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Arachidonic acid inhibits the production of angiotensin-converting 
enzyme in human primary adipocytes via a NF-κB-dependent 
pathway 
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Background: The modulating mechanism of fatty acids on angiotensin-converting enzyme production 
(ACE) in human adipocytes is still elusive. Diet-induced regulation of the renin angiotensin system is 
thought to be involved in obesity and hypertension, and several previous studies have used mouse cell lines 
such as 3T3-L1 to investigate this. This study was carried out in human subcutaneous adipocytes for better 
understanding of the mechanism. 
Methods: Human adipose stem cells were isolated from subcutaneous adipose tissue biopsies collected from 
four patients during bariatric surgery and differentiated into mature adipocytes. The mRNA expression and 
the activity of ACE were measured under different stimuli in cell cultures. 
Results: Arachidonic acid (AA) decreased ACE mRNA expression and ACE activity in a dose-
dependent manner while palmitic acid had no effect. The decrease of ACE by 100 µM AA was reversed 
by the addition of 5 µM nuclear factor-κB (NF-κB) inhibitor. Furthermore, when the production of 
20-hydroxyeicosatetraenoic acid, a metabolite of AA, was stopped by the specific inhibitor HET0016  
(10 µM) in the culture media, the effect of AA was blocked. 
Conclusions: This study indicated that AA can decrease the expression and activity of ACE in cultured 
human adipocytes, via an inflammatory NF-κB-dependent pathway. Blocking 20-hydroxyeicosatetraenoic 
acid attenuated the ACE-decreasing effects of AA.
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Introduction

The World Health Organization defines hypertension 
as a pathological status in which “the blood vessels have 
persistently raised pressure”. The deleterious consequence 
of hypertension is the damage it causes to affected 
organs, leading to an increased risk of nephropathy, 

vasculopathy, cardiovascular, or cerebrovascular events (1). 
Pathophysiologically, risk factors for hypertension include 
obesity, smoking, family history, high salt food intake 
and an overall unhealthy lifestyle and diet. Among the 
currently available medications for treating hypertension, 
angiotensin-converting enzyme (ACE) inhibitors and 
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angiotensin receptor blockers are recommended as first 
choices (2).

ACE is a membrane-bound protein that indirectly 
increases blood pressure by converting angiotensin I to 
the active angiotensin II, a vasoconstrictor. ACE is most 
commonly found in endothelial and epithelial cells. ACE, 
in association with the other renin angiotensin system 
(RAS) components, was reported to be expressed in adipose 
tissue and cultured adipocytes (3). It is estimated that nearly 
30% of the circulating angiotensin is produced by adipose  
tissue (4,5).

Obesity is a well-known risk factor for hypertension, and 
obesity-related hypertension has been ascribed to an over-
activated RAS (6). The activity of the adipose tissue RAS 
contributes to systemic high blood pressure and chronic 
inflammation in adipose tissue (7,8). We recently reported 
that a high fat diet induced an increase in ACE expression in 
individuals with a genetic susceptibility and was associated 
with increased blood pressure and elevated blood glucose in 
a clinical human study (9,10). 

Arachidonic acid (AA) is a long-chain omega-6 (n-6) 
polyunsaturated fatty acid (PUFA) which is obtained from 
food or by stepwise desaturation and chain elongation of 
linoleic acid (LA), an essential fatty acid (EFA) (11). Marine 
fish, animal tissues and eggs are the major supply of AA, 
algae and some plants were also reported as potential 
sources of AA (12-14). Because of the lack of biosynthesis 
enzymes, humans and other mammals cannot directly 
synthesize AA. Therefore, they have to obtain enough 
AA via food or dietary intake of its precursors (15). AA 
is the main component of membrane lipids, and mainly 
metabolized by cyclooxygenase (COX), lipoxygenase 
(LOX), and cytochrome P450 (CYP450). AA could be 
converted into various metabolites such as inflammatory 
lipids or eicosanoids (16). AA can be converted into 
prostaglandins (PGs) and thromboxanes (TXs) by the 
cyclooxygenase (COX) pathway, the metabolites of this 
pathway play an important role in vessel tone regulation, 
mediating platelet aggregation and immune response  
(17-19). Through the lipoxygenase (LOX) pathway, AA 
can be metabolized into leukotrienes (LTs) and lipoxins 
(LXs). Lipoxins mainly exhibit anti-inflammatory 
properties (20). Besides, epoxyeicosatrienoic acids (EETs) 
and hydroxyeicosatetraenoic acids (HETEs) are generated 
through the cytochrome P450 (CYP450) pathway. And 
these compounds play a main part in the modulating of 
kidney, lung, and cardiovascular function (21). 20-HETE is 
considered a potent vasoconstrictor by various means. 

However, it shows a potential conflicting role in regulating 
renal hypertension (22). 

In human endothelial cells, angiotensin-converting 
enzyme (ACE) mRNA expression and ACE activity are 
increased via nuclear factor-κB (NF-κB) pathway (23), many 
genes involved in vascular physiopathology are regulated by 
NF-κB. NF-κB activation was diminished in vivo in injured 
vessels by angiotensin-converting enzyme inhibitors (24). 
However, the mechanism involved in modulating ACE 
expression in adipose tissue remains elusive, and this study 
therefore aimed to investigate the effects of fatty acids on 
ACE expression and activity in human adipocytes.

In this  s tudy,  pr imary human adipocytes  were 
differentiated and cultured in the presence of unsaturated 
and saturated fatty acids. The ACE expression in the cells 
and ACE activity in the culture media were measured. 
The potential relationship between ACE and fatty acids 
was assessed via artificial perturbation of the NF-κB 
inflammatory pathway. 

We present the following article in accordance with 
the MDAR reporting checklist (available at http://dx.doi.
org/10.21037/atm-20-7514).

Methods

Cell isolation and culture

Human adipose stem cells (ASCs) were isolated from four 
patients who were participants in the LEMBAS study (diet-
induced changes in Liver fat and Energy Metabolism prior 
to Bariatric Surgery) (25). This clinical intervention study 
was approved by the Ethics Committee of the Charité 
University Medicine in Berlin (Application no.EA4/006/15) 
in accordance with the Declaration of Helsinki and 
registered at www.drks.de (DRKS00009509). All four 
study participants were morbidly obese with a body mass 
index (BMI) above 40 kg/m2. Their subcutaneous adipose 
tissue biopsies were collected during the Roux-en-Y gastric 
bypass operation. Informed consent was acquired from each 
individual prior to surgery. 

ASCs were isolated following the method modified 
from Lee et al. (26). Briefly, 5 mg (2–3 mm3) of adipose 
tissue (AT) was minced into small pieces. The minced 
tissue was rinsed by phosphate buffer saline (PBS), 
passed through a 250 µm funnel-shaped mesh and then 
digested in Dulbecco’s Modified Eagle Medium (DMEM)/
F12 (Thermo Fisher Scientific, Waltham, MA, USA) 
containing collagenase I (1 mg/mL) (Sigma Aldrich 
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Chemie, Steinheim, Germany) at 37 ℃ for 2 hours with 
constant shaking (100 rpm). Subsequently, the digested 
AT was filtered through a 250 µm mesh and the filtrate, 
which contains the ASCs, was collected and centrifuged at  
500 ×g for 10 minutes. Afterwards, the upper fat layer 
and the middle medium layer above the cell pellet in 
the tube were removed. The cells were resuspended 
after adding red blood cell (RBC) lysis buffer (Thermo 
Fisher Scientific, Waltham, MA, USA) to diminish the 
RBC cells for better attachment. After centrifugation at  
500 ×g for 5 minutes, the cells were resuspended again with 
Preadipocyte Growth Medium containing Preadipocyte 
Growth  Med ium Supp lementMix  (Promo Ce l l , 
Heidelberg, Germany) and 1% penicillin/streptomycin 
(Sigma Aldrich Chemie, Steinheim, Germany) and 
cultured in a 15 mL flask. Cells were maintained in a 37 ℃  
incubator with 5% CO2 and refed every 2–3 days until  
80–90% confluence, and then cultured for 14 days in  
12-well plates in differentiation medium which contained 
DMEM/F12, 1% penicillin/streptomycin, 500 µM IBMX, 
25 nM dexamethasone, 0.2 nM triiodothyronine (T3), 
33 µM D-biotin, 15 mM pantothenate, 20 nM human 
insulin, 0.01 mg/mL transferrin, and 2 µM rosiglitazone 
(all chemicals were purchased from Sigma Aldrich 
Chemie, Steinheim, Germany). Differentiation of the 
mature adipocytes was confirmed by oil red O stain. NF-
κB inhibitor BAY117082 and 20-hydroxyeicosatetraenoic 
acid (20-HETE) production inhibitor HET0016 (27) were 
purchased from Cayman Chemical (Ann Arbor, MI, USA).

Oil red O staining

After 14 days of adipogenesis, differentiated adipocytes were 
washed with sterile PBS and fixed in 10% formaldehyde 
(Sigma Aldrich Chemie, Steinheim, Germany) for 1 hour 
of incubation at room temperature. Oil red O was prepared 
by mixing oil red O stock solution with deionized water in 
the ratio of 3:2. Thereafter, adipocytes were gently rinsed 
with water, and 60% isopropanol (Sigma Aldrich Chemie, 
Steinheim, Germany) was added for 5 minutes. Finally, 
the adipogenic cultures were incubated in oil red O for  
10 minutes, rinsed with tap water until the water ran clear, 
and analyzed under the microscope.

Free fatty acids preparation and treatment

Palmitate (Sigma Aldrich Chemie, Steinheim, Germany) 
was dissolved completely in ethanol at 70 ℃ and then 

complexed with fatty acid-free bovine serum albumin (BSA) 
(Sigma Aldrich Chemie, Steinheim, Germany) at 55 ℃ 
for 10 minutes yielding the final palmitic acid (PA) stock 
solution of 5 mM. The working solution of 500 µM (28-30) 
was prepared with DMEM before experiments.

Arachidonic acid (AA) (Cayman Chemical, Ann Arbor, 
Mi, USA) was complexed with fatty acid-free BSA. The 
working solutions of 50, 100, or 200 µM were prepared with 
DMEM before the experiments.

After differentiation for 7 days (approximately 80% 
differentiation as estimated by lipid droplets), the cell 
culture medium was changed to DMEM with 1% BSA 
and without fatty acids, or with PA 500, AA 50, 100, or  
200 µM, for the purpose of determining the effects of 
saturated and unsaturated fatty acids. Subsequently, AA  
100 µM was used in further experiments (see results section) 
and other research reports (31-33). To explore the effects of 
NF-κB pathway inhibition, adipocytes were pretreated with  
5 µM BAY117082 for 1 hour and then treated with either 
DMEM + 0.1% BSA or DMEM + 0.1% BSA + 100 µM 
AA for 24 hours. In order to ascertain the effects of 20-
HETE, adipocytes were pretreated with 10 µM HET0016, 
the specific inhibitor of 20-HETE (27), for 1 hour and then 
treated with either DMEM + 0.1% BSA or DMEM + 0.1% 
BSA + 100 µM AA for 24 hours.

Quantitative real-time polymerase chain reaction (qRT-
PCR)

Total RNA was extracted by using the Nucleospin® RNA 
II Kit (Macherey-Nagel, Düren, Germany), according to 
the manufacturer’s protocol. cDNA was synthesized from 
1 µg of RNA of each sample by using the high capacity 
cDNA reverse transcription kit (Applied Biosystems by 
Life Technologies, Carlsbad, CA, USA). QRT-PCR was 
performed using the power SYBR Green PCR master mix 
(Applied Biosystems by Life Technologies, Carlsbad, CA, 
USA) and detected in triplicates with the ABI ViiA™7 
Real time PCR system (Applied Biosystems by Life 
Technologies, Carlsbad, CA, USA). The samples were 
normalized to a ribosomal protein large P0 (RPLP0). The 
primers synthesized by Thermo Fisher Scientific (Waltham, 
MA, USA) are shown in Table 1.

Assessment of ACE activity 

ACE activity was determined in triplicate by measuring 
the fluorescence of the product generated by the specific 
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substrate Abz-Gly-Phe (NO2)-Pro (Bachem, Bubendorf, 
Switzerland, cat. no. M-1100). The protocol designed 
by Sentandreu et al. was followed (34). Briefly, 50 µL 
testing samples and standard solutions of eight different 
concentrations were added into a 96-well microplate. 
Captopril-inhibition and blank-contrast wells were also 
included. A 200 µL substrate working solution, which was 
mixed by diluting M1100 in 150 mM Tris-base buffer  
(pH 8.3) with 1.125 M NaCl, was added into each well 
to initiate the enzyme reaction. Fifty µL of samples were 
incubated in a final volume of 300 µL with 0.45 mM of 
specific substrate. The plate was read two times with a 
Tecan infinite M200 microplate reader at an excitation 
wavelength of 365 nm, and an emission wavelength of 
425 nm. The first measurement was performed at room 
temperature when the reaction was initiated, and the 
second after incubating the solution at 37 ℃ for 30 minutes. 
ACE activity was determined by the fluorescence emission 
differences between the incubation periods.

Statistical analysis

Statistical data were processed using SPSS 20.0 (IBM SPSS, 
Chicago, IL, USA). Results are expressed as the mean ± SD 
and data were analyzed using student’s t-test for unpaired 

samples or the one-way ANOVA for multiple comparisons 
among groups.

Results

Evaluation of the cultured cells 

In order to ascertain the success of the adipocyte 
differentiation, oil red O staining was performed. The 
cultured cells were characterized with typical red oil-stained 
lipid drops distributed in the cytosol (Figure 1). At least 
80% of the cells were fat cells according to the staining. 
Combined with some morphological features, the cultured 
cells qualified for the current study according to the optimal 
protocol (26).

ACE expression in the presence of different fatty acids

Two kinds of fatty acids were selected to stimulate the 
adipocytes. For the saturated fatty acids, PA was selected 
as the example. Neither the mRNA expression of ACE 
nor the ACE activity in the culture media were affected by 
the addition of PA (Figure 2A,B). On the contrary, in the 
presence of AA, an inflammation-related unsaturated fatty 
acid, both the mRNA expression of ACE and the ACE 
activity in the culture media decreased dose-dependently 
(Figure 2C,D). At the dose of 100 µM, AA inhibited the 
expression of ACE in adipocytes, which in turn resulted 
in lowered ACE activity in the media (Figure 2E,F). The 
concentration of 100 µM was chosen for the subsequent 
reversal experiments of AA effects.

Involvement of the NF-κB pathway in the suppression of 
ACE

In adipose tissue, free fatty acids have been found to activate 
the RAS through the NF-κB pathway (35). In light of this, 
we investigated whether inhibiting the NF-κB pathway 
could rescue the expression of ACE. Compared to control 
cells, culture of the adipocytes in the presence of the NF-κB 

Table 1 Primers used in the study

Gene Forward Reverse

RPLP0 5'-GCTTCCTGGAGGGTGTCC-3' 5'-GGACTCGTTTGTACCCGTTG-3'

ACE 5'-CAGAACACCACTATCAAGCGGA-3' 5'-CACGCTGTAGGTGGTTTCCAT-3'

ACE, angiotensin-converting enzyme.

Figure 1  The oil  red O staining of differentiated cells 
photographed using a microscope (×100). Lipid droplets are 
stained in red.
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pathway inhibitor (BAY117082) increased ACE expression 
in the presence of AA (Figure 3A). In other words, the 
introduction of the NF-κB inhibitor completely blocked the 
effects of AA on ACE expression. 

20-Hydroxy-5,  8 ,  11,  14-eicosatetraenoic  acid  
(20-HETE) is a cytochrome P450 (CYP)-derived metabolite 
of AA which was shown to play a complex role in blood 
pressure and also blood sugar regulation (36,37). Activation 
of RAS was reported to be 20-HETE dependent (38,39). 
The effects from BAY117082 led us to postulate that 
the response to the NF-κB pathway inhibition might be 
related to 20-HETE metabolism of AA. We found that 
the inclusion of 20-HETE inhibitor HET0016 could 
compromise the effects of AA (Figure 3B). Activity of ACE 
in the media was also elevated compared to that of the AA-
treated group (Figure 3C). When a mere 10 nM 20-HETE 
was added in the culture media of adipocytes, ACE activity 
was suppressed (Figure 3D).

Discussion

Dietary fat, in the form of fatty acids, has been found to 
exert different effects on preadipocyte differentiation and 
proliferation (40). Excessive saturated fatty acid intake 
and accumulation have been found to have detrimental 
effects on metabolism, resulting in insulin resistance, 
obesity, vascular disease, and hypertension. Obesity is 
known to activate the RAS pathway (41), and we previously 
reported that the introduction of a diet high in saturated 
fat elevates ACE even in normal weight healthy young 
study participants and leads to increases in blood pressure 
and blood glucose levels (9,10). The adipose tissue ACE 
gene expression was increased significantly in response to  
6 weeks of a high fat diet, and energy consumption from 
total fat and saturated fat was 45% and 18%, respectively. 
We assumed that the high fat diet activated the renin‐
angiotensin system with increased ACE expression in 
human adipose tissue. In this study, PA stimulation seemed 

Figure 2 The angiotensin-converting enzyme (ACE) mRNA level in the cell extract and ACE activity in the culture media are measured 
under the stimuli of palmic acid (PA, 500 µM) or arachidonic acid (AA, 50, 100, 200 µM), respectively. (A) In the presence of 500 µM PA, the 
mRNA expression of ACE in the fat cell extract is not affected compared with controls (P=0.183). (B) Similar results are obtained for ACE 
activity in the culture media treated with the same PA concentration (P=0.096). (C) In the presence of AA at different concentrations, the 
expression of ACE mRNA in the culture media shows a statistical difference (P=0.0013). (D) ACE activity shows a similar response under 
the same condition (P<0.0001). As the dosage of AA is increased, the ACE expression and activity show trends of decline (n=3). The effect of 
100 µM AA on ACE expression and ACE activity are displayed in part (E) and (F), respectively (P=0.005, P<0.001). All values are expressed 
as mean ± SD of 3 experiments, and each experiment is conducted in triplicate. 
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to have no effect on the cultured adipocytes (Figure 2). This 
finding might be ascribed to the fact that saturated fatty 
acids need to be deposited in adipocytes in an esterified 
form. The data suggests that the increase in ACE seen in 
the presence of a high fat diet is not a direct consequence of 
the interaction of PA with fat cells. 

AA is a typical n-6 polyunsaturated fatty acid found 
in daily food which can be generated by elongation and 
desaturation from linoleic acid, a predominant n-6 fatty 
acid in some plant oils, although increased intake may not 
necessarily result in increased levels of AA in humans (42). 
It was reported to stimulate preadipocyte differentiation in 
a cyclooxygenase-dependent manner (43). In this assay, AA 
was selected as the example of an unsaturated fatty acid to 
stimulate adipocytes. We found that in the presence of AA, 

cultured adipocytes exhibited lowered expression of ACE 
(Figure 2E) which, in turn, resulted in the lowered ACE 
activity in the media and might be considered a protective 
effect (Figure 2F).

Free AA can be metabolized through four enzymatic 
and one non-enzymatic  pathway.  The enzymatic 
pathways include cyclooxygenase (COX), lipoxygenase 
(LOX), and cytochrome p450 (CYP 450). The CYP 450 
pathway involves two enzymes: CYP450 epoxygenase, 
and CYP450 ω-hydroxylase, giving rise to EETs and 20-
HETE, respectively (31,44). Other metabolites include 
prostaglandins (PGs), prostacyclin, thromboxane (Tx), 
hydroperoxyeicosatetraenoic acid (HPETE), leukotrienes 
(LTs), lipoxins, hypoxins, and anandamide. The non-
enzymatic pathway is important for the production of 

Figure 3 The inhibitory effect of arachidonic acid on ACE production in human subcutaneous adipocytes was reversed by NF-ƙB inhibitor 
(NI) and 20-HETE inhibitor HET0016 (HET). (A) The reversal of the inhibition of angiotensin-converting enzyme (ACE) mRNA 
expression in the presence of 100 µM arachidonic acid (AA100) by the 5 µM NF-ƙB inhibitor BAY117082 (NI) in cultured adipocytes 
(n=3). (B) 10 µM 20-HETE inhibitor HET0016 (HET) competes off the inhibition of ACE mRNA expression by 100 µM AA (AA100) 
(n=3). (C) Reversal of the AA-induced (100 µM, AA100) inhibition of ACE activity by 10 µM HET0016 (HET) (n=3). (D) ACE activity 
is down-regulated when a mere 10 nM 20-HETE is added in the culture media of adipocytes. All values are expressed as mean ± SD of 3 
experiments, and each experiment is conducted in triplicate. 
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isoprostanes and nitroeicosatetraenoic acid. Most of the 
AA metabolites are highly bioactive and involved in various 
crucial vital processes. 

20-HETE induces oxidative stress, increases BMI, and 
is related to metabolic syndrome. In human mesenchymal 
stem cell-derived adipocytes, the expression levels of major 
20-HETE synthases, CYP4F2, decreased during adipocyte 
differentiation which means lower levels of endogenous 
20-HETE exist; however, exogenous administration of 
20-HETE (0.1–1 µM) increased adipogenesis in a dose-
dependent manner (45). 20-HETE has been proven to be 
one of the activators of NF-κB (46). In this study, we found 
that blocking the 20-HETE synthesis using HET0016 
reversed the AA-suppressed ACE expression and ACE 
activity (Figure 3A,B,C), and subsequently, we found that 
adding a mere 10 nM 20-HETE into the culture media 
down-regulated the ACE activity of unpretreated adipocytes 
(Figure 3D). Thus, we postulate that AA exerts at least part 
of its ACE-suppressing effect through its metabolite 20-
HETE, and inhibiting 20-HETE synthesis can reverse the 
ACE-suppressing effect. This is not in accordance with a 
previous report which reported that 20-HETE activates 
ACE expression through the NF-κB pathway (39). Thus, 
in this study, a NF-κB inhibitor was also employed to 
block the activation of this pathway. Clearly, the decreased 
expression of ACE was also reversed by this perturbation 
(Figure 3). 

Notably, our findings have been obtained in cultured 
human primary adipocytes, therefore differences might 
be due to tissue and cell type specificities. Human 
preadipocytes have been shown no differences between DM 
and non–diabetes mellitus (NDM) patients in accumulating 
cytoplasmic lipid and upregulating expression of adipogenic 
genes (47). We can not exclude that the morbid patients 
undergo epigenetic changes due to metabolic conditions. 
On the other hand, we suppose that the effects of fatty acids 
on ACE would be more expressed in adipocytes from obese 
patients and patients with T2D. Due to the high costs and 
complexity of this kind of cell culture, ASCs of 3–4 patients 
are usually used to investigate the pathophysiological 
mechanisms (48).

Previous reports utilized endothelial cells or adipocytes 
from other tissues. To our knowledge, this is the first use 
of adipocytes originating from human subcutaneous stem 
cells to evaluate the effects of AA relevant to the RAS. 
In addition, the ASCs were isolated by biopsies from 
four morbidly obese patients who each had a BMI above  
40 kg/m2, potentially resulting in an abnormal cell state. 

These ASCs may also be influenced by obesity-related 
sources in terms of differentiation and physiological 
function.

Even for adipocytes, the regulation of RAS was 
reported to be depot specific. For example, according to 
some reports, angiotensin can only increase fat mass, fat 
cell sizes, adipose and systemic inflammation in visceral 
adipose depots but not in subcutaneous depots (6). Thus, 
the findings described in this study might imply that cell 
type selection is crucial to data interpretation in the study 
of RAS functions. However, the current findings may be 
limited by the cell culture study, and more animal or human 
studies are needed for confirmation.

The result suggests that the inflammatory NF-
κB pathway exerts beneficial effects by lowering ACE 
expression. Indeed, postprandial inflammation is a common 
phenomenon and may exert beneficial regulatory effects in 
adipose tissue as suggested by previous studies (49). Indeed, 
we observed long-term metabolic improvements upon 
increasing dietary intake of n-6 fatty acids despite acute 
increases in adipose inflammatory responses (50). Moreover, 
elevated levels of AA are not linked to increased risks 
of cardiovascular disease in large epidemiological meta-
analyses (51). Our data, therefore, may help to explain the 
long-term beneficial effects of increased intake of n-6 fatty 
acids (52).

The limitations of this study relate to the in vitro nature 
of the investigation which differs from an in vivo situation. 
Moreover, the primary adipocytes were obtained from 
four morbidly obese individuals and may have undergone 
epigenetic changes due to the metabolic condition of the 
patients. Also, larger sample size trails will bring more 
evidence.

Conclusions

This study primarily demonstrated that subcutaneous 
adipocytes responded differentially to saturated and 
unsaturated fatty acids in ACE production. We have 
provided initial evidence that interfering with adipocyte 
metabolism might be a potential method to modulate the 
RAS and its subsequent pathological and physiological 
events.
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