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Abstract: AI has, to varying degrees, affected all aspects of molecular imaging, from image acquisition 
to diagnosis. During the last decade, the advent of deep learning in particular has transformed medical 
image analysis. Although the majority of recent advances have resulted from neural-network models applied 
to image segmentation, a broad range of techniques has shown promise for image reconstruction, image 
synthesis, differential-diagnosis generation, and treatment guidance. Applications of AI for drug design 
indicate the way forward for using AI to facilitate molecular-probe design, which is still in its early stages. 
Deep-learning models have demonstrated increased efficiency and image quality for PET reconstruction 
from sinogram data. Generative adversarial networks (GANs), which are paired neural networks that are 
jointly trained to generate and classify images, have found applications in modality transformation, artifact 
reduction, and synthetic-PET-image generation. Some AI applications, based either partly or completely 
on neural-network approaches, have demonstrated superior differential-diagnosis generation relative to 
radiologists. However, AI models have a history of brittleness, and physicians and patients may not trust AI 
applications that cannot explain their reasoning. To date, the majority of molecular-imaging applications of 
AI have been confined to research projects, and are only beginning to find their ways into routine clinical 
workflows via commercialization and, in some cases, integration into scanner hardware. Evaluation of actual 
clinical products will yield more realistic assessments of AI’s utility in molecular imaging.
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Introduction

Molecular imaging—the noninvasive interrogation of 
molecules involved in a biological process—involves a 
complex series of steps, the end result of which is qualitative 
or quantitative characterization of the target molecules. 
Molecular imaging, in its physiological specificity, 
complements structural imaging modalities such as 
computed tomography and magnetic resonance imaging, in 
which abnormal structures are delineated with high spatial, 
temporal and contrast resolution. Whereas structural 
imaging is good at answering questions about a particular 
region of the body, such as “Is there something abnormal 

there?”, which relate to sensitivity, molecular imaging 
answers questions such as “What types of molecules exist 
there?”, addressing specificity. Molecular imaging shares 
with structural imaging its reliance on complex acquisition 
hardware, such as positron emission tomography (PET) and 
magnetic-resonance scanners, as well as the generation of 
complex spatiotemporal data sets.

Although many aspects of molecular imaging are 
independent of any particular modality, for the purposes 
of this review I will adopt the perspective of PET-based 
molecular imaging: molecular-probe design; time-of-
flight (TOF) estimation and image reconstruction; image 
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quantification; image registration; image segmentation; 
and synthesis of image and non-image features to generate 
a differential diagnosis, to quantify disease burden, or 
to provide prognostic information relative to candidate 
treatments. Each of these processes involves the analysis of 
data representing multivariate nonlinear associations among 
variables; it is no surprise, then, that each has been affected, 
to varying degrees, by the advent of AI methods well suited 
to delineating such associations.

Artificial intelligence (AI)

Although there are as many different definitions of AI as 
there are AI researchers and users, for the purposes of this 
review we can define AI as the computational manifestation 
of complex behavior, such as inference or perception (1). 
Computer scientists further distinguish between strong and 
weak AI, the former behaving exactly like a human (e.g., 
manifesting consciousness), and the latter performing well 
on a given task without regard to implementation details. All 
methods described in this review are examples of weak AI.

Machine learning

I will further focus on machine learning, the subdomain 
of AI in which an algorithm takes as input a set of 
training data, and constructs a model that embodies the 
associations among variables in those data relevant to a 
particular task or outcome, such as classification. Machine-
learning researchers further subdivide this discipline 
into unsupervised and supervised machine learning, and 
reinforcement learning. Unsupervised machine-learning 
algorithms take as input only the training data, and generate 
classes; that is, they partition the samples into mutually 
exclusive groups that may, or may not, have meaning 
to people. For 2-dimensional data, our visual system 
is an excellent example of real-time, massively parallel 
unsupervised machine learning: we immediately perceive 
clusters of pixels, even if they are unusual in shape and have 
no meaning to us. In contrast, during supervised machine 
learning each training-data point is labeled with the class it 
represents (e.g., tumor versus normal); this label represents 
the supervision, as it were—an analogy to the knowledge 
that a professor might impart to a trainee regarding what 
a particular collection of bright voxels represents in a PET 
examination. The majority of machine-learning algorithms 
applied to biomedical image data are supervised. Finally, 
reinforcement learning presents the machine-learning 

algorithm with a series of decisions accompanied by 
rewards or penalties; the reinforcement-learning algorithm 
reinforces associations that lead to long-term rewards 
and weakens associations that lead to penalties (2). These 
algorithms are most often applied in settings in which there 
is frequent feedback, such as video games [e.g., (3)].

The models generated by supervised learning allow end 
users to analyze data not used during the training process, 
just as a nuclear-medicine trainee who has been provided 
with many examples of lymphoma, and normal cases, on 
PET examination during training can then independently 
distinguish between such cases in medical practice. The 
superficial resemblance between medical training and machine 
learning belies the vast gulf in sophistication between the 
consciousness, and medical and practical knowledge possessed 
by the trainee, and the relatively impoverished models 
generated by even the most advanced AI algorithms.

The vast majority of software running on the world’s 
devices, including servers and portable devices, has been 
written by people. In many domains, people understand 
the specifications of the software to be developed, and 
developers have access to domain expertise to ensure 
that the software is performing as expected. For example, 
in developing an application to present test questions 
to students, the developers have access to a database of 
questions, and to educational experts who tell them how to 
decide which question to present next, and how to record 
the students’ answers. In domains in which we do not know 
the optimal way to solve a problem, such as segmenting a 
tumor on PET examination, but have many examples of 
accurately segmented tumors based on expert consensus, 
supervised machine learning offers us the potential to 
construct models that may approach, or even exceed, the 
accuracy manifest in the training data. In these cases, the 
only code written by people is the implementation of the 
training and inference components of a particular machine-
learning algorithm; the algorithm, in effect, uses the data to 
complete the model.

Neural networks

There is a vast range of machine-learning approaches to 
building classification models; historically, some of the most 
common approaches have been statistical (e.g., regression) 
models, support vector machines, and random forest 
models. Although these approaches worked well across a 
variety of domains, image-classification performance has 
lagged successes achieved in non-spatial domains. Neural-
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network research originated decades ago (4,5); however, it 
was only in the last decade that improvements in hardware 
allowed the implementation of so-called deep neural 
networks. Neural networks are crude analogs of neurons 
and how they intercommunicate. Each node, or neuron, 
in a neural-network model has parent nodes that influence 
it, an activation function, a firing threshold, and an output 
value. Combining parent-activation levels via the activation 
function yields the neuron’s output value, which in turn is 
propagated to its children. The original neural network 
design, called a perceptron, had only two layers: input 
and output; such networks are capable of discriminating 
between linearly separable classes. Deep networks, due 
to their many intermediate, or hidden, layers, can model 
nonlinear multivariate associations and thereby perform 
complex image-classification or segmentation tasks.

One problem with standard neural networks, such 
as multilayer perceptrons (MLPs), is that they become 
unmanageable as the number of inputs increases. For 
example, an FDG examination of the head with 160×160×96 
voxels would yield approximately 2.5 million input 
voxels, which could not be accommodated under an MLP 
architecture. Even if we could scale MLPs to millions of 
neurons, any change to an input image, such as translation 
or scaling, would appear as completely different images to 
the learning algorithm. In contrast, a convolutional neural 
network (CNN) (6,7) applies a neural-network layer to 
a subset of an image, systematically traversing across the 
entire image volume during learning and classification; 
the output of this layer is then convolved with the next-
deeper CNN layer, until output is produced at the last 
layer. The word convolution refers to the traversal process, 
which renders CNNs much more parsimonious with 
respect to parameters and computational requirements, and 
more robust to perturbations of the input image, relative 
to MLPs. Stacking convolutional layers in this fashion 
typically leads to layers with progressively complex features, 
such as edges, shapes, and objects.

In addition, CNNs alternate convolution layers with 
pooling layers, which are specified, rather than learned. 
A pooling layer downsamples its input, typically by a 
factor of 2, in effect summarizing features and improving 
spatial invariance (e.g., to translation). One or more fully 
connected layers complete the network; a fully connected 
layer is one in which each node is connected to each of the 
nodes in the previous layer, but not to any of the nodes in 
the same layer. These fully connected layers summarize 
features, and map features onto output values; for example, 

the softmax function maps features onto output classes 
such that outputs sum to 1.0, i.e., they act as pseudo-
probabilities. In this way, CNN learning algorithms 
capture relevant features automatically, from data, and tend 
to be robust to minor perturbations of the input image. 
Furthermore, since convolution operates on only a small 
subset of the image at a time for training or classification, 
the number of parameters to be learned, and hence the 
computational requirements, of CNNs are much lower 
than those of MLPs. The vast majority of neural-network 
architectures applied to image data are deep CNN variants. 
It is important to note that there is a vast range of neural-
network architectures beyond CNNs, including recurrent 
neural networks and deep belief networks (8).

Generative adversarial networks (GANs)

Much of nuclear medicine centers on providing patients and 
their physicians with diagnostic or prognostic information 
from PET or SPECT image data, tasks to which CNNs are 
well suited. However, there are cases in which researchers 
wish to generate novel examples of a class, such as a PET 
examination positive for lymphoma, rather than classify 
a PET examination to determine a diagnosis or segment 
a lesion or normal structure of interest. Goodfellow’s 
invention of GANs in 2014 has revolutionized this 
theretofore relatively underdeveloped research area (9). 
A GAN consists of two networks—a generator and a 
discriminator—that learn together in the game-theoretic 
context of a zero-sum game (10). The generator generates 
an example of the input data, with the goal of minimizing 
the difference between the true input feature distribution 
and the distribution of features in samples that it generates 
(i.e., its goal is to generate realistic counterfeits). The 
discriminator, in turn, maximizes accuracy (i.e., its goal is 
to classify real examples and counterfeits perfectly). During 
this simultaneous supervised-learning process, the generator 
examines the characteristics that the discriminator uses, and 
thereby learns to produce increasingly realistic samples, 
even as the discriminator becomes better able to detect even 
subtle differences between real and counterfeit samples. 
GANs have been used to synthesize strikingly realistic 
pictures of faces and inanimate objects (11,12). With 
respect to medical image data, GANs have shown promise 
across a wide range of applications (13), including simulated 
modality transformations (14-18), artifact reduction (19,20), 
and synthetic-image generation for supervised machine 
learning, thereby obviating patient-privacy protection of 
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training data (21-23).

Probe design

This aspect of molecular imaging is the least explored, 
and one of the more controversial. As described in (24), 
a molecular imaging probe typically consists of various 
combinations of a signal agent, which can be detected by 
the scanner; a targeting moiety, which specifically interacts 
or binds with the molecule of interest; and a linker, which 
binds the other two components. The in vivo interactions 
of the probe with the molecule of interest, as well as with 
the remainder of the organism, underlie the vast complexity 
of probe design. As with drug design, high-throughput 
screening, including combinatorial chemistry and the 
creation of phage-display peptide libraries, allow chemists 
to test large numbers of potential targeting moieties in 
parallel (24).

Medicinal chemists have also employed simulation 
software to predict interactions between a candidate 
probe and a target of interest. This approach is very 
computationally intensive, but allows chemists to evaluate 
a large number of candidates without having to synthesize 
them (25-28). To increase the efficiency of docking 
software, scientists have applied swarm intelligence (27,29), 
a branch of AI involving the interaction of large numbers of 
relatively simple agents, much as ants or bees cooperate in 
nature, to solve complex tasks. Although these techniques 
have not been directly applied to design molecular imaging 
probes, the drug-design literature indicates potential 
novel methods for applying AI and simulation software 
to vastly increase the number of candidate probes, and to 
increase the probability that an individual probe will have 
desired characteristics, such as bioavailability, stability, and  
safety (30-32). However, the application of AI techniques 
to drug design is in its early stages, and there remains 
skepticism regarding its promise (33,34).

TOF estimation and image reconstruction

TOF estimation is central to localizing PET annihilation 
events along the line of response in TOF PET. Historically, 
TOF has been estimated using signal-processing methods 
such as constant fraction discrimination, leading-edge 
discrimination, or linear fitting. The ready availability of 
TOF ground-truth data enabled Berg et al. to train a CNN 
that computes timing information directly from coincidence 
waveforms (35); they observed approximately 20% 

improvement in timing resolution compared to leading-
edge discrimination and constant-fraction discrimination.

PET image data are acquired as sinograms, which 
contain count data for a discrete time interval. As these data 
are not visually interpretable, they must be reconstructed 
into images. However, as with CT image reconstruction, 
noise in the acquired data prevents reconstruction of a 
unique optimal image; this is an example of the inverse 
problem, i.e., determining the cause (e.g., 3D distribution 
of a probe) of a set of observations (e.g., sinograms) (36). 
Due to noise in the sinogram data, solutions to the inverse 
problem are unstable, i.e., they may change in unpredictable 
ways with even small perturbations of the sinogram data. 
Analytic methods, such as backprojection, backprojection 
with subsequent filtering, and rebinning, are the oldest 
and most computationally tractable reconstruction  
approach (36). However, these approaches are based on 
simplifying assumptions that limit reconstruction quality. 
Iterative algorithms allow more complex models of PET 
data, at the cost of considerably greater computational 
complexity. These approaches typically include an image 
model, a data model (statistical distribution of observations 
given their true values), a system model that mathematically 
relates the image and data models, an objective function 
that formalizes the properties of a “good” reconstruction, 
and an optimization algorithm that optimizes the objective 
function, thereby generating an image that corresponds to 
the singram data (37).

Due to the extensive computational requirements of 
iterative methods, and their requirement for an objective 
function, AI researchers have sought to apply deep 
learning methods as an alternative to reconstruct PET 
images directly from sinogram data (38). Häggström  
et al. (39) demonstrated that a deep-learning network, 
trained on a large corpus of phantom-derived simulated 
data, outperformed ordered subset expectation maximization 
and filtered backprojection, with respect to efficiency and 
image quality. Other image-mapping methods, such as 
those based on GANs (40), have also shown promise in 
generating images directly from sinograms. Cui et al. (41) 
trained a sparse autoencoder to reconstruct dynamic PET 
images, improving upon maximum likelihood expectation 
maximization at the cost of greater computational 
requirements.

Researchers have also sought to generate full-dose 
PET images from low-dose images, in effect removing 
noise inherent to low-dose technique. The most common 
approach is based on a GAN-like architecture, in which 
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an estimator generates a full-dose equivalent image from 
low-dose input, and a discriminator, which is trained 
simultaneously to distinguish between true full-dose and 
estimated PET images (42-46). Preliminary results indicate 
the potential for considerable dose reduction, with reported 
good results for low-dose images ranging from 1/4 dose 
to 1/200 dose. However, this application of GANs is in 
very early stages, and will require much more extensive 
validation before approval by regulatory agencies and 
adoption by scanner manufacturers.

Image segmentation

Anyone who has manually traced the outline of a tumor, 
lesion, or anatomic structure understands how laborious 
and error-prone such tasks are; although intra- and 
inter-rater reliability can be high for such tasks under 
optimal conditions (47), manual methods do not scale 
to thousands of image volumes. Furthermore, if people 
without extensive segmentation experience participate, low 
intra- and inter-observer reliability may significantly affect  
results (48,49). To automate all or portions of the PET 
image-segmentation process, researchers have implemented 
non-AI approaches based on intensity thresholding, active 
contours, or spatial models, among others (50,51). In 
addition, both unsupervised machine learning methods, 
such as k-nearest neighbor (52,53), and supervised machine 
learning methods, such as support vector machines (54) and 
neural networks (53,55-61) have been applied successfully to 
segment PET or PET/CT tumor volumes automatically. In 
addition, researchers have combined CNNs and radiomics 
to detect lymph-node metastases (62). In general, deep-
learning approaches have outperformed other AI and non-
AI approaches for segmentation of CT and MR images in 
open competitions (7,63).

Differential diagnosis and prognosis

Historically, AI approaches to differential diagnosis based 
partially or completely on image-derived features required 
a two-stage approach consisting of feature extraction, and 
differential diagnosis based on those features. However, 
with the advent of CNN-based approaches, researchers 
have demonstrated the feasibility of generating a differential 
diagnosis directly from images (64,65), and in some cases 
outperforming radiologists. More commonly, however, 
even approaches based on neural networks employ a multi-
stage approach, in which statistics or radiomics-derived 

metrics are calculated from volumes segmented by a neural 
network.

CNNs have also been applied to predict outcomes; Ding 
et al. (66) demonstrated that a CNN applied to 18F-FDG 
PET images could predict the onset of Alzheimer’s disease 
years in advance, exceeding the accuracy of experts. 
Similarly, Shen et al. trained a deep belief network with 
18F-FDG PET images, and achieved approximately 
86% accuracy in predicting conversion of mild cognitive 
impairment to Alzheimer’s disease (67).

Discussion

Images, with their complex multiscale features, have 
presented immense challenges to biomedical engineers 
and AI researchers. Prior to the advent of deep neural 
networks powered by inexpensive graphics processing  
units (68), most medical-image-analysis algorithms 
performed well only on tightly constrained domains; for 
example, the atlas-registration approach to brain-image 
segmentation worked well for subjects with normal or 
atrophied brains, but did not generalize to those with 
mass effect. Deep learning models have dominated image-
segmentation competitions because they can model complex 
nonlinear multiscale interactions among image features, 
driven purely by training data, rather than expert-derived 
equations or constraints (69).

Some of the aspects of deep learning that contribute to 
its strong performance also carry significant disadvantages. 
Despite their parsimony relative to MLPs, CNNs may 
still require very large training data sets, depending on 
the complexity of the features required for classification. 
In general, as with any machine-learning approach, the 
number of training samples required increases with the 
number of parameters, the number of output classes, the 
complexity of the associations, and their subtlety. Transfer 
learning, in which features and parameters learned in one 
domain (e.g., classifying photographs of everyday objects) 
are used to initialize a CNN to be trained in a (perhaps 
distantly) related domain, has proved useful in reducing data 
requirements in medical and nonmedical applications of AI 
(70-72). In practice, it can be difficult to know how many 
training samples to collect. Undersampling, i.e., training on 
fewer samples than parameters, risks overfitting, in which 
very specific features are learned that do not generalize well 
to novel images. This risk is best addressed by enlarging 
the training sample, and can be detected by evaluating 
a CNN model with external data, i.e., data that were 
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collected independently of the training data, preferably at a  
different site.

Although CNNs are more robust than MLPs, deep-
learning models may still be brittle; that is, they may 
fail unexpectedly with only minor perturbations, such as 
rotation, of the input. The AI literature is replete with 
examples of minimal noise (even one voxel!), or minimal 
rotation, leading to misclassification with high confidence, 
such as a turtle being labeled as a rifle, or a cat being labeled 
as guacamole, with upwards of 95% confidence (73-75). 
Although improving robustness to so-called adversarial 
attacks is a major focus of AI research, this problem has 
not been solved, leaving CNN-based models vulnerable to 
manipulation or inadvertent corruption due to noise (76). 
Related to this is the lack of introspection and memory 
regarding training; current machine-learning algorithms, 
including those for CNNs, generate a classification model 
that is suited for a narrow task, but does not include 
information about the training process. Whereas if we 
showed a PET examination of a patient with a rare disorder 
such as Erdheim-Chester disease to a nuclear-medicine 
physician, she would either recall having seen a similar 
case, or remark that she had never seen anything with this 
distribution of 18F-FDG avidity. In contrast, a CNN trained 
to recognize lymphoma on 18F-FDG PET examination will 
readily classify a CT scan, a PET phantom, or a volume 
of noise, as it lacks the ability to state that the input does 
not conform to its training history. The introduction 
of introspection, or a similar quality, to deep learning 
will constitute an important step in increasing trust in 
classification results.

Another limitation of deep-learning methods is their 
opaqueness. Unlike most older image-analysis methods, 
which have been based largely on equations that developers 
implemented, neural networks classify based on connection 
parameters derived from data, rendering their mechanisms 
opaque to computer scientists and domain experts. Although 
visualization tools exist to highlight features relevant to a 
particular CNN classification task (77), in general it is much 
more difficult to debug a CNN classifier than one based on 
a Bayesian network or random forest, for example.

In summary, AI, and in particular deep learning, has 
profoundly altered the medical-image-analysis landscape. 
Although most of the advances presented herein have yet 
to be adopted in the clinic, the rapid pace of advances in 
this field augur well for eventually increased robustness, 
transparency and trustworthiness, which will ultimately lead 
to improved patient care. In the near term, it is clear that 

superior segmentation results, which can be readily verified 
visually, will free trainees and practicing nuclear-medicine 
physicians from drawing volumes of interest, and will 
thereby foster the implementation of quantitative radiology. 
In addition, although AI applications to probe design are 
in their early stages, results in drug discovery indicate the 
promise of this approach.
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