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Background: Transthoracic echocardiography (TTE) is widely used in clinics to evaluate left ventricular 
hypertrophy (LVH). However, TTE is usually insufficient for the etiological diagnoses when morphological 
and functional features are nonspecific. With the booming of computer science and artificial intelligence (AI), 
previous literature has reported the application of radiomics based on cardiac magnetic resonance imaging, 
cardiac computed tomography and TTE in diagnosing several myocardial abnormalities, such as myocardial 
infarction, myocarditis, cardiac amyloidosis, and hypertrophic cardiomyopathy (HCM). In this study, we 
explored the possibility of using myocardial texture features in differentiating HCM, hypertensive heart 
disease (HHD) and uremic cardiomyopathy (UCM) based on echocardiography. To our knowledge, this was 
the first study to explore TTE myocardial texture analysis for multiple LVH etiology differentiation. 
Methods: TTE images were reviewed retrospectively from January 2018 to collect 50 cases for each group 
of HHD, HCM and UCM. The apical four chamber view was retrieved. Seventeen first-order statistics and 
60 gray level co-occurrence matrix (GLCM) features were extracted for statistics and classification test by 
support vector machine (SVM). 
Results: Of all the parameters, entropy of brightness (EtBrt), standard deviation (Std), coefficient of 
variation (CoV), skewness (Skew), contrast7 (Cont7) and homogeneity5 (Hm5) were found statistically 
significant among the three groups (all P<0.05) and with acceptable reproducibility (intraobserver and 
interobserver ICC >0.50). As a result, HCM showed the most homogeneous myocardial texture, and was 
significantly different from HHD and UCM (all six features: P≤0.005). HHD appeared slightly more 
homogeneous than UCM, as only EtBrt and CoV were significant (P=0.011 and P=0.008). According to 
higher areas under the receiver operating characteristic curve (AUC) (>0.50), EtBrt, Std, and CoV were 
selected for test of classification as a combination of features. The AUC derived from SVM model was 
slightly improved compared with those of EtBrt, Std and CoV individually.
Conclusions: AI-based myocardial texture analysis using ultrasonic images may be a potential approach to 
aiding LVH etiology differentiation.
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Introduction

Left ventricular hypertrophy (LVH) is a common clinical 
finding related to adverse cardiovascular outcomes, such as 
myocardial ischemia, arrythmia, congestive heart failure and 
sudden cardiac death (1,2). Main etiologies are hypertension, 
hypertrophic cardiomyopathy (HCM), aortic valve stenosis, 
uremia, and cardiac amyloidosis. Other less common causes 
include myocarditis, cardiac sarcoidosis, and a few genetic 
disorders such as Anderson-Fabry disease, Danon disease, 
mitochondrial cardiomyopathies and more. Transthoracic 
echocardiography (TTE) plays an important role in LVH 
diagnosis. It not only provides a comprehensive evaluation of 
LV morphology and functions, but also detects concurrent 
structural abnormalities. These information may lead to a 
definite etiology in a subset of patients, but not necessarily 
enough in the others for lack of specificity (3,4). Myocardial 
texture is largely neglected in conventional TTE, because 
it is usually too subtle, non-specific, and difficult to rate 
or quantify based on human visual observation. Artificial 
intelligence (AI) has been developing rapidly in recent 
years. Previous researchers have reported the application of 
radiomics and AI-based algorithms from cardiac magnetic 
imaging (CMR), cardiac computed tomography (CT) and 
echocardiography data in several myocardial diseases (5-9). 
However, none has been devoted to multiple LVH etiology 
differentiation based on echocardiography. Compared 
with CMR and cardiac CT, TTE is more convenient, cost-
effective, and commonly available in community hospitals. 
We hypothesized that the disparities in LVH histological 
changes from variant etiologies would lead to different 
myocardial textures in the echocardiographic image, and the 
computer might be able to recognize them by quantification 
and algorithms. Specifically, this study aimed to investigate 
myocardial texture in hypertensive heart disease (HHD), 
HCM and uremic cardiomyopathy (UCM) through 
radiomics, and test the features with an AI-based classifier. 
We present the following article in accordance with the 
STARD reporting checklist (available at http://dx.doi.
org/10.21037/atm-20-4891).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the Medical Research Ethics Committee 
of Shanghai East Hospital (No. 2020-028) and individual 

consent for this retrospective analysis was waived.

Study population

Study population were recruited retrospectively as shown in 
the flow chart in Figure 1. Case collection was initiated from 
the Ultrasound Report System of Shanghai East Hospital 
by searching the key word “hypertrophy” or “hypertrophic”. 
The date of examination was set from January 1, 2018, with 
an open end of time-point depending on the number of 
recruited cases. Next, echocardiographic, and clinical data 
were carefully reviewed for all the candidates consecutively, 
until 50 cases for each group were obtained. LVH was 
defined as left ventricular mass index (LVMI) >115 g/m2  
in male, LVMI >95 g/m2 in female, and the greatest left 
ventricular (LV) wall thickness >13 mm (10). HHD was 
diagnosed for LVH patients with a history of arterial 
hypertension, and without a familial history of HCM or 
other abnormal loading conditions. HCM was diagnosed as 
the greatest LV wall thickness ≥15 mm that is not explained 
solely by loading conditions (11). Of note, obstructive 
HCM (HOCM, diagnosed as pressure gradient ≥30 mmHg) 
was eliminated from the study to avoid mixture. UCM was 
defined as LVH presentation in patients with chronic end-
stage renal disease (ESRD), with the glomerular filtration 
rate (GFR) <15 mL/min/1.73 m2. Exclusion criteria include 
ambiguous etiologies, multiple etiologies (except UCM with 
hypertension), coronary heart disease, aortic valve stenosis, 
moderate or severe valvular regurgitation, congenital 
heart disease, cardiac amyloidosis, diabetes, athletic hearts, 
and cases with inadequate image qualities. UCM with 
hypertension were not excluded because all the UCM group 
members had arterial hypertension secondary to chronic 
renal failure.

Echocardiography 

TTE had all been performed following the 2015 version of 
Recommendations of cardiac quantification in adults by the 
American Society of Echocardiography (ASE) (10). Multiple 
operators were involved, including novice and experienced 
echocardiographers. Ultrasound equipment used were 
GE Vivid E9 (transducer M5S), GE Vivid7 (transducer 
M4S), Philips IE33 (transducer S5-1) and Philips EPIQ7C 
(transducer S5-1 and X5-1) systems. Standard apical 
four-chamber (A4ch) view of the end-diastolic frame was 
retrieved for analysis. 

http://dx.doi.org/10.21037/atm-20-4891
http://dx.doi.org/10.21037/atm-20-4891
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Extraction of myocardial texture features

Firstly, a well visualized region of the interventricular 
septum (IVS) was manually outlined as the region of interest 
(ROI) by an experienced echocardiographer as shown in 
Figure 2. The mask image of the ROI was obtained through 
binarization processing. Then the texture features were 
extracted, including first-order statistics and gray level co-
occurrence matrix (GLCM) features. 

In this research, main first-order statistics features were 
mean (IMean), median (IMedia), standard deviation (Std), 
coefficient of variation (CoV), skewness (Skew), kurtosis 
(Kurt), histogram entropy (EtHis) and brightness entropy 
(EtBrt) of the pixel grayscales within the ROI. More details 
are available in Appendix 1. 

The second category GLCM features were aimed to 
describe the texture by analyzing spatial correlations of the 
grayscale. Unlike first-order statistics features, GLCM not 
only focuses on overall grayscale amplitudes of the pixels, 
but also studies their spatial correlation characteristics (12).  
In GLCM analysis, the 256 levels of grayscale were 
simplified to eight to reduce computation, resulting in 8×8 
grayscale cooccurrence matrix G(i,j) (I = 1,2, …, 8; j = 1,2, 
…, 8). Then the matrix of probability p(i,j) was obtained 
through normalization of G(i,j). The distance (d) was set as 
1, 2, 3, …, 15 pixels, and the direction θ was 0, 45, 90 and 
135 degrees. Then the texture features of distance d in four 
directions were averaged and regarded as the result. 

There were four types of GLCM features used in our 
research—energy (E), contrast (Cont), entropy (Et) and 

homogeneity (Hm). Heterogeneous and rough texture 
presents high values of energy, contrast and entropy, and a 
low value of homogeneity. Each type contains 15 values (d = 
1, 2, 3, …, 15 pixels), making a total of 60 GLCM features—
E1 to E15, Cont1 to Cont15, Et1 to Et15, and Hm1 to 
Hm15. The interested reader can find more information, 
including mathematical equations in Appendix 1.

Intraobserver and interobserver variability was tested via 
repeated ROI drawing by the same echocardiographer, and 
another echocardiographer who was a novice.

Statistical analysis 

Statistical analyses were performed to select potentially 
useful textures features for differentiation. Continuous 
variables were described as mean ± SD. Comparisons of 
continuous variables were performed with one-way ANOVA 
among three groups. Between any two groups, unpaired t 
test was used for normal distributed parameters, and KW 
test for non-normal distributed parameters. P value <0.05 
was regarded as statistically significant. The classification 
threshold for each significant parameter was determined 
when Youden index (YI) was the highest, and diagnostic 
sensitivity, specificity, accuracy, and areas under the receiver 
operating characteristic curve (AUC) were calculated. Next, 
interobserver and intraobserver variability were tested 
using intra-class correlation coefficient (ICC). Features 
with AUCs >0.70 and ICC >0.50 were then considered as 
candidates for the subsequent procedure.

Figure 1 Flow chart of the enrollment procedure.

https://cdn.amegroups.cn/static/public/ATM-20-4891-supplementary.pdf
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Validation of classification

The selected texture features above were tested for 
classification by supportive vector machine (SVM), a 
classifier using supervised learning. Radial basis function 
(RBF) was applied, and dataset was divided as 6:4 for 
training and validation. Sensitivity, specificity, accuracy, YI, 
and AUC were generated for classification of each group 
from the other two, and between any two groups.

Results

Patient characteristics and echocardiography

Patient demography and echocardiographic parameters are 
listed in Table 1. The HCM group showed the greatest IVS 
thickness, greatest IVS/LV posterior wall (LVPW) thickness 
ratio, and smallest LV end-diastolic diameter (LVEDd). 
UCM group had the thickest LVPW, largest LVEDd and 
lowest LV ejection fraction (LVEF). The P values by one-
way ANOVA were all <0.05 for LV quantification, except 
E/e’ ratio. However, the UCM group showed a higher E/e’  
ratio level than HHD, implying poorer LV diastolic 
function. Of note, atrial fibrillation (AF) cases were 

excluded in the E/e’ analysis. 

Statistics of texture features

Among the 77 texture features, EtHis, EtBrt, Std, CoV, 
Skew, Cont7, E11, Hm5 and Et3 showed relatively 
better statistical significance, as listed in Table 2. HCM 
appeared significantly more homogeneous LV wall than 
HHD and UCM (all nine features: P≤0.005). HHD was 
more homogeneous than UCM, however, significant 
difference was only yielded in EtBrt and CoV (P=0.011 
and P=0.008). Accordingly, AUCs of EtBrt and CoV 
were also larger than the others, as stated in Table 3 (HCM 
vs. other groups: AUCEtBrt =0.87, AUCCoV =0.87; HHD vs. 
UCM: AUCEtBrt =0.65, AUCCoV =0.66). EtHis and Std also 
showed relatively higher AUC (>0.70 for HCM vs. other 
groups). More details about the cutoff values, sensitivity, 
specificity, accuracy, YI and AUCs can be found in 
Appendix 1.

Interobserver and intraobserver variability were assessed 
with ICC and shown in Table 4. EtHis, E11 and Et3 
presented undesirable consistency (interobserver ICC 
<0.50) and were excluded in the subsequent experiment.

Figure 2 Echocardiographic images of the apical four-chamber (A4ch) view and marking of the hypertrophied ventricular septum as region 
of interest (ROI). HHD, hypertensive heart disease; HCM, hypertrophic cardiomyopathy; UCM, uremic cardiomyopathy.

HHD HCM UCM

A4ch

ROI marking

https://cdn.amegroups.cn/static/public/ATM-20-4891-supplementary.pdf
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Classification by SVM

EtBrt, Std and CoV were remained eventually for validation 
of classification. The AUC for HHD vs. HCM and UCM 
reached 0.70, which was markedly improved than any 
individual texture feature. The AUC for HHD vs. HCM, 
and HHD vs. UCM were also slightly improved (0.91 and 

0.68). Details of diagnostic accuracy, sensitivity, specificity, 
and AUC can be found in Table 5.

Discussion

LVH is a common outcome in several clinical conditions, 
among which hypertension, HCM and chronic renal 

Table 1 Patient characteristics and routine echocardiography 

Characteristics HHD HCM UCM
One-way ANOVA

F P

No. of cases n=50 n=50 n=50

Age (year) 64.8±13.0 54.3±14.0 61.1±14.5 7.535 0.001

Female 7 (14%) 13 (26%) 11 (22%) χ2=2.277 0.320

Echocardiography

IVS thickness (mm) 13.1±0.9 19.9±4.1 13.4±1.4 110.736 0.000

LVPW thickness (mm) 10.1±1.5 10.7±2.6 11.1±1.7 3.302 0.040

IVS/LVPW ratio 1.32±0.19 1.95±0.56 1.32±0.19 58.597 0.000

LVEDd (mm) 47.4±4.3 44.6±5.2 51.0±6.8 16.590 0.000

LVEF 0.64±0.06 0.67±0.08 0.60±0.10 9.759 0.000

E/e’ ratio 14.8±5.1 (n=47) 16.2±2.3 (n=45) 17.4±5.7 (n=45) 2.619 0.077

HHD, hypertensive heart disease; HCM, hypertrophic cardiomyopathy; UCM, uremic cardiomyopathy; IVS, interventricular septum; LVPW, 
left ventricular posterior wall; LVEDd, left ventricular end-diastolic diameter; LVEF, left ventricular ejection fraction; E, early peak velocity of 
trans-mitral LV filling; e’, diastolic early peak tissue velocity at the mitral annulus. 

Table 2 Myocardial texture features of HHD, HCM and UCM (mean ± Std)

Features HHD [1] HCM [2] UCM [3]

P value

1 vs. 2 
vs. 3

1 vs.  
2, 3

1, 2 vs. 
3

2 vs.  
1, 3

1 vs. 2 1 vs. 3 2 vs. 3

EtHis 7.25±0.30 7.08±0.23 7.27±0.32 0.001 0.040 0.002 <0.001 <0.001 0.427 <0.001

EtBrt 0.99±0.00 1.00±0.00 0.99±0.01 <0.001 0.027 <0.001 <0.001 <0.001 0.011 <0.001

Std 43.18±6.96 36.82±6.17 44.93±6.98 <0.001 0.063 <0.001 <0.001 <0.001 0.219 <0.001

CoV 0.35±0.06 0.26±0.07 0.38±0.08 <0.001 0.069 <0.001 <0.001 <0.001 0.008 <0.001

Skew 0.10±0.41 0.30±0.37 0.01±0.46 0.002 0.456 0.010 0.001 0.013 0.278 0.001

Cont7 4.56±1.80 3.71±1.14 4.86±1.99 0.003 0.046 0.055 <0.001 0.001 0.942 0.001

E11 0.04±0.02 0.05±0.01 0.04±0.01 0.009 0.071 0.051 <0.001 0.002 0.920 0.001

Hm5 0.52±0.03 0.55±0.04 0.52±0.05 0.002 0.047 0.062 0.001 0.001 0.937 0.005

Et3 4.93±0.32 4.77±0.33 4.93±0.29 0.012 0.085 0.145 0.002 0.009 0.762 0.010

HHD, hypertensive heart disease, is marked as “1” in P value columns; HCM, hypertrophic cardiomyopathy, is marked as “2” in P value 
columns; UCM, uremic cardiomyopathy, is marked as “3” in P value columns.
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Table 5 Classification results by support vector machine using EtBrt, Std and CoV 

Classification between groups Acc Sen Spc YI AUC

1 vs. 2, 3 0.68 0.59 0.78 0.37 0.70

1, 2 vs. 3 0.68 0.77 0.76 0.42 0.75

2 vs. 1, 3 0.78 0.84 0.75 0.59 0.87

1 vs. 2 0.85 0.90 0.80 0.70 0.91

1 vs. 3 0.67 0.56 0.76 0.32 0.68

2 vs. 3 0.85 0.78 0.91 0.68 0.86

The three groups are marked as “1”, “2” and “3” for short in the table. Group 1 stands for hypertensive heart disease, group 2 for 
hypertrophic cardiomyopathy, and group 3 for uremic cardiomyopathy. Sen, sensitivity; Spc, specificity; Acc, accuracy; YI, Youden index; 
AUC, area under the receiver operating characteristic curve.

Table 3 The AUCs of texture features

Features 1 vs. 2, 3 1, 2 vs. 3 2 vs. 1, 3 1 vs. 2 1 vs. 3 2 vs. 3

EtHis 0.60 0.66 0.76 0.74 0.55 0.77

EtBrt 0.61 0.77 0.87 0.86 0.65 0.88

Std 0.60 0.69 0.78 0.76 0.57 0.81

CoV 0.60 0.77 0.87 0.85 0.66 0.89

Skew 0.55 0.63 0.68 0.66 0.56 0.70

Cont7 0.60 0.60 0.70 0.70 0.50 0.69

E11 0.59 0.60 0.69 0.68 0.49 0.69

Hm5 0.60 0.58 0.68 0.69 0.50 0.66

Et3 0.59 0.57 0.65 0.65 0.52 0.66

The three groups are marked as “1”, “2” and “3” for short in the table. Group 1 stands for hypertensive heart disease, group 2 for 
hypertrophic cardiomyopathy, and group 3 for uremic cardiomyopathy. AUC, areas under the receiver operating characteristic curve. 

Table 4 Interobserver and intraobserver variability of texture 
features

Features Interobserver ICC Intraobservoer ICC

EtHis 0.249 0.269

EtBrt 0.734 0.707

Std 0.755 0.693

CoV 0.748 0.794

Skew 0.833 0.847

Cont7 0.594 0.544

E11 0.444 0.468

Hm5 0.613 0.743

Et3 0.417 0.659

ICC, intraclass correlation coefficient. 

failure are some of the most common etiologies. TTE can 
evaluate cardiac morphology and function in LVH, which 
may lead to a definite cause in some cases. For example, a 
highly asymmetrical pattern of septal hypertrophy or LV 
apical hypertrophy suggests HCM (11). However, there 
are still large numbers of nonspecific cases. HCM may also 
present symmetrical hypertrophy, mimicking HHD. On 
the contrary, HHD may manifest somewhat asymmetrical 
hypertrophy as well, with the thickest portion at the basal 
septum, and even with an IVS/LVPW thickness ratio 
greater than 1.5 (12,13). The third group, UCM, is usually 
related to symmetrical LV hypertrophy, and the odds of 
LV dilation and LV ejection fraction (LVEF) decline is 
increased (14-16). Therefore, it could be challenging to 
reveal the real cause of LVH, especially for inexperienced 
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echocardiographers. A comprehensive analysis of multiple 
imaging data and clinical information is required. Advanced 
imaging techniques like CMR may be needed, and even 
endomyocardial biopsy and genetic analysis, which are more 
costly and not commonly available. 

Echocardiography is a fundamental, widely used imaging 
modality in cardiology. It is very effective in evaluating 
cardiac structures and functions. However, compared with 
CMR, TTE has very limited value in tissue characterization, 
the echogenicity and heterogeneity of myocardium is rarely 
described in echocardiography, because it is not specific in 
most cases, and very difficult to rate or quantify based on 
human visual observation. Hence, we proposed myocardial 
texture analysis by the computer to overcome the limitation, 
and hopefully improve TTE diagnostic power. According 
to our results, different LVH groups did appear different 
myocardial texture features in TTE, and they could be 
identified by the computer. Previous researchers have 
reported the feasibility and usefulness of myocardial texture 
analysis based on CMR, cardiac CT and echocardiography 
in several myocardial abnormalities, such as myocardial 
infarction, myocarditis, cardiac amyloidosis and HCM (5-
9,17). In this study, we explored TTE myocardial texture 
analysis in differentiating three specific LVH entities—
HHD, HCM and UCM. It turned out that EtBrt, Std 
and CoV had potentially good diagnostic power and 
reproducibility. The three parameters were then tested with 
the SVM model, a classifier using supervised learning. The 
classification results of EtBrt, Std and CoV as combined 
was overall improved than any individual feature. The AUC 
of distinguishing HHD from HCM reached 0.91 (highest 
AUC of individual features: 0.86), The AUC of separating 
HHD from the others reached 0.70 (highest AUC of 
individual features: 0.61). Classifier models based on AI may 
further improve diagnostic accuracy of the LVH etiology.

As the statistics showed, HCM presented the highest 
EtBrt, and lowest Std and CoV, which indicated the 
most homogeneous myocardial texture. UCM appeared 
the most heterogeneous, but was close to HHD. These 
findings could be correlated to the different histological 
changes. Echogenic features of tissues were determined by 
histological components and the unity of microstructure 
alignment (17). For instance, collagen tends to attenuate 
soundwaves more than cardiomyocyte. Microstructures 
are usually hyperechoic due to numerous acoustic 
boundaries (17-19), while water is echolucent. Previous 
literature stated that common pathological changes in 

LVH include cardiomyocyte hypertrophy and disarray, 
expansion of interstitial and perivascular collagen, and 
vascular thickening (20-22). We hypothesized that different 
etiologies may lead to different patterns of LV remodeling, 
with different levels of myocardial hyperplasia, myocardial 
disarray, and interstitial fibrosis. UCM develops an even 
more complex histological pattern by multiple factors, 
including chronic hypertension, anemia, hypervolemia, and 
mineral metabolic disorders, resulting in hypertrophy, focal 
dissolve of cardiomyocyte, interstitial fibrosis, myocardial 
calcification and oxalate deposition, which might explain 
the most heterogeneous texture (23). 

There were a few limitations to our study. Firstly, it was 
a single center and retrospective study. The results were not 
generalizable. Inter-operator and inter-equipment variations 
of image quality could hardly be eliminated. Secondly, 
the diagnoses were largely established upon clinical and 
imaging data according to the latest guidelines and expert 
consensus. The use of histological or genetic evidence was 
lacking. Thirdly, most HCM cases in the study had an LV 
wall over 15 mm thick, and the average maximum thickness 
was significantly greater than the other two groups. It 
was possible that the difference in myocardial texture 
was more related to the severity of hypertrophy, rather 
than the etiology. The study was preliminary. However, 
the application of AI in echocardiography is promising. 
There have been studies on TTE view recognition, image 
quality assessment, myocardial motion analysis, diagnostic 
algorithm establishment and more. There may come a 
day that a robot can replace the human expert entirely, 
from automated ultrasound scanning to intellectual image 
interpretation. 

Conclusions

The current study has preliminarily investigated the 
feasibility of AI-assisted myocardial texture analysis in 
distinguishing HHD, HCM and UCM based on TTE 
still images. It turned out that HCM had a markedly more 
homogenous texture than HHD and UCM. UCM appeared 
the most heterogeneous texture, but was close to HHD. 
Within all the parameters, EtBrt and CoV showed the best 
diagnostic efficacy. Moreover, SVM model using multiple 
texture features yielded improved diagnostic accuracy 
than any single feature. The study implied potential value 
of myocardial texture features in differentiation of LVH 
etiologies by echocardiography. It may add some useful 
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supplementary information to the routine TTE, and 
provide a cost-effective approach to aid diagnoses.
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Supplementary 

Supplementary methods

Myocardial texture features

Two categories of texture features were investigated in the 
research, namely first-order statistics features and gray level 
co-occurrence matrix (GLCM) features. 

First-order statistics
First-order statistics features are a series of characteristics 
that describe the general distribution of pixel brightness 
within the region of interest (ROI) and the comparison 
with control areas. Seventeen features were involved in our 
study, as listed in Table S1.

Histogram entropy (EtHis) and brightness entropy 
(EtBrt) are two important features of this category. EtHis 
represents general characteristics of images. A large EtHis 
value suggests vagueness and uncertainty of the image. It is 
derived from the following equation: 
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In this equation, Pi represents the probability of level i 
grayscale in the specific image (i from 0 to 255). There are 
256 levels of grayscale, from 0 to 255. 

The equation for another feature EtBrt is as follows:
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N is the total number of pixels within the ROI, Hi is the 
level of grayscale of pixel i (i ≤ N), and ai stands for the pixel 
value after normalization.

GLCM features

The second category GLCM features were initially 
proposed by Haralick in 1973. Unlike first-order statistics 
features, GLCM not only focuses on overall grayscale 
amplitudes of the pixels, but also their spatial correlations. 
GLCM means the probability of cooccurrence of two pixels 
with a distance of d and in the direction of θ. An element of 
the GLCM G(i, j; d, θ) represents the times of occurrence 
of a certain combination of two pixels. In this study, the 256 
levels of grayscale were simplified to eight levels to reduce 

computation, resulting in 8×8 grayscale cooccurrence 
matrix G(i j) (i = 1, 2, …, 8; j = 1, 2, …, 8). Then the matrix 
of probability p(i,j) was obtained through normalization 
of G(i,j). The distance (d) was set as 1, 2, 3, …, 15 pixels, 
and the  direction θ was 0, 45, 90 and 135 degrees. Finally, 
the texture features of distance d in four directions were 
averaged and regarded as the result.   

There were four types of GLCM features studied in our 
research, namely Energy (E), Contrast (Cont), Entropy (Et) 
and Homogeneity (Hm). Each type contains 15 values (d = 1, 
2, 3, …, 15 pixels), making a total of 60 features, namely E1 
to E15, Cont1 to Cont15, Et1 to Et15, and Hm1 to Hm15.

Energy (E) is also named as angular second moment 
(ASM). It is the sum of the value of each GLCM element 
squared:
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Energy measures the uniformity and texture roughness 
of pixel intensity distribution. A larger E value indicates 
rough texture.

Contrast (Cont) reflects local variation of grayscale 
values. Greater Cont indicates greater change in pixel 
brightness, and higher clarity of the image. The equation to 
yield Cont is as follows:

8 8
2

1 1
| | ( , )

i j
Cont i j p i j

= =

= −∑∑ 	 [5]

Entropy (Et) manifests the amount of information within 
the ROI. It reflects complexity and nonuniformity of the 
image. A larger Et value suggests greater heterogeneity of 
the image.
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Homogeneity (Hm) is a feature that measures focal 
texture changes. It reflects similarity and uniformity of the 
texture within the image. Greater Hm means less change of 
the texture.
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Supplementary results

Statistics of myocardial texture features

Among all the textural features, EtHis, EtBrt, Std, CoV, 
Skew, Cont7, E11, Hm5 and Et3 showed statistical 
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Table S1 First-order statistics features

Features Features (abbreviations) Full term/definition

ROI IMean Mean

IMedia Median

Std Standard deviation

CoV Coefficient of variation

Skew Skewness

Kurt Kurtosis

EtHis Histogram entropy

EtBrt Brightness entropy 

ROI/ctrl ratio RImedian ROI/ctrl ratio of median brightness 

RImax ROI/ctrl ratio of maximum brightness

RImean ROI/ctrl ratio of mean brightness

RImedian_quantl90 ROI median/ctrl 90% quantile 

RImedian_quantl95 ROI median/ctrl 95% quantile

RImean_quantl90 ROI mean/ctrl 90% quantile

RImean_quantl95 ROI mean/ctrl 95% quantile

RIquantl90 ROI 90% quantile/ctrl 90% quantile

RIquantl95 ROI 95% quantile/ctrl 95% quantile

Ctrl, area of control.

significance in intergroup comparisons. The threshold 
of classification was determined for these nine features 
according to Youden Index. The results and diagnostic 

sensitivity, specificity, accuracy, and AUC were listed in 
Tables S2,S3,S4,S5,S6,S7. 

Table S2 Diagnostic accuracy of texture features in differentiating HCM from the others

Features Cutoff Sen Spc Acc YI AUC

EtHis 7.15 0.62 0.83 0.76 0.45 0.76

EtBrt 0.99 0.82 0.86 0.84 0.68 0.87

Std 40.75 0.76 0.71 0.73 0.47 0.78

CoV 0.30 0.78 0.88 0.84 0.66 0.87

Skew –0.28 0.54 0.74 0.67 0.28 0.68

Cont7 4.19 0.74 0.63 0.67 0.37 0.70

E11 0.04 0.64 0.69 0.67 0.33 0.69

Hm5 0.54 0.62 0.70 0.67 0.32 0.68

Et3 4.87 0.66 0.64 0.65 0.30 0.65

HCM, hypertrophic cardiomyopathy; Sen, sensitivity; Spc, specificity; Acc, accuracy; YI, Youden index; AUC, area under the receiver 
operating characteristic curve. 
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Table S3 Diagnostic accuracy of texture features in differentiating HHD from the others

Features Cutoff Sen Spc Acc YI AUC

EtHis 7.15 0.82 0.40 0.54 0.22 0.60

EtBrt 0.99 0.86 0.50 0.62 0.36 0.61

Std 40.10 0.72 0.49 0.57 0.21 0.60

CoV 0.29 0.88 0.46 0.61 0.34 0.60

Skew –0.27 0.74 0.43 0.54 0.17 0.55

Cont7 4.19 0.68 0.60 0.63 0.28 0.60

E11 0.04 0.54 0.68 0.63 0.22 0.59

Hm5 0.52 0.62 0.66 0.65 0.28 0.60

Et3 5.04 0.50 0.72 0.65 0.22 0.59

HHD, hypertensive heart disease; Sen, sensitivity; Spc, specificity; Acc, accuracy; YI, Youden index; AUC, area under the receiver 
operating characteristic curve.

Table S4 Diagnostic accuracy of texture features in differentiating UCM from the others

Features Cutoff Sen Spc Acc YI AUC

EtHis 7.19 0.46 0.81 0.57 0.27 0.66

EtBrt 0.99 0.82 0.62 0.76 0.44 0.77

Std 40.93 0.55 0.75 0.61 0.30 0.69

CoV 0.35 0.72 0.70 0.71 0.42 0.77

Skew 0.23 0.85 0.38 0.70 0.23 0.63

Cont7 5.26 0.86 0.32 0.69 0.18 0.60

E11 0.04 0.52 0.72 0.59 0.24 0.60

Hm5 0.50 0.85 0.36 0.69 0.21 0.58

Et3 4.87 0.53 0.68 0.58 0.21 0.57

UCM, uremic cardiomyopathy; Sen, sensitivity; Spc, specificity; Acc, accuracy; YI, Youden index; AUC, area under the receiver operating 
characteristic curve.

Table S5 Diagnostic accuracy of texture features in differentiating HHD and HCM 

Features Cutoff Sen Spc Acc YI AUC

EtHis 7.15 0.62 0.82 0.72 0.44 0.74

EtBrt 0.99 0.82 0.86 0.84 0.68 0.86

Std 41.01 0.76 0.68 0.72 0.44 0.76

CoV 0.30 0.78 0.88 0.83 0.66 0.85

Skew –0.26 0.56 0.74 0.65 0.30 0.66

Cont7 4.22 0.74 0.68 0.71 0.42 0.70

E11 0.04 0.80 0.54 0.67 0.34 0.68

Hm5 0.52 0.76 0.62 0.69 0.38 0.69

Et3 4.99 0.74 0.56 0.65 0.30 0.65

HHD, hypertensive heart disease; HCM, hypertrophic cardiomyopathy; Sen, sensitivity; Spc, specificity; Acc, accuracy; YI, Youden index; 
AUC, area under the receiver operating characteristic curve.
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Table S6 Diagnostic accuracy of texture features in differentiating HCM and UCM 

Features Cutoff Sen Spc Acc YI AUC

EtHis 7.19 0.66 0.81 0.73 0.47 0.77

EtBrt 0.99 0.82 0.85 0.84 0.67 0.88

Std 40.93 0.76 0.75 0.75 0.51 0.81

CoV 0.23 0.78 0.87 0.83 0.65 0.89

Skew 0.03 0.80 0.51 0.66 0.31 0.70

Cont7 4.19 0.74 0.57 0.66 0.31 0.69

E11 0.04 0.64 0.72 0.68 0.36 0.69

Hm5 0.54 0.62 0.70 0.66 0.32 0.66

Et3 4.87 0.66 0.68 0.67 0.34 0.66

HCM, hypertrophic cardiomyopathy; UCM, uremic cardiomyopathy; Sen, sensitivity; Spc, specificity; Acc, accuracy; YI, Youden index; 
AUC, area under the receiver operating characteristic curve.

Table S7 Diagnostic accuracy of texture features in differentiating HHD and UCM 

Features Cutoff Sen Spc Acc YI AUC

EtHis 7.46 0.88 0.26 0.58 0.14 0.55

EtBrt 0.99 0.70 0.62 0.66 0.32 0.65

Std 52.39 0.96 0.19 0.59 0.15 0.57

CoV 0.38 0.76 0.55 0.66 0.31 0.66

Skew 0.23 0.78 0.38 0.59 0.16 0.56

Cont7 4.25 0.64 0.51 0.58 0.15 0.50

E11 0.04 0.46 0.64 0.55 0.20 0.49

Hm5 0.52 0.62 0.55 0.59 0.17 0.50

Et3 5.04 0.50 0.66 0.58 0.16 0.52

HHD, hypertensive heart disease; UCM, uremic cardiomyopathy; Sen, sensitivity; Spc, specificity; Acc, accuracy; YI, Youden index; AUC, 
area under the receiver operating characteristic curve. 
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