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Abstract: DNA damage repair (DDR) pathways are essential to ensure the accurate transmission of genetic 
material. However, different endogenous and exogenous factors challenge genomic integrity. Mechanisms 
involved in the alterations of DDR pathways mainly include genetic inactivation and epigenetic mechanisms. 
The development and progression of carcinomas are closely associated with DDR pathway aberrations, 
including the epigenetic silencing of gene O6-alkylguanine-DNA methyltransferase (MGMT); deficiencies 
of mismatch repair (MMR) genes, including MutL homolog 1 (MLH1), MutS protein homologue (MSH)-
2 (MSH2), MSH6, and PMS1 homolog 2; the mismatch repair system component (PMS2); and mutations of 
homologous recombination repair (HRR) genes, such as the breast cancer susceptibility gene 1/2 (BRCA1/2). 
Understanding the underlying mechanisms and the correlations between alterations to DDR pathways and 
cancer could improve the efficacy of antitumor therapies. Emerging evidence suggests that survival is higher 
in patients with DDR-deficient tumors than in those with DDR-proficient tumors. Thus, DDR alterations 
play a predictive and prognostic role in anticancer therapies. Theoretical studies on the co-administration 
of DDR inhibitors and other anticancer therapies, including chemotherapy, radiotherapy, immunotherapy, 
endocrine therapy, and epigenetic drugs, hold promise for cancer treatments. In this review, we focus on the 
basic mechanisms, characteristics, current applications, and combination strategies of DDR pathways in the 
anticancer field.
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Background

The protection of genomic integrity is necessary if the 
accurate transmission of genetic information to the 
next generation is to be ensured. Both endogenous and 
exogenous factors can challenge genomic integrity; for 
example, endogenous reactive oxygen species (ROS) 

induced by normal cellular-metabolism can threaten 
genomic integrity, while exogenous antitumor therapies, 
including ionizing radiation and chemotherapies, can cause 
DNA damage (see Figure 1). Mediated by mechanisms such 
as post-translational modification and epigenetics, DNA 
damage repair (DDR) pathways help to maintain genomic 
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Figure 1 DNA damage and main DNA repair pathways.

stability (1). Alterations of DDR-related genes are closely 
correlated with cancer cells’ deregulation of DNA repair; 
thus, an understanding of the mechanisms of how DDR 
works, along with its characteristics and applications, may 
be crucial to understanding cancer development and further 
exploring DDR-related anti-cancer treatments.

DDR pathways

When DNA damage occurs, DNA repair machinery can 
be recruited; however, severe genotoxic insults in cells 
may cause apoptosis or necrosis (see Figure 1). Autophagy 
helps to remove damaged or non-functional organelles (2).  
Checkpoints are compositions of DNA damage responses. 
The detection of DNA damage can help to activate 
checkpoints to ensure faithful DNA reproduction, 
preventing the progression to the next cell cycle phase. 
However, cancer is capable of falsely activating checkpoints 
so that damage continues (3). Here, we briefly examine 
the main DDR-related pathways and their characteristics. 
The main components of the DDR system include direct 
reversal/repair (DR) pathway, base excision repair (BER) 
pathway, mismatch repair (MMR) pathway, nucleotide 

excision repair (NER) pathway, non-homologous end 
joining (NHEJ) pathway, and homologous recombination 
repair (HRR) pathway (4).

DNA damage can be repaired directly. O6-alkylguanine-
DNA methyltransferase (MGMT) was the first DDR-
related gene to be studied (5). MGMT can correct DNA 
damage by removing certain alkyl groups from impaired 
thymine or guanine bases, without removing the damaged 
base itself. By binding to an alkyl group, MGMT can 
inactivate and degrade proteins. Meanwhile, the BER 
pathway contributes to some prevalent damage as a result 
of oxidation, deamination, and alkylation. This pathway 
is crucial to the maintenance of genomic integrality, as a 
mispairing left unchecked by BER can lead to mutations (6).  
The MMR pathway corrects mismatches of single-base-pairs 
(A-G, T-C) and misaligned short nucleotide repeats (7),  
which can result in frameshift mutations if not repaired 
and that usually occur during the DNA replication S phase. 
Repair is accomplished by the MutS protein homologue 
(MSH)-2: MSH6 or MSH2: MSH3 heterodimer. MutL 
homolog 1 (MLH1) is recruited as a damage sensor to 
scaffold protein and to help determine definite strand 
errors. Other MutL homologues also exist. Similar to 
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MutS, MutL also forms dimers; that is, MutLα [MLH1-
PMS1 homolog 2, mismatch repair system component 
(PMS2)], MutLβ (MLH1-PMS1) and MutLγ (MLH1-
MLH3) (8). Notably, MMR deficiency can make malignant 
cells sensitive to chemotherapeutic drugs; for example, 
Martin et al. found that methotrexate could induce oxidative 
DNA damage and was selectively lethal to tumor cells with 
MSH2 defects (7). The NER pathway is responsible for 
lesions caused by chemical agents or ultraviolet radiation (9).  
The main mechanisms of double-strand break (DSB) repair 
include NHEJ and HRR (in which the HRR pathway is 
regarded as the best guarantee of genomic stability) (10). 
HRR is the best guarantee of genomic stability; however, it 
occurs only during the S and G2 phases of the cell cycle, as 
it depends on the sister chromatid as a template for repair. 
Thus, NHEJ is the main DSB repair pathway in eukaryotes, 
even though it is an error-prone pathway (10).

Basic mechanisms of DDR pathway deficiency 
in cancer

The mechanisms behind DDR defect in cancer mainly 
include genetic inactivation and epigenetics (11,12). Genetic 
inactivation is the most typical method of DDR deficiency 
and can alter DNA sequences through germline or somatic 
mutations. For example, hereditary nonpolyposis colorectal 
cancer Lynch syndrome is caused by germline inactivation. 
Some patients with uncommon hereditary cancer syndromes 
(such as ataxia-telangiectasia) also show biallelic inactivation 
(13,14). A pan-cancer analysis by Robinson’s group reported 
that 12% of patients had pathogenic germline mutations, 
and 75% of these germline variants were DDR-related 
mutations (15). Somatic mutations can also mediate defects 
of many DDR-related genes (16).

Multiple epigenetic mechanisms are involved in the 
regulation of DDR pathways, such as DNA methylation, 
nucleosome remodeling, and histone modification. In 
the DR pathway, MGMT promoter methylation can lead 
to the loss of somatic function (17). Epigenetic silencing 
is important in genomic instability. The microsatellite 
instability (MSI) phenotype is closely correlated with the 
epigenetic silencing of MLH1. In a colonic cancer related 
study, Nakagawa et al. observed MLH1 hypermethylation 
before the occurrence of MSI (18). The MGMT promoter 
methylation also illustrates the importance of epigenetic 
silencing. The epigenetic silencing of MGMT represents a 
strong predictive and prognostic biomarker for alkylating 
agents in colorectal cancer and glioblastoma (19). 

Additionally, DDR is linked to histone post-translational 
modifications, such as acetylation, phosphorylation, 
methylation, and ubiquitylation. Isocitrate dehydrogenase 
mutations can induce HRR deficiency by inhibiting the 
α-ketoglutarate dependent dioxygenases that are related 
to epigenetic reprogramming in cells (20). Additionally, 
several viruses have been found to play essential roles in the 
regulation of DDR pathways (21).

Features of DDR pathway alterations in cancer

Alterations to the DR pathway

DDR alterations are closely correlated with various cancers 
(see Table 1). Epigenetic silencing is the most prevalent 
alteration to the DR pathway. MGMT inactivation by 
promoter hypermethylation has been detected in some 
cancer types, such as colorectal carcinomas, gliomas, non-
small cell lung carcinomas, head and neck carcinomas, and 
lymphomas (37). A study based on The Cancer Genome 
Atlas (TCGA) pan-cancer data analyzed DDR alterations 
across 33 types of cancer. The results revealed the epigenetic 
silencing of direct genes MGMT, exonuclease 5 and alpha-
ketoglutarate–dependent dioxygenase alkB homolog 3 
(ALKBH3) in approximately 20% of the samples (38).  
The epigenetic silencing of genes MGMT and ALKBH3 
constitutes DNA repair in multiple cancer types; however, 
some types of cancer are vulnerable to DNA damage (39,40). 
Additionally, in gastrointestinal, lymphoid, and central 
nervous cancers, alterations to DR-related genes are all 
related to a high tumor mutation burden (TMB) (38). Thus, 
these alterations may be used to identify a subset of patients 
who respond to immunotherapies.

BER pathway defects

The BER pathway repairs multiple types of endogenous 
DNA damage, and many important players are involved 
in this pathway. Apurinic/apyrimidinic endonuclease 1, an 
important component protein, is a central player in BER, 
and is responsible for more than 95% of this process (41). 
The BER mutation rate is low in the general population. 
Indeed, only a very small number of patients have been 
found to have mutY homolog (MUTYH) biallelic mutations, 
which involve the encoding of DNA glycosylase in the 
BER pathway. Prominent immune cell infiltration and 
increased TMB are associated with these kinds of tumors 
(42,43). However, very few clinical reports have discussed 
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Table 1 DDR pathway alterations in cancers

Reference 
DDR 
pathway

Genomic alteration Tumor type
Size of assessable 
cases

Prevalence

Hegi et al. (22) DR MGMT promoter methylation Glioblastoma 206 45%

Ruemmele et al. (23) MMR Loss of MLH1, MSH2 and MSH6 Ampullary carcinoma 144 10%

Hampel et al. (24) MMR Mutations of MLH1, MSH2, MSH6, 
and PMS2

Colorectal cancer 1,066 13%

Hampel et al. (25) MMR Mutations of MLH1, MSH2, MSH6 Endometrial cancer 543 22%

TCGA, Kandoth et al. (26) MMR MLH1 promoter methylation Endometrial cancer 373 MSI-H: 30%

TCGA (27) MMR hypermethylation at the MLH1 
promoter

Gastric cancer 295 22%

Goumard et al. (28) MMR Mutations of MSH2 or MLH1 Hepatocellular carcinoma 122 MSI-H: 0%; 
MSI: 26.2%

Alsop et al. (29) HRR BRCA1/2 deficiency Ovarian carcinoma 1,001 14%

Walsh et al. (30) HRR BRCA1/2 deficiency Ovarian carcinomas 360 18%

Rennert eet al. (31) HRR BRCA1/2 deficiency Breast cancer 1,545 10%

TCGA, Kandoth et al. (26) BER POLE mutation Endometrial cancer 373 7%

TCGA (32) BER POLE mutation Colorectal carcinoma 224 5.8%

Scarpitta et al. (33) BER MUTYH mutation Male breast cancer 81 1.2%

Stoffel et al. (34) BER MUTYH mutation Colorectal cancer 430 1.86%

Yap et al. (35) NER ERCC2 mutation Muscle-invasive bladder 
cancer

43 7%

TCGA (36) NER ERCC2 mutation Urothelial bladder 
carcinoma

131 12%

The column entitled “Size of assessable cases” refers to the number of all assessable cases enrolled in each study, including cases 
with or without the genomic alteration in the DDR pathway. The column entitled “Prevalence” refers to the proportion of the cases of the 
genomic alteration observed in all assessable cases. DDR, DNA damage repair; DR, direct reversal/repair; MMR, mismatch repair; HRR, 
homologous recombination repair; BER, base excision repair; NER, nucleotide excision repair.

these patients’ sensitivity to programmed death 1 (PD-1) 
blockage.

MMR deficiency

MMR deficiency is a potential biomarker for immune 
checkpoint inhibitor (ICI)-based immunotherapy. The 
germline sequencing of MMR genes (MLH1, MSH2, 
MSH6, and PMS2) is commonly performed to detect MMR 
deficiency in clinical practice (44). High tumor burden 
has been found to be a feature of MMR-deficient cancers. 
The MSI phenotype is formed as a consequence of large 
numbers of mutations accumulating in MMR-defective 
tumors, secondary to short repeats of DNA sequences and 
the substitution of a single nucleotide. A 100- to 1,000-fold 

increase in the mutation rates of frameshift and missense 
mutations has been reported in MSI-high cancers (45).

Individuals with lynch syndrome are prone to develop 
colorectal and other cancers due to the germline mutations 
of MMR genes, or the loss of expressed proteins by 
epigenetic alterations (46). MMR defects have also been 
observed in cancers such as gastrointestinal and endometrial 
carcinomas (47,48). In addition to high TMB, this tumor 
phenotype is also associated with prominent lymphocyte, 
and has an elevated expression of PD-1 and programmed 
death ligand 1 (PD-L1) (49). Furthermore, patients with 
MMR-defective tumors may have higher responses to ICIs. 
Le et al. conducted a study of 12 different cancer types, 
and found that the PD-1 blockade had durable efficacy in 
patients with MMR-defective tumors. Objective responses 
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in radiography were observed for 53% of patients in this 
study, and complete responses were observed in 21% of 
patients (44).

NER pathway aberrations

Somatic alterations in the NER pathway, especially 
mutations of excision repair cross complement (ERCC) 
genes, are common in cancers. In a study of non-small cell 
lung cancer (NSCLC), Aiello et al. found that patients with 
ERCC1 alteration had a high response to nivolumab (50).  
Xeroderma pigmentosum (XP) genes (XP-A to -G and 
variants), which are associated with XP, a genetic syndrome 
characterized by extreme sun sensitivity that leads to a 
higher risk of skin cancer, are also important in the NER 
pathway (51). This syndrome is extremely rare in clinic; 
however, durable and dramatic response to ICIs has 
been observed in non-melanomatous and melanomatous 
XP-related skin cancers (52-54). Thus, NER pathway 
aberrations might predict the prognosis of cancer patients 
treated with immunotherapy.

NHEJ pathway aberrations

A number of defects of the NHEJ pathway have been 
shown to be associated with cancers. In the NHEJ pathway, 
the main proteins to mediate DSB repair include X-ray 
repair cross-complementing protein 5 (XRCC5) (Ku80), 
XRCC6 (Ku70), XRCC4, DNA ligase 4 (LIG4), and the 
XRCC four-like factor (XLF) (55). In NHEJ, the epigenetic 
silencing of XRCC5 has been identified as being associated 
with lung cancer, and the epigenetic inactivation of XRCC6 
has been found to be related to colorectal, breast, and lung 
cancer (56,57). Additionally, some aberrations of XRCC4 
and LIG4 can promote genomic instability and increase 
the radiosensitivity of tumor cells. By studying genetic 
polymorphism, Gomes et al. discovered that some variants 
of NHEJ genes might contribute to the susceptibility of 
thyroid cancer (58). The NHEJ polymorphic variants (in 
particular LIG4 rs1805388) are capable of modulating the 
risk of radiation pneumonitis in NSCLC patients treated 
with radiotherapy (55).

HRR deficiency

The relationship between HRR and the DDR system 
has been well studied. This type of DNA repair is aptly 
named, as in a somewhat homologous manner, it usually 

uses the sister chromatid as a template for reproducing lost 
or damaged bases. The role of HRR mutations has long 
been recognized as being related to tumor susceptibility. 
For example, mutations of the breast cancer susceptibility 
gene 1/2 (BRCA1/2) in the HRR pathway are associated 
with hereditary breast and ovarian cancer syndromes. 
Additionally, alterations of the partner and localizer of 
BRCA2 (PALB2) can also be observed in cancers (59). 
Somatic and germline mutations of HRR-related genes have 
been detected in extensive tumor types (60). Defective HRR 
pathways are able to accelerate aging, ultimately increasing 
the risk of cancer. Interestingly, research has shown that 
HRR deficiency plays an important role in predicting 
patients’ response to immunotherapy. A melanoma study by 
Hugo et al. indicated that responding tumors were enriched 
by BRCA2 mutation during the treatment of the PD-1 
inhibitor (61).

Potential of DDR pathway alterations as 
biomarkers in anticancer therapies

Genomic and proteomic TCGA analyses have identified the 
frequency of different gene mutations in DDR pathways 
in different types of cancers. Kandoth et al. identified the 
frequencies of MSI in DNA polymerase epsilon (POLE) 
mutations in endometrial and colorectal cancers to be 40% 
and 11%, respectively, and the mutation rates to be 7% 
and 3%, respectively (26). Alsop et al. found that germline 
mutations of BRCA1/2 improved survival in a cohort of 
1001 patients with ovarian cancer, and had a mutation 
rate of 14.1% (29). Hegi et al. conducted an early clinical 
randomized trial with glioblastoma patients receiving 
radiotherapy only and patients receiving a combination 
of radiotherapy and temozolomide, and explored the 
association between the epigenetic silencing of MGMT 
and patients’ survival. The results showed that 45% of 206 
evaluable patients had methylation of the MGMT promoter. 
Additionally, glioblastoma patients with the methylated 
MGMT promoter were found to have longer survival than 
those without methylated MGMT promoter (22). Thus, the 
MGMT promoter methylation may be a favorable prognosis 
factor for predicting survival of glioblastoma patients 
receiving alkylating agents, and thus should be the subject 
of further research. Collectively, these findings support the 
notion that DDR alterations are common in patients with 
malignancies.

Emerging evidence suggests that patients with DDR 
mutations may enjoy better clinical treatment efficacy than 
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those with DDR-proficient tumors. After conducting exome 
and gene sequencing in patients with bladder cancer, Yap 
et al. found that somatic mutations of one or more DDR-
related genes, including the ataxia-telangiectasia mutated 
(ATM) gene, ERCC2, BRCA1, BRCA2, Fanconi anemia 
group D2, and PALB2, were correlated with high somatic 
mutational loads. Further, they identified a relationship 
between DDR alterations and clinical recurrence-free 
survival (RFS), and conducted a Kapan-Meier analysis that 
showed that carrying DDR-deficient mutations enhanced 
patients’ RFS (35). Ruemmele et al. conducted a multicenter 
clinical trial with 120 patients with ampullary adenomas 
and 170 patients with adenocarcinomas. Following an 
immunohistochemical analysis, patients were divided into 
one of the following three groups: (I) MSI-high; (II) MSI-
low; and (III) the microsatellite-stable group. The results 
showed that patients in the MSI-high carcinoma group 
had higher overall survival rates that patients in the MSI-
low carcinoma and microsatellite-stable groups (23). These 
alterations can produce novel tumor-related antigens that 
can increase the immune system’s targeting of tumor cells.

When delayed or faulty repair occurs, genetic and 
tumor microenvironment alterations can appear. Modern 
immunotherapy that blocks tumor-immunocyte connections 
can cause effective response in many cancers (62). The 
beginning of the ICI therapy era was marked by clinical 
trials revealing that a cytotoxic T lymphocyte antigen 
4 blocker, ipilumimab, could confer survival benefits to 
metastatic melanoma patients (63,64). Numerous studies 
have shown that DDR considerably effects tumor sensitivity 
and patients’ response to ICIs. Tumor neo-antigens arise 
from tumor-specific and non-synonymous somatic DNA 
mutations that can enhance tumor immunogenicity in the 
immune system (65). Thus, high mutational loads and 
predicted tumor antigens play important roles in patients’ 
responses to ICI-based immunotherapy, with various 
clinical settings having replicated these findings (66-68). 
Additionally, high TMB has recently been recognized as a 
potential biomarker in predicting the efficacy of ICI-based 
immunotherapy in lung cancer (69,70).

MMR defects and MSI-high phenotypes are associated 
with high degrees of genomic instability (71). In metastatic 
colorectal cancer, the co-administration of nivolumab and 
ipilimumab has been shown to have durable clinical benefits 
for patients with MSI-high tumors (72). Accumulating 
evidence shows that cancers with HRR deficiency have 
elevated immunogenicity. In relation to high-grade serous 
ovarian cancers, patients with BRCA1/2 mutations have 

been found to have higher neoantigen load than HRR-
proficient patients. Additionally, increased PD-1/PD-L1 
expression and tumor-infiltrating lymphocytes (TILs) have 
been observed in patients with BRCA1/2 mutations (73).  
TIL accumulation has also been observed in breast cancer 
patients with DDR deficiency (74,75). In wild-type 
BRCA1/2 ovarian cancer, tumors with genomic alterations, 
including phosphatase and tensin homologue deleted 
on chromosome 10 (PTEN) deletion, BRCA1 promoter 
hypermethylation, ATM. and ATM and Rad3-related (ATR) 
mutations, have been associated with higher predictive neo-
antigen levels than HRR-proficient tumors (76). Thus, 
DDR pathway alterations may lead to higher mutational 
loads and higher lymphocyte infiltration, and increase 
patients’ response to immunotherapy.

Combination strategies

Combination of DDR inhibitors with DNA-damaging 
agents

The combination of DDR inhibitors and chemotherapies is 
common in clinical practice (see Table 2). Nevertheless, in 
many cases, this combination is challenged by the presence 
of toxicity, such as myelosuppression caused by olaparib–
carboplatin combination (77). However, in a phase 2 
trial of advanced gastric cancer patients with ATM loss, 
olaparib showed promising results when combined with 
chemotherapy (paclitaxel) (78), but, based on a AstraZeneca 
press release on May 18, 2016, the survival benefit did not 
significantly improve in a phase 3 GOLD trial. Careful 
consideration needs to be given to the dose used and the 
sequence of the administration.

Combination of DDR inhibitors with immunotherapy

Poly ADP-ribose polymerase inhibitors (PARPis) are 
paradigmatic examples of DDR-targeted therapy that can 
increase DNA damage and stimulate the immune system 
to recognize cancer cells (79). PARPis can also upregulate 
PD-L1 expression (80). Furthermore, DNA damage has 
been studied in relation to the activation of the stimulator 
of interferon genes (STING) pathway, which can enhance 
cellular innate immunity and increase the production of 
type I interferons (IFNs) to activate the antitumor immune 
response (32). Thus, the combination of PARPis with ICIs 
represents a promising strategy. At last, some clinical trials 
have been developed to investigate the efficacy and safety of 
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Table 2 Clinical combination therapies of DDR inhibitors with other anticancer therapies

Intervention Cancer type Phase Clinical trial ID

DDR inhibitor + chemotherapy

Abt-888 + cyclophosphamide Ovarian, breast, and fallopian tube cancer Phase 2 NCT01306032

Olaparib + carboplatin Breast, ovarian, uterine, and cervical cancer Phase 1 NCT01237067

Iniparib + paclitaxel Breast cancer Phase 2 NCT01204125

Rucaparib + cisplatin Breast cancer Phase 2 NCT01074970

DDR inhibitor + immunotherapy

Rucaparib +atezolizumab Solid tumor Phase 2 NCT04276376

Olaparib + durvalumab Endometrial cancer Phase 2 NCT03951415

Olaparib + pembrolizumab Prostatic neoplasms Phase 3 NCT03834519

Niraparib + TSR-042 Endometrial cancer Phase 2 NCT03016338

Talazoparib + avelumab Ovarian cancer Phase 3 NCT03642132

Rucaparib + nivolumab Biliary tract cancer Phase 2 NCT03639935

DDR inhibitor + radiotherapy

Veliparib + radiation therapy + temozolomide Malignant glioma Phase 2 NCT03581292

Olaparib + radiotherapy Breast cancer Phase 1 NCT02227082

Olaparib + radiotherapy Head and neck neoplasms Phase 1 NCT02229656

Olaparib + radiation therapy Triple negative breast cancer Phase 1 NCT03109080

DDR inhibitor + endocrine therapy

Niraparib + enzalutamide Metastatic prostate cancer Phase 1 NCT02500901

Olaparib + degarelix Prostate cancer Phase 1 NCT02324998

Olaparib + abiraterone Metastatic prostate cancer Phase 2 NCT01972217

Veliparib + abiraterone acetate Prostate cancer Phase 2 NCT01576172

DDR, DNA damage repair.

DDR inhibitor/ICI therapy (see Table 2).

Combination of DDR inhibitors with radiotherapy

Radiation-related DNA damage, such as single-strand 
breaks and DSBs can cause DDR. This stress can be 
stressed-mediated by central kinases, including DNA-
dependent protein kinase, ATM, and ATR, to facilitate 
DNA repair. As our understanding of DDR pathways 
have increased, some radiosensitization methods have 
been developed, such as NHEJ inhibition by suppressing 
DNA-PK, or the depletion of ATR, RAD51, and CHK1 by 
the inhibition of chaperone HSP90 (81-83). Micronuclei 
can be upregulated when combining DDR inhibitors and 
radiotherapy. Further, DDR inhibitors can contribute to 

radiotherapy-related inflammatory response, such as in the 
radiation-related type I IFN responses induced by ATR 
inhibitors (84).

Combination of DDR Inhibitors with Endocrine Therapy

The crosstalk between DDR and endocrine-related 
signaling has gradually grown as an area of more intense 
research interest. Steroid hormone can transcriptionally 
regulate NHEJ components, thereby promoting NHEJ, 
and can have both positive and negative effects on HRR 
in different tumor types (85). PARP1 is important, as it 
supports the transcriptional function of androgen, which 
is critical for the transcriptional activation of oncogenic 
TMPRSS2-ERG protein in approximately 50% of prostate 
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cancer cases (86). In addition, combining the blockage of 
PARP and androgen-receptor signaling has been shown to 
better delay tumor progression compared to monotherapy 
in xenograft mice with prostate cancer (87). Thus, future 
studies should seek to examine the effects of combining 
PARPi and endocrine therapy in clinical trials.

Combination of DDR inhibitors with epigenetic drugs

Given its special role in epigenetics, DDR could be used 
as potential strategy to combine DDR inhibitors and 
epigenetic drugs. Recently, emerging in vivo and in vitro 
trials have demonstrated that DNA methyltransferase 
inhibitors (DNMTis) act synergistically with PARPis 
to induce tumor cell death (88,89). Cytosine analogues 
5-azacytidine and 5-aza-2’-deoxycytidine (decitabine), the 
most used DNMTis, can be incorporated into DNA to 
prompt the formation of DNMT-DNA adducts, which can 
lead to DNA demethylation via DNMT1 inhibition (90).  
Additionally, DNMTis are capable of enhancing PARP1 
trapping at the sites of DNA damage, increasing the 
cytotoxicity of PARP inhibition (88). DNMTis can also 
induce ROS accumulation and promote PARP activation, 
which enhances cancer cells’ sensitivity to PARPis (89).

Conclusions

DDR pathways play important roles in different types of 
cancer. When endogenous or exogenous damage occurs, 
genomic integrity is challenged. Genetic instability is 
a specific feature of malignant cells, and alterations to 
DDR pathways may lead to tumorigenesis. Interestingly, 
increasing evidence suggests that cancers with DDR 
mutations may have high mutational loads and neo-antigens 
that can trigger immune system to fight tumors. Notably, 
survival rates are higher in patients with DDR-deficient 
tumors than in those with DDR-proficient tumors. The 
combination of DDR inhibitors and other anticancer 
therapies, such as immunotherapy, radiotherapy, and 
epigenetic agents, appears promising. Alterations to DDR 
pathways are important in the development of malignancies 
and may provide significant strategies for antitumor 
therapies.
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