model between the disease group and the control 
group (32). P value <0.05 and |logFC|>0.5 were used as the 
limma cut-off standard. Immport (https://www.immport.
org/) was used to emphasize the immune related genes 
among the DEGs. Following pathway enrichment analysis 
conducted using the clusterProfiler package (33), the DEGs 
were enriched and visualized by GO MF, GO biological 
process, GO cellular component, and KEGG ways. GO 
analysis was performed through the gseGO function, 
and KEGG pathway enrichment analysis was run by the 
gseKEGG function in the package. Q-value (the statistical 
test for P value) <0.05 was used as the cut-off criteria for 
pathway analysis.

WGCNA and immune cell related module investigation

WGCNA is a frequently utilized method which explores the 
complex relationships between genes and phenotypes (25).  
The predominant advantage of WGCNA is that it can 
transform gene expression to co-expression modules, 
providing insights into signaling networks that may be 
responsible for phenotypic traits of a disease. Based on 
the above DEGs, WGCNA installed in the R software 
package was employed to construct co-expression modules 
for 95 LN patient samples. Prior to commencing analysis, 
appropriate soft thresholds (power) were sought to construct 
a relatively scale-free network. To begin this process, the 
power value was screened out by the WGCNA algorithm, 
and the gradient method was conducted to test the scale 
independence and mean connectivity of different modules at 
different power values. The most appropriate power value 
(=14) was determined when the degree of independence 
was 0.85. Next, the expression matrix was transformed to 
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the adjacency matrix, which was further transformed to the 
topologic overlap matrix (TOM). To avoid bias and error, 
the minimum genes in each module was ruled as 30. After 
preparations were completed, flashcluster tools installed 
in R were used to perform the dynamic cluster analysis 
of samples based on the appropriate threshold value. 
Meanwhile, we also calculated every modules’ eigengenes, 
attempted to analyze the clusters based on their eigengenes, 
and merged modules when their membership >0.8. In order 
to find the key drivers in the modules of interest, we also 
calculated the intramodular connectivity and estimated the 
most predominant key modules by differentially infiltrating 
immune cell. Finally, the corresponding gene information 
of the key module was output as hub genes (set 1).

PPI investigation

For the purposes of constructing a PPI network and looking 
for central nodes, the hub genes investigated from the 
key module by WGCNA were mapped to the search tool 
for the retrieval of interacting genes (STRING database; 
https://string-db.org/). PPI analysis results were output 
when combined score >0.6 and node connectivity degree 
>15 (set 2). Cytoscape was used to present the network 
(https://cytoscape.org/). Venn analysis was carried out to 
compare the candidates in the 2 sets of genes by using the 
online tool (https://bioinformatics.psb.ugent.be/webtools/
Venn/). The overlapping genes of set 1 and set 2 were 
recognized as immune markers. 

Correlation between clinical characteristics and immune 
marker genes

The relationship between immune markers and renal 
function (GFR) was examined using the Nephroseq V5 tool 
(nephroseq.com). The expression data were downloaded 
from the online website and replotted using the ggplot2 
of R package. The correlation coefficients were calculated 
by the geom function and labeled in the scatter plots. The 
research objects of GSE127797 included biopsy pathological 
classification, which contained classes I, III, IV, V, III + V, 
and IV + V. On completion of the calculation of 5 immune 
marker expression levels, the Wilcoxon rank test was used 
to determine any existing differences between PLN (class 
III, IV) vs. MLN (class V), and a one-way ANOVA test was 
performed for 3 group comparisons including the combined 
group PLN/MLN (class III + V, IV + V).

Unsupervised cluster analysis of novel molecular patterns 
for LN

Unsupervised cluster machine learning can find the 
relationships between samples by mining the intrinsic 
characteristics of the data, which can be utilized for 
clustering a new molecular pattern of the disease. Prior 
to clustering samples, we calculated the within group sum 
of squares. Once the model was fitted and the curve was 
visualized, we determined that the most appropriate number 
of clusters was 5. Next, k-means were employed for sample 
cluster analysis. Thereafter, the previously described 22 
immune cell types and 5 freshly identified immune markers 
were validated by novel molecular clusters for estimation of 
the cluster efficiency.

Statistical analysis

Data are reported as mean ± SD. The Wilcoxon rank test 
was used for comparison between two groups and ANOVA 
followed by Tukey’s multiple comparison test was used for 
comparison between three or more groups. GraphPad Prism 
software was used for statistical analyses. All experiments 
were repeated at least three times, and representative 
experiments are shown. Data were considered statistically 
significant when P<0.05.

Results

Acquisition and processing of transcriptomic datasets from 
the public domain 

The research strategy is presented in Figure 1. Gene 
expression datasets from 3 previously published studies 
that compared LN tubulointerstitium to normal kidney 
tubulointerstitium were identified from publicly available 
gene expression repositories, namely, Gene Expression 
Omnibus (GEO). These datasets were GSE32591, 
GSE69438, and GSE127797. All of the data were normalized 
by RMA (Robust Multi-array Average). In total, we obtained 
110 samples, including 95 LN patient tubulointerstitium 
samples and 15 normal controls (Table S1). Next, we merged 
all of the included data and performed batch correction 
using the ComBat function of sva on R software (Figure S1).  
Following correction, all  of the data were evenly 
demonstrated in principal component analysis (PCA). Next, 
gene ENTREZID labels were transformed to SYMBOLs 
using the DAVID database. Subsequently, we obtained 

https://string-db.org/
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11,802 genes, then excluded 2 genes (failed by searching 
computationally and manually). Following this deletion, 
a total of 11,800 gene SYMBOLs were used for further 
analysis.

Evaluation of the DIICs

Using CIBERSORTx, we analyzed the percentage of 
infiltrating immune cells based on the above RNA expression 
data. Figure 2 provides an overview of the 22 kinds of 
immune cells infiltrating portion between the two groups.  
All of the differentially infiltrating immune cells were 
assessed by the Wilcoxon rank test. Only significantly 
different cell types and their statistical p values are listed 
in Table S2, which is sorted by infiltrating portion and cell 
type. The results, as shown in Figure 2, indicated that there 
were 10 types of DIICs between LN tubulointerstitium 
compared with normal controls. There was a clear trend 
of increasing B cells and plasma cells in LN, which 
suggests that humoral immunity plays a key role in the 

mechanism of tubulointerstitial LN. T cells, especially 
CD8+ T cells, were exhausted and therefore lower in 
LN, and regulatory Treg cells were also inhibited in LN. 
Interestingly, there was a marked increase in the rates of 
both M1 and M2 macrophage subtypes, which could reflect 
the heterogeneously inflammatory character of LN. The 
percentage of eosinophils is higher in LN patients, while 
mast cells activated is over-exhausted by LN autoimmunity. 
The resting status immune cell or naïve cell may influence 
by their activated or differentiated status. 

DEGs and gene set enrichment analysis

The limma package was employed for the analysis of DEGs 
between 95 LN patients and 15 healthy controls (P value 
<0.05 and |logFC|>0.5 were the criteria), and a total of 530 
DEGs were identified. The heatmap demonstrated the top 
100 DEGs between the 2 groups according to ascending 
P values (Figure 3A). The white label in Figure 3A shows 
the immune related DEGs by the Immprot database in 

Figure 1 The workflow of the study. 
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volcanic plot (Figure S2). The function enrichment analysis 
was performed using the clusterProfiler package of R. A 
number of rules were considered when selecting pathways: 
every gene should at least be assigned into 6 pathways, and 
every pathway should be matched with 6 genes minimally 
in the whole cluster. Gene ontology (GO) recognized 807 
biological process (BP), 75 cellular components (CC), and 
50 molecular function (MF) pathways (difference at q<0.05). 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
recognized 54 pathways (q<0.05). Figure 3B,C,D displays 
the top 10 GO pathways separately, and Figure 3E shows 
the top 10 KEGG pathways. From the chart, it can be seen 
the greatest correlated BP terms of GO indicated that the 
DEGs were mainly related to the interferon-gamma and 
type I interferon (interferon-alpha and beta) pathways. The 
CC terms indicated that DEGs were related to cellular 
cytoplasmic lumen and particle transport. The MF terms 
emphasized enzyme and peptide binding and activity. 

KEGG highlighted the correlation with interferons, anti-
viral disease, and auto-immune disease (autoimmune 
thyroid disease, allograft rejection, type I diabetes mellitus). 
These immune related DEGs (Figure S2) and immune 
related pathway enrichment results shed substantial light on 
the feasibility of exploring novel immune markers.

The WGCNA co-expression network of tubulointerstitial LN

Based on the above 530 DEGs, the WGCNA R package was 
used for co-expression network construction. To begin this 
process, the appropriate soft thresholds were determined 
for constructing a scale-free network. The results showed 
when power =14 (Figure 4A), the scale free topology model 
fit curve was smooth and steady in plateau. In order to 
avoid similarity between each gene, the minimal gene 
number was 30 for every gene network module (Table 1).  
Thereafter, the flashclust package was used for dynamic 

Figure 2 Differentially infiltrating immune cell type identification. The boxplot of 22 kinds of immune cell infiltrating fractions in lupus 
nephritis (LN) renal tubulointerstitium compared with living healthy donors. The red boxplot represents LN patients, and the blue 
boxplot represents healthy controls. P value <0.05 was recognized as a significant difference, and statistical analysis was performed using 
the Wilcoxon rank test. The fractions of Plasma.cells, Macrophages.M1, Macrophages.M2, Mast.cells.resting were higher in LN kidney 
tubulointerstitium. The fractions of T.cells. regulatory.Tregs, T.cells.CD8, B.cells.naïve, Dendritic.cells.resting, Eosinophils, and Mast.cells.
activated were lower in LN patients.
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Figure 3 The top 100 identified differentially expressed genes (DEGs) in the cohort and pathway enrichment analysis by Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). (A) Heatmap of DEGs demonstrating the top 100 among 530 DEGs 
recognized from the control and lupus nephritis (LN) groups according to P value. Red dots represent relatively upregulated genes and 
green dots represent downregulated genes. (B) Bubble plot of the top 15 GO pathways by biological process. (C) Bubble plot of top 10 GO 
pathways by cellular component. (D) Bubble plot of top 10 GO pathways by molecular function. (E) Top 10 KEGG enrichment pathways 
among the 54 KEGG pathways. All of the statistics were carried out using the Wilcoxon rank test, q value <0.05 as the differential pathways (q 
value is statistic test for P value). 
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cluster analysis. Firstly, a dendrogram was generated using 
dynamic hybrid cutting (Figure 4B). Each leaf on behalf of 
a single gene gathered together and formed a branch of the 
tree when those genes had close expression spectrum. The 
branch represented a gene module. We then also calculated 
eigengenes for every module to cluster the module in 
parallel, specifically once the correlation was above 0.8, 
those modules were merged together. As shown in the 

cluster dendrogram (Figure 4B), we obtained 3 modules 
excluding the nonsense one (grey). We calculated average 
linkage and Pearson’s correlation value between modules 
and DIICs (Table S3). There was a significant negative 
correlation between turquoise and T. cells. regulatory. 
Tregs, with R2=0.73 (Figure 4C). In summary, these 
results show MEturquoise can be recognized as key target  
module.

Figure 4 Weighted correlation network analysis (WGCNA) co-expression construction and key module identification. (A) Selection of the 
most appropriate power values to construct a hierarchical clustering. Analysis of the scale-free fit index of soft threshold power from 1–20, 
and analysis of the mean connectivity of 1–20 soft threshold power. (B) Genes were grouped into various modules by hierarchical clustering 
according to dynamic tree cut, and merged when the module’s correlation >0.8. Different colors represent different modules. (C) Heatmap 
shows the correlation of module eigengenes with 10 kinds of differentially infiltrating immune cells in the tubulointerstitium of lupus 
nephritis (LN). The correlation parameter of R2 and P value are labeled in the box. 
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Identification of immune markers by PPI network

The highly connected genes of the module were recognized 
as potential key factors related to LN interstitial lesions. 
Therefore, using the STRING database, we input 
MEturquoise genes for PPI network analysis. Cut-offs of 
combined score >0.6 and connectivity >15 (node/edge) 
helped us to identify 6 hub genes (as set 2), and the network 
was visualized by Cytoscape v3.4.0 (Figure 5A, green 
node gene). Meanwhile, 29 hub genes were investigated 
by cut-offs standard (module-membership >0.8 and gene 
significance for T. cells. regulatory. Tregs. >0.6) from the 
key module (as set 1, Figure 5B, red box). In order to obtain 
the immune markers, we selected the overlapping set 
from the WGCNA key module hub gene (set 1) and PPI 
hub gene (set 2) (Figure 5C). The Venn diagram listed 5 
overlapping genes, which were TYROBP, C1QB, LAPTM5, 
CTSS, and PTPRC separately. 

Clinical correlation analysis with target immune markers

To determine the clinical applicability of these markers, 
we first queried the Nephroseq database to obtain the 
correlation between 5 immune markers and GFR. The 
scatter plot displays all of the immune markers that had a 
negative correlation with GFR (Figure 6A). The correlation 
values r were −0.601, −0.546, −0.58, −0.626, and −0.563 
separately, and all of the results were significant at the 
p=0.001 level. We attempted to further correlate the 
pathological classification with the expression of each 
candidate immune marker in GSE127797, and all data were 
calculated using the Wilcoxon rank test (Figure 6B). The 
pathological class of GSE127797 is shown in Table 2. We 
grouped the pathological class by III and IV as proliferative 
LN (PLN), and V as membranous LN (MLN). The genes 
TYROBP and C1QB showed statistical differences between 
the two groups. When we set a combined group PLN/
MLN as class III + V, IV + V with the above two single 
groups, the in group ANOVA analysis was different at 
the P=0.05 level (Table S4). The analysis verified that the 
candidate immune markers had a strong association with 

LN pathological diagnosis and prognosis.

Unsupervised clustering of the molecular patterns for LN

Based on well-studied immune marker expression 
spectrums, unsupervised clustering was carried out for 
validation. Prior to this process, the within groups sum of 
squares was calculated to choose the appropriate cluster 
number. In Figure 7A, the sum of squares sloped gently 
when the cluster number was 5 (Figure 7A, left). By applying 
k-means software, all of the samples were divided into 5 
clusters (Table 3), and thereafter data were further dimension 
reduced by t-SNE and visualized by a heatmap (Figure 7A, 
right). As the clusters were performed on candidate immune 
markers, we found 5 kinds of clusters had significantly 
different populations in PCA. Meanwhile, the immune 
markers divided all samples by visible boundaries in the 
heatmap plot (Figure 7B), which confirmed the candidate 
immune markers could indicate a molecular pattern 
classification for LN. In the second part, we retrieved 22 
kinds of immune cells by newly identified clusters for the 
purposes of subcluster DIIC validation (Figure 8A). The 
cell proportions distributed differently in each cluster from 
1–5, specifically the in-group ANOVA indicated that T.cells.
regulatory.Tregs., B.cells.naive, Plasma.cells, NK.cells.
resting, Macrophages.M1, and Dendritic.cells.resting 
had significant differences among 5 clusters (Table S5).  
Comparing the 2 parts of the results, it could be seen that 
these immune markers directed molecular clusters could 
divide the samples not only by gene expression level, but also 
by immune cell infiltration rate. Lastly, the new clusters were 
further validated by the expression levels of the 5 immune 
markers (Figure 8B). All of the candidate genes showed 
different expression levels among the 5 clusters. Surprisingly, 
cluster 4, in which the plasma cell infiltrating proportion 
was the highest and Treg was the lowest, showed a relatively 
higher expression level of TYROBP, C1QB, LAPTM4, CTSS, 
and PRPRC than the other clusters. These results validated 
that our candidate immune markers and immune related 
cluster patterns had the power to distinguish the detailed 
molecular patterns of LN.

Table 1 The gene number in each module based on DEG

Module MEbrown MEblue MEturquoise MEgrey

Gene number 37 48 131 314

DEG, differentially expressed gene.

https://cdn.amegroups.cn/static/public/ATM-20-7507-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-20-7507-supplementary.pdf
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Figure 5 Identification of immune markers based on hub genes and protein-protein interaction (PPI) analysis. (A) PPI network of genes 
from the key turquoise module. The higher the number of connected nodes, the larger the size of the node. The green nodes were 
recognized as a central node with more than 15 connections (degree >15, set 2), and the blue node was recognized as 10≤ degree ≤15. 
(B) A scatter plot of genes in the turquoise module, and were Treg related. Each green dot represents a gene, and dots within the red box 
indicate these genes had module membership >0.8 in the turquoise module, meanwhile their gene significance for Treg >0.6 (set 1). (C) 
The 5 immune markers were visualized by a Venn diagram, shown as the overlap between central nodes in PPI (set 2) and hub genes in the 
turquoise module by weighted correlation network analysis (WGCNA) (set 1). 
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Figure 6 Clinical correlation between immune markers, renal function, and pathological classification. (A) Correlation between selected 
immune markers with renal function (glomerular filtration rate) from the Nephroseq database. (B) Dot plot of the immune marker 
expression levels between the PLN group (class III, IV) and MLN group (class V), as well as III + V, IV + V as a combined PLN/MLN 
group. The Wilcoxon rank test was run between PLN and MLN, and a one-way ANOVA test was performed to test the differences among 
all groups. *P<0.05, **P<0.01, PLN (proliferative LN class III, IV) vs. MLN (membranous LN class V). *P<0.05, compared with PLN and 
MLN group; #P<0.05,compared with PLN and combined PLN/MLN group.

Table 2 The LN biopsy sample pathological class in GSE127797

LN pathologic class I III IV V III + V IV + V NA

Samples 1 3 6 13 12 9 3

GSE127797 had 44 renal biopsy samples, the number of each classification has listed in the table. LN, lupus nephritis.

B
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Figure 7 Unsupervised clustering for molecular pattern identification. (A) Elbow plot for determining the appropriate unsupervised cluster 
number by k-means. The within sum of squares (WSS) suddenly dropped as the number of clusters increased from 2 to 5. Therefore, the 
bend at k=5 provided stability for WSS. (B) Principal component analysis (PCA) by t-SNE demonstrated the presence of distinct expression 
patterns based on subclusters. (C) Heatmap showing 5 immune markers in each cluster.

Discussion

SLE is highly heterogeneous autoimmune disorder with 
many subsets. Scarce literature exists on the differences 
between the glomerular and tubulointerstitial transcriptome 
of LN. An initial objective of this study was to identify 
precise diagnostic markers and unveil novel molecular 

patterns for LN T2T. In the current study, we screened 
GSE32591, GSE69438, and GSE127797 gene datasets of 
LN. As immune infiltration in glomeruli has been well-
studied by several groups (34,35), we set out to assess 
the importance of the immune microenvironment in 
LN tubulointerstitial lesions. One single cell sequence 
study reported kidney infiltrating immune cells mainly 

Table 3 The gene number assigned in each cluster

Cluster Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Gene number 24 21 14 4 32
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Figure 8 Immune cell infiltration and immune marker expression levels according to molecular pattern clusters. (A) Bar plot demonstrating 
the different fractions of immune cells in individual molecular pattern clusters. (B) Boxplot indicates 5 immune cell marker expression levels 
in individual molecular patterns.
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included 3 categories: T cells (64.2%), B cells (10.4%), 
and macrophages (25.4%) (36). Kidney T and B cells are 
recruited from the peripheral immune system, but kidney-
resident macrophages (KRM), a special type of macrophage, 
are characterized as CD45+CD11b+F4/80high, which 
differentiated from embryonic macrophages (yolk sac) and 
monocytes (bone marrow macrophage) (37). Therefore, 
we believe that LN tubular and interstitial lesions have 
their own characteristics, and can affect LN prognosis by 
their crosstalk with immune cells. On the question of the 
LN infiltrating immune cell landscape, our study found 
that 10 kinds of immune cells had infiltration fraction 
differences between LN and normal controls, which is 
generally consistent with the abovementioned previous 
study (36). Treg cells, as the vital suppressive immune 
cell type, is downregulated in LN, and plasma cells, as 
autoantibody producers, are massively upregulated in LN. 
The reduction of CD8+T cells in LN could be attributed to 
functional exhaustion (36), and activation of both M1 and 
M2 macrophages might be explained by the mechanisms of 
lupus renal inflammation (M1 macrophages secrete TNF-α 
and ROS) and repair/fibrosis (M2 secrete TGF-β and IL10) 
processes (37). Mast cells are known to be SLE-related 
inflammation regulators, but their role in LN should be 
interpreted with caution (38), as well as eosinophils and 
resting dendritic cells (39). 

Another important aspect of our study focused on 
DEGs and pathway enrichment analysis. As explained in 
the results, the pathway analysis based on DEGs mainly 
covered IFNs, viral response, collagen matrix deposition, 
and autoimmune diseases. These results corroborate the 
findings of multiple previous studies in SLE and LN (40). 
As our aim was to investigate immune markers of LN, 
we further utilized WGCNA to explore the key modules 
and hub genes from DEGs. The most obvious finding 
to emerge from the network construction analysis is that 
key modules (as a population of genes that have related 
functions) were highly correlated with Treg cells. Next, the 
immune markers were obtained from the overlapping set of 
key modules, and Treg positively correlated with both the 
gene sets and the PPI gene set. TYROBP, C1QB, LAPTM5, 
CTSS, and PTPRC were negatively correlated with 
GFR. Specifically, TYROBP and C1QB had significant 
differences between PLN (class III, IV) and MLN (class V). 
These results suggest that the immune markers have the 
ability to estimate prognosis by GFR and pathological class. 
Last but not least, the most clinically applicable finding was 
that immune markers could divide the enrolled LN samples 

into 5 separate clusters, and had the ability to indicate the 
molecular pattern for LN by their expression level. These 
results further support the possibility that unsupervised 
clustering as a machine learning method can help to validate 
immune markers for clinical application. These findings will 
also help us to develop molecular diagnostic markers based 
on immune marker expression levels in large scale studies.

TYROBP (TYRO protein tyrosine kinase binding 
protein, also known as DAP12) is a transmembrane immune 
signaling adaptor. It is enriched in TREM-1 signaling by 
Ingenuity Pathway Analysis (IPA), and is highly correlated 
with proteinuria in a lupus mouse model (41). Recent single 
cell data identified it as a marker for the NK cell population 
in LN (16). C1QB stands for complement C1q B chain. 
Anti-C1q antibodies are associated with PLN, specifically 
class IV (42). Anti-ghB (globular head region of B chain) 
C1q antibody is strongly correlated with proteinuria and 
serum albumin (43). LAPTM5 (lysosomal-associated 
multi spanning membrane protein 5) positively regulates 
proinflammatory signaling pathways by facilitating NF-
kB and MAPK signaling, as well as proinflammatory 
cytokine production in macrophages (44). CTSS (cathepsin 
S) is lysosomal cysteine proteinase that participates in 
the degradation of antigenic proteins to peptides for 
presentation on MHC class II molecules (45). Studies have 
shown that it can promote SLE and LN through regulating 
CD4 T cell and B cell priming (46), as well as modulating 
TFH cell repertoire (47). Finally, PTPRC (protein tyrosine 
phosphatase receptor type C, also known as CD45) is 
an essential regulator of T and B cell antigen receptor  
signaling (48). In accordance with the present results, 
previous studies have addressed the relationship between 
these proteins and LN, but the mechanism behind their 
involvement is still unclear.

Our study has some limitations. Of particular note, renal 
parenchymal cells also play a vital role in the mechanism 
of LN. In the present study, we did not further describe 
the crosstalk between parenchymal and infiltrating 
immune cells. These findings may be somewhat limited 
by the small-scale bioinformatics analysis. Next, the 3 
GSE studies we enrolled did not cover pathological class. 
Hence, large-scale pathological class validation is urgently 
needed in future studies. Furthermore, the immune 
cluster based on 5 immune markers needs to be validated 
in a large population of LN patients to better evaluate 
their diagnostic ability. Although we tried to compare the 
glomeruli and tubulointerstitium data in parallel to produce 
more convincing and solid data, the batch effect could not 
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be corrected completely, so we only focused on lesions of 
interest in this study. Further investigations are needed to 
identify the differences and similarities between tubules 
and glomeruli, which can discover the tissue specific targets 
for LN. Lastly, further work is needed to distinguish the 
immune markers for LN with other immune related renal 
diseases like IgA nephropathy (IgAN) and membranous 
nephropathy (MN). Although bioinformatics can shed 
some light on the intrinsic mechanisms, molecular biology 
experiments and clinical analysis needs to be performed to 
further validate these findings. 

Conclusions

This study set out to objectively analyze and assess LN 
tubulointerstitial immune cell infiltration, and seek potential 
diagnostic immune markers and molecular patterns using 
bioinformatics methods. Our findings unveiled the main 
infiltrating immune cells in the tubulointerstitium and 
their changes under LN. WGCNA recognized the T.cells.
regulatory.Tregs related module as the key module, and 5 
immune markers: TYROBP,C1QB,LAPTM5, CTSS, and 
PTPRC. All of them demonstrated a negative correlation 
with GFR, while TYROBP and C1QB demonstrated 
significant expression level differences between PLN and 
MLN. Unsupervised clustering validated that these immune 
markers could cluster LN by their expression level and 
immune cell infiltration rate. Our findings clearly indicate 
that candidate immune markers can help to distinguish the 
detailed molecular patterns of LN, and are highly related to 
prognosis.
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Supplementary 

Table S1 Characteristics of the 3 enrolled GSE datasets

GSE name Platform
Kidney tubule and interstitium sample Pathological 

classificationControl Lupus nephritis

GSE32591 GPL14663 15 32 NS

GSE69438 GPL11670 0 16 NS

GSE127797 GPL24299 0 47 included

Figure S1 The PCA of all datasets enrolled. PCA, principal component analysis.

Table S2 Differentially infiltrating immune cells

Cell Type P value Up/down regulated in LN

T.cells.CD8 0.0191* Down

T.cells.regulatory.Tregs. 0.0225* Down

Plasma.cells 0.0102* Up

B.cells.naive 0.0281* Down

Macrophages.M1 0.0005*** Up

Macrophages.M2 0.0006*** Up

Dendritic.cells.resting 0.0020* Down

Mast.cells.resting 0.0014* Up

Mast.cells.activated 2.53e-05* Down

Eosinophils 0.0020* Up

Different Infiltrated Immune cell in Kidney Interstitium between tubulointerstitium lupus nephritis and control *<0.05, ***<0.001, lupus 
nephritis kidney with controls, the listed sequence referred the infiltration fraction.
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Figure S2 Volcano plot of immune related DEGs. DEG, differentially expressed gene.

Table S5 ANOVA test among 5 immune clusters by infiltrating cell 
type

Cell type P value (<0.05)

T.cells.regulatory.Tregs. 0.001130836

Macrophages.M1 0.00641353

B.cells.naive 0.00853414

Plasma.cells 0.021063626

NK.cells.resting 0.047943259

Dendritic.cells.resting 0.048833816

Table S3 Correlation parameters of immune cells in individual modules

Cell Type MEbrown MEblue MEturquoise MEgrey

B.cells.naive −0.22 −0.36 −0.33 −0.30

Dendritic.cells.resting −0.32 −0.35 −0.18 −0.37

Eosinophils −0.02 0.13 0.16 0.12

Macrophages.M1 0.37 0.31 0.33 0.04

Macrophages.M2 0.33 0.33 0.19 0.37

Mast.cells.activated −0.01 −0.17 −0.11 −0.26

Mast.cells.resting 0.02 −0.07 −0.04 −0.02

Plasma.cells 0.27 0.36 0.47 0.18

T.cells.CD8 −0.36 −0.24 −0.21 −0.12

T.cells.regulatory.Tregs. −0.44 −0.62 −0.73 −0.49

Table S4 ANOVA test among PLN, MLN, and mixed group by 
immune marker

Immune marker anova_p 

TYROBP 0.03884632

C1QB 0.03993785

LAPTM5 0.15520783

CTSS 0.31979006

PTPRC 0.40416087

PLN, proliferative LN; MLN, membranous LN.


	1596-ATM-20-7507
	1596-ATM-20-7507-supplementary

