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Abstract: Machine learning (ML), as an advanced domain of artificial intelligence (AI), is progressively 
changing our view of the world. By implementing its algorithms, our ability to detect previously 
undiscoverable patterns in data has the potential to revolutionize predictive analytics. Scoliosis, as a relatively 
specialized branch in the spine field, mainly covers the pediatric, adult and the elderly populations, and its 
diagnosis and treatment remain difficult. With recent efforts and interdisciplinary cooperation, ML has 
been widely applied to investigate issues related to scoliosis, and surprisingly augment a surgeon’s ability 
in clinical practice related to scoliosis. Meanwhile, ML models penetrate in every stage of the clinical 
practice procedure of scoliosis. In this review, we first present a brief description of the application of ML 
in the clinical practice procedures regarding scoliosis, including screening, diagnosis and classification, 
surgical decision making, intraoperative manipulation, complication prediction, prognosis prediction and 
rehabilitation. Meanwhile, the ML models and specific applications adopted are presented. Additionally, 
current limitations and future directions are briefly discussed regarding its use in the field of scoliosis. We 
believe that the implementation of ML is a promising revolution to assist surgeons in all aspects of clinical 
practice related to scoliosis in the near future.
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Introduction

The past few decades have seen a massive increase in the 
use of artificial intelligence (AI). Machine learning (ML) is 
an advanced branch of AI that allows computer algorithms 
to learn patterns by studying data directly without being 
explicitly programmed. ML is similar to the human neural 
network that can learn, make decisions, communicate, 
and adapt to changing circumstances (1). Generally, ML 
is categorized into three primary methods: supervised, 
unsupervised, and reinforcement learning (2). Also, ML 
lends itself well to image processing due to its extremely 

high classification performance, and there have been a few 
studies regarding its applications to medical imaging (3). By 
implementing such methods, it is possible to revolutionize 
predictive analytics for previously undiscoverable 
patterns by leveraging existing big data, and it might have 
widespread implications for medical research.

Compared to other industries, healthcare is relatively 
slow in adopting AI (4). The incredible complexity of 
healthcare delivery is strangely what makes it a very fertile 
ground for the application of AI (5). However, technology 
is constantly changing throughout clinical practice, 
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including how doctors interact with patients, diseases and 
their implements, the approach of information delivery, 
how the resultant interpretation is used to aid physicians, 
and postoperative evaluation and rehabilitation (6). The 
first attempts to introduce AI in spine surgery dated back 
to the advert of general-purpose computers during the 
Second World War and became available for nonmilitary 
use in the 1950s, which have been providing new insights 
into previous untapped and rapidly growing sources of data 
for reasoning and deciding. Nowadays, ML is entering the 
realm of medicine at an increasing pace and increasingly 
being used to investigate spine-related issues, especially 
in radiological imaging. For example, Jamaludin et al. 
(7,8) ever proposed a ML based system (Oxford SpineNet 
software system) for automatically analyzing spinal T2 
MRI scans acquired from a DICOM (Digital Imaging and 
Communications in Medicine) file to evaluate Pffirrmann 
grades, modic changes, and spinal stenosis, and found that 
the system can be beneficial in aiding clinical diagnoses in 
terms of objectivity of gradings and the speed of analysis. 
In addition, ML is also applied in the outcome prediction 
of treatments (9). Arvind et al. (10) included 20,879 patients 
following anterior cervical discectomy and fusion and 
found that ANN have the greatest sensitivity in predicting 
mortality and postoperative complications. Similarly, Kim 
et al. (11) also reported the superiority of ML in identifying 
risk factors of developing complications following posterior 
lumbar spine fusion. Other applications of ML in spine 
surgery included diagnosis and assessment of spinal disease 
progression, decision-making in the treatment of spine 
degenerative diseases, and preoperative planning and 
intraoperative assistance (12).

Scoliosis, as a major composition of complex three-
dimensional spine deformity, mainly covers the pediatric, 
adult and the elderly populations, and its diagnosis and 
treatment remain difficult. For decades, surgeons in this 
field relied on the established literature, extensive training, 
and clinical judgment to counsel patients regarding the 
risks and benefits of surgery; often, the most accurate 
information was based on their overall personal clinical 
experience and lacked patient-specific characteristics. 
With recent efforts and interdisciplinary cooperation, ML 
has been widely applied to investigate issues related to 
scoliosis (2,13). In this realm of enhanced technology and 
digital innovation, we are witnesses to this revolution and 
transformation. Surgeons in this field have been quickly 
adapting and refining these new technologies and integrated 
them into their clinical practice. The current trends in 

scoliosis are about digitization, ML, and smart robotics (14).  
ML models can meaningfully augment a surgeon’s ability 
in clinical practice related to scoliosis. As a result, there 
has been more considerable interest in the literature and 
academic forums about the utilization of ML in various 
branches in this field.

In this article, we did a wide search in the PubMed and 
Embase databases, and the searching strategy applied was 
as follows: Machine Learning [All Fields] AND ("Scoliosis" 
[MeSH Terms] OR “Spine Deformity” [All Fields]). Based 
on the cited references, we enlarged the search range 
and adopted the useful publications. By means of this 
narrative literature review, we aim to raise awareness of 
the current achievements and potential applications of ML 
in the field of scoliosis. It is vitally important to have the 
ability to establish an accurate clinical practice procedure, 
including screening, diagnosis and classification, surgical 
decision making, intraoperative manipulation, complication 
prediction, prognosis prediction and rehabilitation (Figure 
1), in selecting the most appropriate management strategy 
for disorders in this field, as shown in Table 1. Therefore, 
this paper firstly presents ML and its recent advances, 
which might have a dramatical impact on clinical practice 
procedures in treating scoliosis. We present the following 
article in accordance with the Narrative Review reporting 
checklist (available at http://dx.doi.org/10.21037/atm-20-
5495).

Screening, diagnosis, and classification

Currently, imaging identification has become a tremendous 
field of ML. Given the characteristics of a regular sequence 
of the normal spine and the irregularity of scoliosis, ML 
has superiority in identifying this disorder. To efficiently 
screen and diagnose a patient with scoliosis, ML has been 
transformative.

Screening may detect scoliosis earlier than it would be 
clinically detected. With early detection, most cases can 
be controlled with the lower costs and better efficacy. In 
addition, accurate diagnosis with ML can help surgeons 
avoid misjudgment. Early in 2000, Jaremko et al. (15) was 
the first to use neural networks to correlate spine and rib 
deformities in scoliosis. The investigators compared artificial 
neural networks (ANNs) and linear regression to predict 
rib rotation, with the results that ANNs averaged 60% 
correct predictions compared to 34% for linear regression 
analysis. These data lend credence to using ANNs in future 
work on the prediction of scoliotic spinal deformities from 
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Figure 1 The demonstration of the application of ML in the clinical practice of scoliosis.

Table 1 The application of machine learning in the clinical practice of scoliosis

Study Year Number of data Algorithms applied Objectives Outcome presentation

Screening, diagnosis and classification

Jaremko (15) 2000 57 curves ANN, linear regression Predicting rib deformity ANN showed good sensitivity and 
PPV

Jaremko (16) 2001 65 radiograph- 
pairs

ANN Estimating spinal deformity 
from torso surface cross  
sections

Distinguished a Cobb angle greater 
than 30° with excellent sensitivity and 
specificity

Ramirez (17) 2006 111 patients SVM Assessing the severity of IS 
from surface topography

Satisfactory accuracy in testing

Lin (18) 2008 37 spinal  
deformity  
patterns

A multilayer feed-forward,  
back-propagation ANN

Identifying the King  
classification patterns of the 
scoliosis 

Excellent identification rate for one or 
two hidden layers

Duong (19) 2010 200 radiographs SVM Automatically detecting  
scoliotic curves 

Statistically similar to the manually 
identified curve

Adankon (20) 2012 165 AIS patients Least-squares SVM To determine scoliosis curve 
types using noninvasive 
surface acquisition

Excellent overall accuracy of the  
system

Menon (21) 2014 62 cases of AIS – Retrieving images of similar 
cases of AIS 

–

Table 1 (continued)
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Table 1 (continued)

Study Year Number of data Algorithms applied Objectives Outcome presentation

Birtane (22) 2014 25 scoliosis 
models and  
10 X-rays

Two steps: (I) rule-based  
imaging processing and  
enhancing technologies; (II) 
a rule-based fuzzy classifier

Classifying the spine patterns 
using the King-Moe  
classification

Excellent success rate on scoliosis 
models and good success rate on real 
scoliosis X-rays

Thong (23) 2016 663 patients A stacked autoencoder  
consisting of a specific 
ANN architecture;  
k-means++ clustering 
algorithm

Performing a 3D  
morphological analysis of 
spine

The model can simplify the complex 
nature of 3D spine models as well as 
preserve the intrinsic properties

Bertoncelli 
(24)

2018 120 patients A predictive model based 
on a logistic regression 
algorithm

Validating the performance of 
a clinical prediction model

Good average accuracy, sensitivity, 
and specificity

García-Cano 
(25)

2018 150 AIS patients Random forests Predicting spinal curve  
progression

The estimated shape differs from the 
real curvature by Cobb angles in the 
proximal thoracic, main thoracic, and 
thoraco-lumbar/lumbar sections

García-Cano 
(26)

2018 962 3D spine 
models

Dynamic ensemble  
selection

Assessing curve types A mean accuracy of 0.7766 and a 
mean log loss of 0.5623

Greer (27) 2018 10,000 images A convolutional network 
and a second fully  
connected network

Diagnosing scoliosis using 
a self-contained ultrasound 
device

The mean error is 2.0°, the standard 
deviation is 3.7°, and the 95th  
percentile error is 5.8°

Wu (28) 2018 526 X-ray  
images 

A novel multi-view  
correlation network

Automatically quantitative 
estimating spinal curvature 

4.04° CMAE in anteroposterior (AP) 
Cobb angle and 4.07° CMAE in lateral 
(LAT) Cobb angle estimation

Galbusera 
(29)

2019 493 3D  
reconstructions

A fully CNN featuring an  
additional differentiable 
spatial to numerical  
transform (DSNT) layer

Automatically determining 
the spine shape and  
anatomical parameters

The standard errors of the estimated 
parameters ranged from 2.7° (for the 
pelvic tilt) to 11.5° (for the L1–L5  
lordosis)

Yang (30) 2019 3,240 patients A deep learning algorithm  
combined with  
Faster-RCNN and Resnet

Automatically screening  
scoliosis using unclothed 
back images

PPVs of 85.2% for a curve ≥10° and a 
specificity of 90.0% when identifying 
scoliosis and cases with a curve ≥20°

Watanabe 
(31)

2019 1,996 pairs of 
moiré images 
and standing 
whole-spine 
radiographs

CNN Estimating spinal alignment 
from moiré images

The MAE per person between the 
Cobb angle measured by doctors and 
the estimated Cobb angle was 3.42°. 
The MAE was 4.38° in normal spines, 
3.13° in spines with a slight deformity, 
and 2.74° in spines with a mild to  
severe deformity. The MAE of the  
angle of vertebral rotation was 
2.9°±1.4° and was smaller when the 
deformity was milder

Wang (32) 2019 526 X-rays Multiview extrapolation net Accurately and automatically 
estimating Cobb angle

7.81 and 6.26 CMAE in AP and LAT 
angle estimation

Horng (33) 2019 35 images CNN Proposing an automatic 
system to measure spine 
curvature 

Excellent results of ICC and Pearson 
correlation coefficients

Table 1 (continued)
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Table 1 (continued)

Study Year Number of data Algorithms applied Objectives Outcome presentation

Pan (34) 2019 248 chest X-rays Mask R-CNN Automatically measuring the 
Cobb angle 

A high level of sensitivity and a 
relatively low level of specificity for 
diagnosing scoliosis

Jamaludin 
(35)

2020 12,000 manually 
annotated  
images

Machine learning  
techniques of SpineNet 
software

Automating the identification 
of spinal curvature

The final automated model had an 
excellent sensitivity and specificity

Surgical decision making

Mezghani (36)2012 1,776 S cases A topologically ordered  
self-organizing Kohonen 
network

Produce two spatially 
matched maps; determine 
where the Lenke classes 
correlate with the fused  
spine regions

Excellent overall agreement

Phan (37) 2013 1,776 patients Kohonen self-organizing 
maps (SOM)

Reliably classifying AIS 
cases; analyzing surgeon’s 
treatment patter

The topographic error for the SOM 
generated was small

Lafage (38) 2018 – Machine learning Optimizing surgical planning 
and predicting postoperative 
alignment

The use of powerful  
computer-assisted tools can change 
the traditional way of selecting  
treatment pathways

Ames (39) 2019 570 patients Unsupervised  
machine-based clustering

Optimizing overall quality, 
value, and safety for ASD 
surgery

The intersection of patient-based and 
surgery-based clusters yielded 12 
subgroups, with less major  
complication rates and good 2-year 
normalized improvement

Pasha (40) 2020 71 consecutive 
Lenke 1 B and C 
AIS patients

A decision tree Defining criteria for optimal 
lumbar curve correction

The averages of the optimal versus 
suboptimal range of SLCC% in the 
cohort were 72%versus 39%

Intraoperative manipulation

Benameur 
(41)

2005 30 pairs of 
radiographic 
images

A hierarchical statistical  
modeling

Present a new and accurate 
3D reconstruction technique 
for the scoliotic spine

The mean error is 1.46–1.47 mm for 
lumbar vertebra and 1.30–1.32 mm 
for thoracic vertebra

Mirzaalian 
(42)

2013 22 vertebrae 
from 7 patients

Statistical shape modeling 
and machine learning

Realizing fast and robust 3D 
Vertebra Segmentation

The results indicate a lower  
symmetric point-to-mesh surface 
error

Amaritsakul 
(43)

2013 35 screw  
designs

ANN and genetic algorithm Optimize design of spinal 
pedicle screws

The optimal design was inferior to 
commercial screws

Forestier (44) 2017 – – Realizing automatic  
matching of surgeries to  
predict surgeons’ next  
actions

This method outperformed the  
state-of-the-art method

Hetherington 
(45)

2017 20 participants Deep CNN Realizing automatic spine 
level identification system 

88% 20-fold cross-validation  
accuracy

Esfandiari 
(46)

2018 40 clinical 
X-rays

CNN Realizing automatic  
segmentation of pedicle 
screws

The screw shafts with good  
accuracy on synthetic X-rays and 
clinically realistic X-rays

Table 1 (continued)
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Table 1 (continued)

Study Year Number of data Algorithms applied Objectives Outcome presentation

Zareie (47) 2018 18 3D vertebrae 
CT images of 
thoracic and 
lumbar spine 

Multilayer perceptron  
neural network; pulse 
coupled neural network 
and pulse coupled neural 
networks

Realizing automatic  
segmentation of vertebrae in 
3D CT images

Similar and promising performance in 
both systems

Ebrahmi (48) 2019 149 healthy and 
AIS subjects

A quasi-automated pedicle 
localization method 
based on image analysis, 
machine learning and fast 
manual identification of a 
few landmarks

Detecting pedicle and  
estimating vertebral rotation 

Pedicles centers were localized with 
a better precision of compared with 
manual identification

Huo (49) 2020 400 individual 
vertebral models

A modified PointNet model 
(CNN)

Automatically recognizing the  
vertebral pedicle in individual  
vertebral models and  
drawing pedicle contours

The final results can be used to  
simulate the operation of pedicle 
screw implantation and to provide a 
reference

Complication predictions

Scheer (50) 2016 510 patients An ensemble of  
decision trees using the 
C5.0 algorithm with 5 
different bootstrapped 
models

To create a preoperative 
predictive model for proximal 
junction failure (PJF) 

The overall model accuracy indicated 
a good model fit

Scheer (51) 2017 557 ADS  
patients

An ensemble of decision 
trees utilizing the C5.0 
algorithm with 5 different 
bootstrapped models

To create a preoperative 
predictive model for major 
complications 

The overall model accuracy indicated 
a very good model fit

Kim (52) 2018 4,073 ADS  
patients

ANN To predict surgical  
complications in patients 

The ANN outperformed logistic  
regression in predicting cardiac  
complication, wound complication, 
and mortality

Yagi (53) 2018 145 surgically 
treated ASD 
patients

Decision-making trees 
using the C5.0 algorithm 
with 10 different 
bootstrapped models

To fine tune the predictive 
model for PJF

The predictive model indicated  
excellent fit

Pellisé (54) 2019 1,612 ASD  
patients

Random survival forest 
algorithm

To develop and validate a  
prognostic tool for the  
time-to-event risk of major 
complications (MCs),  
hospital readmission (RA), 
and unplanned reoperation 
(RO)

Kaplan-Meier estimates showed 
that longer duration after operation 
frequently accompanied with high risk 
of MC

Yagi (55) 2018 195 surgically 
treated ASD 
patients

An ensemble of decision 
trees utilizing the C5.0 
algorithm with 5 different 
bootstrapped models

To create a predictive model 
for complications 

92% accurate with an AUROC curve 
of 0.963 and 84% accuracy in the 
external validation

Table 1 (continued)
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Table 1 (continued)

Study Year Number of data Algorithms applied Objectives Outcome presentation

Hopkins (56) 2020 4,046 posterior 
spinal fusions

Deep neural network (DNN)  
classification model

To prex surgical site infection The mean AUC was 0.775 (95% CI: 
0.767–0.782) with a median AUC of 
0.787. The PPV over all predictions 
was 92.56% with a negative  
predictive value (NPV) of 98.45%

Prognosis prediction and rehabilitation

Chalmers 
(57)

2015 28 braced  
patients

Conditional fuzzy C-means  
clustering

To provide meaningful  
treatment for AIS patients

Sensitivities for the panel and model 
were excellent

Sim (58) 2015 10 healthy  
people and 10 
AIS patients

Wavelet neural network To predict complete GRF and 
GRM during gait with insole 
plantar pressure information

The performance of the GRF and 
GRM prediction models were better 
than that of previous prediction  
models

Oh (59) 2017 234 patients 
with ASD

An ensemble of 5 different 
bootstrapped decision 
trees was constructed 
using the C5.0 algorithm

To assist in preoperative 
patient selection 

A successful model was constructed 
to predict which patients would reach 
ODI MCID

Scheer (60) 2018 198 ADS  
patients

Decision trees were  
constructed using the C5.0 
algorithm with five different 
bootstrapped models.

To create a preoperative 
predictive model for  
reaching the ODI MCID for 
ASD patients

Overall model accuracy was 86.0%

Ames (61) 2019 561 ADS  
patients

Elastic net, gradient  
boosting machines,  
extreme gradient boosting  
tree, extreme gradient 
boosting linear, random  
forest and elastic net  
regularized generalized 
linear models

To create preoperative  
predictive models for  
responses to individual  
SRS-22R questions at 1 and 
2 years

The AUROC ranged from 56.5 to 
86.9%

Ames (62) 2019 570 ADS  
patients

Partitions, elastic net,  
gradient boosting  
machines, extreme  
gradient boosting tree, 
extreme gradient boosting 
linear, random forest, and 
generalized linear  
modeling

To predict the likelihood of 
reaching MCID in  
patient-reported outcomes 
after ASD surgery

Models with the lowest MAE were 
selected; R2 values ranged from 20% 
to 45% and MAE ranged from 8% to 
15% depending upon the predicted 
outcome

ANN, artificial neural network; AIS, adolescent idiopathic scoliosis; SVM, support vector machine; PPV, positive predictive value; CNN, 
convolutional neural network; CMCE, circular mean absolute error; ASD, adult spinal deformity; GRF, ground reaction forces; GRM, ground 
reaction moments; ODI, Oswestry Disability Index; MCID, minimal clinically important difference.

the torso surface. Regarding neuromuscular scoliosis, 
Bertoncelli et al. (24) applied a predictive model based on a 
logistic regression (LR) algorithm to predict the probability 
of scoliosis onset. The predictive accuracy, sensitivity, and 
specificity of the model were approximately 74% in full 
accordance with recent studies applying ML models in 
clinical fields.

A noninvasive method was gradually developed to assess 
scoliosis. Jaremko et al. (16) adopted ANNs to quantify 
torso surface asymmetry, and this method estimated the 
maximal Cobb angle within 6° in 63% of the test data 
set and was able to distinguish a Cobb angle greater than 
30° with a sensitivity of 100% and specificity of 75%. 
However, it is worth mentioning that this research had a 
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small data set with only 65 scan-radiograph pairs, which 
is not very persuasive. An increasing number of harmless 
screening methods have been developed, and a support 
vector machine (SVM) classifier has been used to assess the 
severity of idiopathic scoliosis based on surface topographic 
images of human backs by Ramirez et al. (17). The results 
of testing on the dataset showed that the system can achieve 
69–85% accuracy in testing. Yang et al. (30) used unclothed 
back images with a combination algorithm of Faster-RCNN 
and Resnet to screen adolescent idiopathic scoliosis (AIS), 
and this research included images from 3,240 patients. 
Watanabe et al. (31) created a scoliosis screening system that 
estimated spinal alignment, the Cobb angle, and vertebral 
rotation from moiré images based on a convolutional neural 
network (CNN) to estimate the positions of 12 thoracic and 
5 lumbar vertebrae, 17 spinous processes, and the vertebral 
rotation angle of each vertebra. Using self-contained 
ultrasound as another detection method for scoliosis, 
Greer et al. (27) estimated the Cobb angle relative to a 
vertebrae using a neural network analysis, which was based 
on a convolutional network and a second fully connected 
network.

It is important to develop an automatic procedure since 
measuring the Cobb angle can be time consuming and 
unreliable. Duong et al. (19) adopted SVM to quantify 
curve severity with 100 posteroanterior radiographs, 
and the results were statistically similar (P<0.05) in 93% 
of cases to the manually identified curve. Wu et al. (28) 
proposed a novel multi-view correlation network (MVC-
Net) architecture that provided a fully automated end-to-
end framework for spinal curvature estimation in multi-
view (both anteroposterior (AP) and lateral (LAT)) X-rays. 
The results indicated that the MVC-Net’s capability 
of estimating Cobb angles from multi-view X-rays was 
robust and accurate. Wang et al. (32) also proposed a 
multi-view extrapolation net (MVE-Net) that provided 
accurate automated scoliosis estimation from both AP and 
LAT X-rays. CNN is another suitable ML algorithm for 
Cobb angle measurement. Galbusera et al. (29) extracted 
the location of 78 landmarks from three-dimensional 
reconstructions of 493 spines of patients suffering from 
various disorders and trained a fully CNN featuring an 
additional differentiable spatial to numerical transform 
(DSNT) layer to predict the location of each landmark. This 
model automatically determined the shape of the spine in 
biplanar radiographs and calculated the value of anatomical 
and posture parameters across a wide range of clinical 
conditions with robust performance. Horng et al. (33)  

ever created a CNN system that included three main 
parts: isolation of the spine, vertebra segmentation, and 
Cobb angle measurement. Pan et al. (34) proposed two 
Mask R-CNN models to automatically measure the Cobb 
angle and diagnose scoliosis on chest X-ray. Jamaludin  
et al. (35) automated the identification of spinal curvature 
from total body dual-energy X-ray absorptiometry (DXA) 
scans using ML techniques, and the final automated model 
had a sensitivity of 86.5%, specificity of 96.9%, and an 
area under the curve (AUC) of 0.80 (95% CI: 0.74–0.87). 
To dynamically monitor spinal curve progression in AIS, 
García-Cano et al. (25) proposed a novel approach based 
on a statistical generative model using random forest 
regression to predict the shape variation in the spinal curve 
from the first visit. The estimated shape differed from the 
real curvature by Cobb angles of 1.83°, 5.18°, and 4.79° in 
the proximal thoracic, main thoracic, and thoracolumbar/
lumbar sections, respectively.

The primary goal of surgical management of scoliosis 
is to achieve solid fusion with a well-balanced spine. 
Insufficient understanding of curve morphology and 
subsequent improper selection of fusion levels may result 
in suboptimal outcomes (62). Classification has provided 
guidance in the treatment of spine deformities. However, 
though AIS and adult degenerative scoliosis (ADS) are the 
most common spinal deformities, there can be of great 
variety in their classification. In this context, identification 
of AIS classification has been an important topic in the 
orthopedic community, while ADS classification can be 
more complex and irregular. Lin et al. (18) implemented 
a multilayer feed-forward, back-propagation (MLFF/
BP) ANN to test the King classification of scoliosis spinal 
deformity. The identification rate was 83% for two hidden 
layers and 75% for one hidden layer. Other noninvasive 
classification methods are also being explored. Adankon  
et al. (20) divided the 3D image of the surface of the trunk 
into patches and local geometric descriptors characterizing 
the back surface of 165 patients with different scoliosis 
curve types and built a multiclass classifier with least-
squares support vector machines (LS-SVM). The 
overall accuracy of the system was 95%. For the correct 
classification rates per class, the results showed 96%, 
84% and 97% for the thoracic, double major and lumbar/
thoracolumbar curve types, respectively. To solve the 
problem of low interobserver and intraobserver reliability 
in AIS classification, García-Cano et al. (26) presented 
two new techniques to describe the spine, namely, leave-
one out and fan leave-one-out for characterizing spine 
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curve types, and provided assistance to clinicians in the 
form of information to classify borderline curvature 
types. Moreover, a fuzzy logic rule-based classifier was 
also implemented to classify the spine patterns using the 
King-Moe classification approach by Birtane et al. (22). As 
spine deformities are three-dimensional deformities, an 
increasing number of researchers have paid attention to its 
3D classification. Thong et al. (23) adopted an unsupervised 
clustering method based on stacked autoencoders to 
simplify the complex nature of 3D spine models. It is 
noteworthy that any classification has its advantages and 
disadvantages, and therefore, it is hard to evaluate which is 
better. The world is moving into digital archiving, retrieval, 
and communication of high-resolution images. Menon  
et al. (21) proposed a newly developed content-based image 
retrieval (CBIR) software to retrieve images of similar cases 
of AIS from a database to help plan treatment without 
adhering to a classification scheme. Although this software 
did not elaborate a thorough algorithm and the sample size 
was quite small, this concept is extremely promising for 
future scoliosis classification.

Surgical decision making

Classification can truly aid in decision making and 
instrumentation region selection for surgeons. For 
example, the Lenke classification (63) provides guidelines 
for arthrodesis for 6 types and 42 subtypes of AIS patients 
using expert opinion/consensus and available scientific 
evidence for clinical decision making; the Scoliosis Research 
Society (SRS)-Schwab classification (64) and Lenke-Silva 
classification (65) provide surgical instructions from the 
perspective of morphology and management for ADS 
patients. To make this procedure more evidence-based, ML 
has potential.

Regarding AIS, Mezghani et al. (36) used a database 
of 1,776 surgically treated AIS cases and investigated a 
topologically ordered, self-organizing Kohonen network 
trained using Cobb angle measurements to determine the 
relationship between the Lenke classification and fusion 
region selection. The results showed that the recommended 
fusion region by ML model agreed with the Lenke 
classification with 88% overall agreement. Surgery planning 
could benefit from such map associations by comparing 
treatment outcomes from similar patients receiving 
different treatments. Phan et al. (37) used neural networks 
and Kohonen self-organizing maps (SOM) to classify AIS 
and conducted a retrospective analysis of AIS curve regions 

selected for fusion. An AIS SOM with high accuracy was 
successfully generated. Lenke classification principles were 
followed in 46% of the cases but in 82% of the nodes on 
the SOM. The SOM highlighted the tendency of surgeons 
to follow Lenke classification principles for similar curves 
on the SOM. To identify the range of optimal versus 
suboptimal rates of spontaneous lumbar Cobb correction 
(SLCC) and the factors predicting such outcomes in a 
cohort of Lenke 1 AIS patients, Pasha (40) adopted a 
decision tree to analyze 71 consecutive AIS patients with a 
fusion level to L1 and concluded that preoperative lumbar 
apical vertebrae translation, early postoperative T4–T12 
thoracic kyphosis and thoracic apical vertebrae rotation can 
predict the optimal range of SLCC%.

As for adult spinal deformities, the principles regarding 
surgery can be different from AIS and other types of 
deformities. Health-related quality of life (HRQoL) can be 
tightly correlated with sagittal alignment. Ames et al. (39)  
included 570 ADS patients and adopted AI-based 
hierarchical clustering as a step toward a classification. The 
results showed that this model identified data patterns that 
may augment preoperative decision making through the 
construction of a 2-year risk–benefit grid. Additionally, 
pattern identification may facilitate treatment optimization 
by educating surgeons on which treatment patterns yield 
optimal improvement with the lowest risk. Lafage et al. (38) 
adopted ML and other types of advanced algorithms to 
improve surgical outcomes and alignment predictions for 
surgical planning and prediction of postoperative alignment. 
These tools, which were able to integrate several parameters 
and learn from experience, can change the traditional way 
of selecting treatment and counseling patients. However, 
the complete algorithm and sample quantity were not 
mentioned in the article.

Intraoperative manipulation

To better enhance the surgeon’s intraoperative performance, 
a variety of applications combined with AI were put 
into routine use. Correct segmentation and vertebral 
reconstruction are crucial steps in the assessment and 
management of abnormalities, especially because vertebral 
rotation is difficult to simulate in spine deformities. Early 
in 2005, Benameur et al. (41) proposed a hierarchical 
statistical modeling approach for the unsupervised 3-D 
biplanar reconstruction of the scoliotic spine. Then, 
Mirzaalian et al. (42) applied a top-down fully automatic 
3D vertebra segmentation algorithm using global shape-
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related and local appearance-related prior information, in 
which the latter was handled by a ML-based component. 
The results indicated a symmetric point-to-mesh surface 
error of 1.37±0.37 mm, which matched the current state-
of-the-art methods. In 2018, Zareie et al. (66) compared 
a multilayer perceptron neural network (MLPNN) and a 
newly developed adaptive pulse coupled neural network 
(APCNN) in the automatic segmentation of vertebrae in 
3D CT images and concluded that the performance of the 
presented APCNN-based algorithm was dominant.

Pedicle location and recognition play important roles 
in screw implantation for spine deformities. Huo et al. (48)  
proposed a method based on 400 individual vertebral 
models to automatically recognize the vertebral pedicle 
in individual vertebral models and draw pedicle contours. 
The procedure included three steps: first, the individual 
vertebral models were preprocessed to obtain their point 
clouds; then, a modified Point-Net model was used to 
segment the pedicle areas from the individual vertebral 
point clouds; afterwards, the segmentation results were 
used to automatically fit the cross-sections of pedicles 
and finally generate the pedicle contours as surgical 
references. For most scoliosis cases, vertebrae often have 
axial rotation, and this point should be taken into great 
consideration when inserting pedicle screws. Ebrahimi  
et al. (47) included a total of 149 healthy and AIS subjects 
and developed an automated pedicle detector based on 
image analysis, ML and fast manual identification of a few 
landmarks to calculate vertebrae axial rotation values in 
frontal radiographs with minimal user intervention and 
robust quasi-automated pedicle localization. Minimally 
invasive surgery is another promising strategy for spine 
deformities; therefore, accurate percutaneous spinal needle 
insertion procedures are necessary. Hetherington et al. (45) 
developed a real-time system based on deep CNN to classify 
transverse images of the lower spine, and this method might 
contribute to the development of a minimally invasive 
treatment for ADS. To satisfy the goal of verification, 
screw insertion was performed intraoperatively. Esfandiari 
et al. (46) found that the CNN framework was capable 
of segmenting screw shafts with 93% and 83% accuracy 
when tested on synthetic X-rays and on clinically realistic 
X-rays, respectively. To achieve the goal of multiobjective 
optimization design of spinal pedicle screws in the 
treatment of deformity corrections, Amaritsakul et al. (43)  
found that the hybrid of ANN and genetic algorithm (GA) 
was ideal with simultaneous high bending and pullout 
performances. Moreover, automatic matching of surgeries 

to predict the surgeons’ next actions can be helpful for 
spine deformity surgeons. For this purpose, Forestier  
et al. (44) proposed an efficient algorithm to find the optimal 
partial alignment and a prediction system using maximum a 
posteriori probability estimation and filtering in lumbar disc 
herniation removal and anterior cervical discectomy. The 
results showed that this method outperformed the state-of-
the-art methods by predicting the next task that the surgeon 
will perform with 95% accuracy. We believe this kind of 
mode can be extended to orthopedic surgeries for spine 
deformities in the near future.

Complication predictions

The definition of complication in this review was defined 
as adverse events that can significantly affect the patients’ 
quality of life and frequently required clinical intervention 
during the perioperative period. The goal of surgical 
treatment for patients with scoliosis is undoubtedly to 
improve their HRQoL, and thus related complications 
should be carefully taken into consideration, especially in 
adult spinal deformity (ASD) patients. Any unexpected 
complication may cause miserable results, and it is of great 
importance to predict these problems before performing 
surgery. Normally, few complications are found in the AIS 
population, and nearly all the references regarding scoliosis 
and ML are about ADS. Pellisé et al. (53) aimed to assess 
the incidence of adverse events after ASD surgery and to 
develop and validate a prognostic tool for the time-to-event 
risk of major complications (MCs), hospital readmission 
(RA), and unplanned reoperation (RO). They created a 
random survival forest algorithm, and the results showed 
that surgical invasiveness, age, magnitude of deformity, and 
frailty were the strongest predictors of MCs. Individual 
cumulative risk estimates at 2 years ranged from 3.9% to 
74.1% for MCs, from 3.17% to 44.2% for RAs, and from 
2.67% to 51.9% for ROs. Scheer et al. (50) performed 
similar studies with ASD patients, and they constructed 
an ensemble of decision trees utilizing the C5.0 algorithm 
with 5 different bootstrapped models. With a sample 
of 557 ADS patients, the overall model accuracy was 
87.6% correct, with an AUC of the receiver operating 
characteristic (AUROC) curve of 0.89 indicating a very 
good model fit. They reported that twenty variables were 
determined to be the top predictors. Kim et al. (51) created 
models using the American Society of Anesthesiologists 
classification (ASA class) as a benchmark for prediction 
of cardiac complications, wound complications, venous 
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thromboembolism (VTE), and mortality in ASD patients. 
The results showed that the ANN outperformed LR in 
predicting cardiac complications, wound complications, and 
mortality (P<0.05). To analyze MC 2 years after corrective 
spine surgery for ASD, Yagi et al. (52) constructed decision-
making tree models using spinal alignment, demographic 
data, and surgical invasiveness. The test samples showed 
that their predictive model was 92% accurate with an 
AUROC curve of 0.963 and 84% accuracy in the external 
validation. As patients with spine deformities often 
experience long and deep wounds, postoperative surgical 
site infection is a common complication. Hopkins et al. (55) 
trained a deep neural network classification model using 
35 unique input variables in a retrospective cohort of 4,046 
posterior spinal fusions. The overall rate of infection was 
1.5%. The mean AUC, representing the accuracy of the 
model, across all 300 iterations was 0.775 (95% CI: 0.767–
0.782) with a median AUC of 0.787. Although this research 
did not focus on scoliosis, the application of ML can be 
examined in future studies.

Regarding radiographic complications, especially 
proximal junctional kyphosis (PJK) and proximal junctional 
failure (PJF) in ASD patients, there were only two studies 
reported to date. Scheer et al. (49) constructed an ensemble 
of decision trees using the C5.0 algorithm with 5 different 
bootstrapped models in a cohort of 510 ASD patients, and 
the overall model accuracy was 86.3%, with an AUC of 
0.89 indicating a good model fit. Their study listed the 7 
strongest (importance ≥0.95) predictors: age, lowermost 
instrumented vertebra (LIV), preoperative sagittal vertical 
axis (SVA), uppermost instrumented vertebra (UIV) implant 
type, UIV, preoperative pelvic tilt (PT), and preoperative 
pelvic incidence and lumbar lordosis (PI-LL). In 2018, 
Yagi et al. (54) fine-tuned the predictive model for PJF 
with the construction of decision-making trees using the 
C5.0 algorithm with 10 different bootstrapped models 
and assessed performance with 145 surgically treated ASD 
patients. Their predictive model was 100% accurate in the 
testing samples with an AUC of 1.0, indicating excellent fit. 
The best predictors were (strongest to weakest): PT, bone 
mineral density (BMD), LIV level (pelvis), UIV level (lower 
thoracic), pedicle subtraction osteotomy (PSO), global 
alignment, body mass index (BMI), PI-LL, and age.

Prognosis prediction and rehabilitation

All surgeons crave for a better clinical efficacy for 
their patients; however, the prognosis across differing 

circumstances can be quite different. Therefore, prognosis 
prediction is necessary, and currently, different ML 
approaches are being explored according to their specific 
characteristics. Regarding functional indices, Scheer  
et al. (59) constructed decision trees using the C5.0 
algorithm with five different bootstrapped models according 
to baseline demographic, radiographic, HRQoL, and 
surgical factors to predict patients meeting the Oswestry 
Disability Index (ODI) minimal clinically important 
difference (MCID) at the two-year postoperative follow-
up. The overall model accuracy was 86.0%, with an AUC 
of 0.94, and the top 11 predictors for achieving the MCID 
were listed. Ames et al. (60) compared eight predictive 
algorithms using 75 variables of demographics, baseline 
patient-reported outcomes (PROs), and modifiable 
surgical parameters at four time horizons: preoperative 
or postoperative baseline to 1 year and preoperative or 
postoperative baseline to 2 years. They concluded that 
patients with worse preoperative baseline PROs tended to 
achieve clinically relevant improvements. This team also 
developed six different prediction algorithms for all the 
individual questions on the SRS-22R after ASD surgery 
directed toward individualized medicine, and the AUROC 
ranged from 56.5% to 86.9%, reflecting successful fits 
for most questions (61). Oh et al. (58) aimed to create a 
validated MCID model that had the potential to assist 
in patient selection, thereby improving outcomes. An 
ensemble of 5 different bootstrapped decision trees was 
constructed using the C5.0 algorithm with 85.5% accuracy 
and 0.96 AUC.

Regarding rehabilitation, Chalmers et al. (56) compared 
human experts’ and a fuzzy model’s predictions of outcomes 
of scoliosis bracing treatment. The model was constructed 
using conditional fuzzy C-means clustering to discover 
patterns in retrospective patient data and was capable of 
providing meaningful brace treatment recommendations. 
A wavelet neural network was adopted to predict complete 
ground reaction forces and moments during gait with 
insole plantar pressure information by Sim et al. (57), and 
the results might help improve the gait of AIS patients. 
In addition, a robotic spine exoskeleton (67) capable of 
controlling the position/orientation of specific cross-sections 
of the human torso while simultaneously measuring the 
forces/moments exerted on the body opened the possibility 
for the design of spine braces incorporating patient-specific 
torso stiffness characteristics and the potential for new 
interventions using the dynamic modulation of 3-D forces 
for scoliosis treatment. Additionally, robotic rehabilitation 
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of the upper extremity after neurological injury (68) and 
trunk robot rehabilitation training with active stepping after 
trunk motor cortex injury (69) might be promising assistant 
rehabilitation methods in the near future.

Current limitations and future directions

The implementation of ML technologies for scoliosis, 
especially regarding tools with a direct clinical impact, is 
undoubtedly contributing to a paradigm shift. However, 
with the advent of new techniques, the current limitations 
and ethical problems should be reasonably considered. A 
systematic review in neurosurgical literature concluded that 
in spite of great potential of ML models in augmenting 
the decision-making capacity of clinicians in neurosurgical 
applications, significant hurdles remain associated with 
creating, validating, and deploying ML models in the 
clinical setting (1). Perhaps the most barrier regarding ML 
adoption is the lack of robust frameworks used to assess the 
performance and development of the related algorithms. 
Furthermore, the mechanisms driving the algorithms 
is sometimes complicated and even unpractical. In fact, 
there is an absence of clear gold criteria for ML models in 
addressing clinical problems. Regarding aspects of disease 
screening, diagnosis and classification, ML still shows the 
phenomena of misdiagnosis and missed diagnosis, and its 
accuracy is not 100% effective. Although there are many 
types and theories as support, many details remain to 
be optimized for more thorough and further simulation 
and planning. In addition, although ML is much more 
improved than simple mathematical statistics, the basic 
principle appears as a black box to an external user, and its 
predictions largely appear to be determined by an obscure 
logic that cannot be understood or interpreted by a human 
observer (70,71). Secondly, it is relatively difficult to collect 
high-volume patients’ date for a single-center institution 
due to privacy considerations or across institutions. The 
deployment of such powerful technologies in the area of 
scoliosis is still in its infancy, and scoliosis is a relatively 
narrow branch of the spine field; the available number 
of samples is not as sufficient as other subjects. Thirdly, 
another important preconception regarding the role of 
ML models in clinical spine realm is that the status of 
clinicians could be shaken, a so-called term ‘human-vs-
machine’ (72). In clinical practice, although ML could 
give high analysis accuracy in clinical guidance, the 
clinicians still must pay attention to the implications of this 
analysis (73). Researchers apply a variety of algorithms to 

develop applications, and the annotation and collection 
of the original data should be rigorous. Before extension 
to other surgeons, the application should require more 
comprehensive testing and verification with respect to other 
technologies. When applied in the real world, the surgeons’ 
role in the final decision should still be emphasized (74). 
Last but not least, ethical problems should never be 
neglected with ML in the scoliosis field. Data privacy and 
security remain a problem due to the massive amount of 
clinical and imaging data required, thus issues about data 
collection, transmission and storage, as well as informed 
consent are involved (2). Data anonymization is commonly 
advocated; nevertheless, patients retain rights to their 
anonymized data, which are subjected to strict regulations 
about storage, transmission and use, especially when data 
are used in a for-profit environment (75).

Consequently, conducting a high-quality study may be 
restricted. Also, the ability to evaluate the study design 
such as power analysis can be limited. Therefore, it is 
imperative to reach a consensus regarding the optimal 
method standardization of ML in clinical practice, and a 
high-quality study taking human-and -machine approach 
may reveal how the clinicians can benefit from ML models. 
The following suggestion recommendations should be 
considered by clinicians when ML is applied in scoliosis. 
Firstly, a multidisciplinary team containing spine clinicians, 
engineers, statistical experts, and data scientists should be 
created to evaluate the ML tools, which could compensate 
to the knowledge limitations for any single team. Secondly, 
there was considerable heterogeneity in the modeling 
methods used, including the inclusion criteria, input and 
output variables used, and so on. The comparison of 
different neural network algorithms could assist in selecting 
the best model with the best performance. Additionally, 
the advantages and disadvantages of different algorithms 
for each spinal disorder should also be considered (76). 
Therefore, future study should focus on the validation of 
ML models on heterogeneous test sets prior to deployment 
and the regulation of ML performance after deployment in 
clinical practice. Thirdly, concept shifting from human vs. 
machine to human-and-machine may be essential to over 
these barriers. Take an example, there were four studies 
concluded that ML combining with clinical decision making 
is superior to ML models or clinical decision making alone 
(72,76-78). Using the experience of clinicians as a pre-
requirement, the application of ML in spine deformity, 
such as scoliosis, will be more promising in increasing the 
accessibility of clinical data.
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Conclusions

Currently, ML in practice is still an art of weak AI. 
Although we presented its application in different clinical 
practice stages, there is still a lack of a complete cycle 
of the clinical procedure that can help surgeons make 
decisions from diagnosis to prognosis. The related 
applications of ML on etiology (79), gait analysis (57) 
and electronic medical records analysis (80) should also 
be continued. We believe that the implementation of 
sophisticated ML for scoliosis promises a revolution 
in how surgeons perform throughout all aspects of the 
clinical practice related to scoliosis (14). More effective 
and reliable predictive models for new ways of collecting, 
accessing, sharing, storing, analyzing and presenting the 
data need further exploration.
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