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Background: Cardiac arrest (CA), a common disease with a high mortality rate, is a leading cause of 
ischemia/reperfusion (I/R)-induced dysfunction of the intestinal barrier. Long non-coding RNAs (lncRNAs) 
play crucial roles in multiple pathological processes. However, the effect of the lncRNA maternally expressed 
3 (MEG3) on intestinal I/R injury and the intestinal barrier has not been fully determined. Therefore, this 
study aimed to investigate the function of MEG3 in CA-induced intestinal barrier dysfunction.
Methods: The oxygen and glucose deprivation (OGD) model in the human colorectal adenocarcinoma 
Caco-2 cells and  in vivo cardiac arrest-induced intestinal barrier dysfunction model in Sprague-Dawley 
(SD) rats were established. The effect and underlying mechanism of MEG3 on the intestinal barrier from 
cardiac arrest-induced ischemia/reperfusion injury were analyzed by methyl thiazolyl tetrazolium (MTT) 
assays, Annexin V-FITC/PI apoptosis detection kit, Terminal deoxynucleotidyl transferase-mediated dUTP 
nick end labelling (TUNEL) staining, quantitative polymerase chain reaction (qPCR) assays, Western 
blot analysis, luciferase reporter gene assays, transepithelial electrical resistance (TEER) measurements, 
immunofluorescence analysis, and enzyme-linked immunosorbent assay (ELISA) assays. 
Results: Interestingly, we found that MEG3 could protect Caco-2 cells from oxygen-glucose deprivation 
(OGD)/reoxygenation-induced I/R injury by modulating cell proliferation and apoptosis. Moreover, MEG3 
relieved OGD-induced intestinal barrier dysfunction in vitro, as demonstrated by its significant rescue effect 
on transepithelial electrical resistance and the expression of tight junction proteins such as occludin and 
claudin-1 (CLDN1), which were impaired in OGD-treated Caco-2 cells. Mechanistically, MEG3 inhibited 
the expression of inflammatory factors including interleukin (IL)-1β, tumor necrosis factor (TNF)-α, 
interferon-gamma (IFN)-γ, inflammatory factors including interleukin (IL)-10, and transforming growth 
factor beta (TGFb)-1, as well as nuclear factor-kappa B (NF-κB) signaling. In response to OGD treatment 
in vitro, MEG3 also activated the expression of sirtuin 1 (SIRT1) by Caco-2 cells via sponging miR-34a-3p. 
Furthermore, MEG3 relieved CA-induced intestinal barrier dysfunction through NF-κB signaling in vivo.
Conclusions: LncRNA MEG3 can protect the intestinal barrier from cardiac arrest-induced I/R injury 
via miR-34a-3p/SIRT1/NF-κB signaling. This finding provides new insight into the mechanism by which 
MEG3 restores intestinal barrier function following I/R injury, presenting it as a potential therapeutic 
candidate or strategy in intestinal injury.
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Introduction

Cardiac arrest (CA) is a common cause of mortality in 
patients with coronary aorta disorder (1). CA sees the 
heart rate rise dramatically, and the contractions of cardiac 
muscle in the ventricular cells become uncoordinated; 
this causes the heart to pump inefficiently, resulting in 
unconsciousness and death (2,3). CA-induced microvascular 
dysfunction, insufficient blood flow, and tissue oxygen 
transportation lead to systemic ischemia/reperfusion (I/R) 
injury in various organs, including the brain and intestine (4).  
Pathophysiological intestinal I/R can also result from acute 
mesenteric ischemia, surgical procedure, and traumatic 
shock (5,6). Intestinal I/R can give rise to numerous organ 
disorders and inflammatory system syndromes and is a major 
cause of mortality and morbidity in surgical patients (7,8).

After CA, reestablishing the blood flow and oxygen 
supply are vital in heart and intestine. The reperfusion 
triggers a cascade of events that may inflict further injury 
and usually surpasses the initial ischemic damage (9,10). 
Intestinal I/R destroys the function of the mucosal 
barrier (11,12). By enhancing the permeability of the 
intestinal barrier, intestinal I/R induces the translocation 
of endotoxins and pathogenic bacteria, which eventually 
progresses to multiple organ failure and sepsis (13,14). 
Therefore, the intestinal mucosal barrier, which is 
responsible for defending the body from invasion by 
pathogenic organisms, should be protected from I/R injury 
caused by CA (15). However, the mechanism underlying 
CA-induced intestinal I/R injury and intestinal mucosal 
barrier dysfunction has not been fully elucidated. 

The advances in high-throughput technology have 
facilitated a profound exploration of the non-coding 
genome with unparalleled determination. Long non-coding 
RNAs (lncRNAs) have been found to play crucial roles 
in multiple physiological and pathological processes (16).  
LncRNAs have also been observed to impact mRNA 
paracellular permeability and translation, as well as 
intestinal cell proliferation and apoptosis susceptibility, 
to regulate intestinal I/R and the intestinal barrier (17). 
A recent study reported that lncRNA uc.173 regulates 
the intestinal barrier by modulating miR-29b/claudin-1 
(CLDN1) signaling (18). Maternally expressed gene 3 

(MEG3) is an imprinted gene located at chromosome12  
in mice and chromosome 14 in humans which expresses 
in many normal tissues, such as cancer cells, neurons, 
hepatocytes, cardiac fibroblasts, and ECs. MEG3 is a 
well-known lncRNA that plays various roles in multiple 
pathological processes, including cancer progression 
and inflammatory response (18-20). Many reports reveal 
that MEG3 could inhibit tumor cell proliferation and 
induces tumor cell apoptosis as well as autophagy. Those 
researches suggest that MEG3 exerts an antitumor activity 
in several cancers. The involvement of lncRNA MEG3 in 
neurological dysfunction has also been demonstrated in a 
brain I/R injury mouse model (21). It has been also reported 
MEG3 can regulate IL-1β abundance to prevent sepsis 
during lung infection by acting as a decoy of miRNA (22).  
Piccoli et al. identifies the lncRNA Meg3 to be a crucial 
regulator of cardiac MMP-2, promoting cardiac fibrosis 
and impairment of diastolic function following pressure 
overload (23). However, the effect of MEG3 on intestinal  
I/R injury and the intestinal mucosal barrier remains unclear. 

MicroRNAs (miRNAs), a type of small RNAs that 
modulate mRNA translation, regulate the expression of 
genes involving in various biological and medical processes, 
such as including cell cycle regulation, stress response, 
differentiation, inflammation, and cancer progression 
(24,25). Several miRNAs, including miR-381-3p, miR-
130a, and miR-212, have been reported to participate in the 
modulation of intestinal I/R injury and the intestinal barrier 
by targeting various key signaling pathways (26,27). MiR-
34a-3p plays a vital role in the development of malignancies 
including cervical cancer and meningioma (28,29). 
Moreover, nuclear factor kappa B (NF-κB) signaling, as a 
critical pathway for multiple cellular processes, contributes 
to intestinal I/R injury and intestinal barrier dysregulation 
(30-32). Sirtuin 1 (SIRT1), as a highly conserved NAD+-
dependent deacetylases and a critical biological sensor, has 
been well recognized to inhibit NF-κB signaling in multiple 
pathological processes, and the miRNA targeting SIRT1 
can induce NF-κB activation (33-36). Nevertheless, the 
relationship between miR-34a-3p, SIRT1/NF-κB signaling, 
and MEG3, especially in the modulation of intestinal I/R 
and the intestinal barrier, remains obscure.

In this study, we aimed to explore the role of MEG3 
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in CA-induced intestinal I/R and intestinal barrier 
dysregulation. We identified a novel protective role of 
MEG3 against CA-induced intestinal I/R injury in the 
intestinal barrier via miR-34a-3p/SIRT1/NF-κB signaling.

We present the following article in accordance with the 
ARRIVE reporting checklist (available at http://dx.doi.
org/10.21037/atm-20-6438).

Methods

Cell culture, treatment and oxygen-glucose deprivation 
(OGD) model 

Human colorectal adenocarcinoma Caco-2 cells were 
supplied by American Type Tissue Culture Collection (New 
York, USA). The cells were cultured in Dulbecco’s Modified 
Eagle Medium (DMEM, Solarbio, China) containing 10% 
fetal bovine serum (Gibco, USA), 0.1 mg/mL streptomycin 
and 100 units/mL penicillin at 37 ℃ with 5% CO2. To 
simulate I/R conditions, an in vitro OGD model was 
established. Caco-2 cells were incubated for 12 h with 5% 
CO2 and 1% O2 with 94% N2. The cells were then cultured 
for 6 h in normoxic conditions to achieve reoxygenation. 
The cells were infected with ADV4, ADV4 MEG3, ADV1, 
and ADV1 MEG3 shRNA. All vectors were synthesized 
by Genscript (Nanjing, China). The MEG3 shRNA target 
sequence was: 5'-GCUCAUACUUUGACUCUAU-3'. 
MiR-34a-3p mimic and inhibitor were obtained from 
RiboBio (Guangzhou, China). Pyrrolidinedithiocarbamate 
(PDTC) (Sigma, USA) was used at a dose of 60 mM.

MTT assays 

MTT assays were performed to measure the cell viability 
of Caco-2 cells. Briefly, 2×104 Caco-2 cells were put into  
96-well plate and cultured for 12 h. Then, 10 μL MTT 
solution (5 mg/mL) was added, and the cells were cultured 
for a further 4 h. The medium was discarded, and 150 μL 
dimethyl sulfoxide (DMSO) was added to the wells. An 
enzyme-linked immunosorbent assay (ELISA) microplate 
reader was used to analyze the absorbance at 570 nm (BioTek 
EL 800, USA).

Analysis of cell apoptosis 

Caco-2 cells were cultured at a density of 1×105 in 6-well 
culture plates. Cell apoptosis was measured using an 
Annexin V-FITC/PI apoptosis detection kit (Keygen 

Biot Solasodine, China) according to the manufacturer’s 
instructions. Briefly, 1×106 cells were collected and washed 
by binding buffer. The cells were then dyed with Annexin V 
and propidium iodide (PI) at 25 ℃. Finally, apoptotic cells 
were measured by flow cytometry.

Terminal deoxynucleotidyl transferase-mediated dUTP 
nick end labelling (TUNEL) staining

Apoptotic cells were also detected by TUNEL staining 
kit supplied by Ruisai Biotechnology Co., Ltd. (Shanghai, 
China) following the manufacturer’s manual. Five random 
fields were selected in each section and the rate of positive 
cells was analyzed under a fluorescence microscope at 400× 
magnification.

Quantitative reverse transcription–polymerase chain 
reaction (qRT-PCR)

Total RNAs was extracted using TRIzol (Invitrogen, 
USA). Synthesis of first-strand cDNA was carried out 
according to the manufacturer’s instructions (Invitrogen, 
USA). Quantitative reverse transcription–polymerase chain 
reaction (qRT-PCR) was conducted using SYBR Premix Ex 
Taq II kit (Takara, Japan). The standard controls for miRNA 
and mRNA were U6 and glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH), respectively. The quantitative 
RNA levels were determined in three independent 
experiments. The primer sequences used were as follows: 
MEG3 forward: 5'-GTGAAGGTCGGAGTGAACG-3', 
reverse :  5 '-CTCGCTCCTGGAAGATGGTG-3' ; 
miR-34a-3p forward :  5 ' -ACACTCCAGCTGGG
A AT C A G C A A G TATA C T G C C C TA - 3 ' ,  r e v e r s e : 
5 ' -CTCAACTGGTGTCGTGGAGTCGGCAAT
TCAGTTGAGTAGGGCAG-3' ;  SIRT1 forward: 
5'-CTTCAGGTCAAGGGATGGTAT-3',  reverse: 
5'-GCGTGTCTATGTTCTGGGTAT-3'; U6 forward: 
5'-GACAGATTCGGTCTGTGGCAC-3', reverse: 
5'-GATTACCCGTCGGCCATCGATC-3'; GAPDH 
forward: 5'-GACAGATTCGGTCTGTGGCAC-3', 
reverse: 5'-GATTACCCGTCGGCCATCGATC-3'.

Western blot analysis

Caco-2 cells were collected with RIPA (Beyotime, China) 
with phenylmethylsulfonyl fluoride (PMSF). Identical 
amounts of protein were divided by sodium dodecyl 
sulphate–polyacrylamide gel electrophoresis (SDS-
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PAGE), and then transferred to polyvinylidene difluoride 
(PVDF) membranes (Millipore, USA). The membranes 
were blocked with 5% milk and incubated with primary 
antibodies for B-cell lymphoma 2 (Bcl-2, Proteintech, 
China), Bcl-2-associated X protein (Bax, Proteintech, 
China), cyclin D1 (Proteintech, China), SIRT1 (Proteintech, 
China), caspase-3 (Cell Signaling, US), p-p65 (Bioworld 
Technology, USA), p65 (Bioworld Technology, USA), p-IκB 
(Bioworld Technology, USA), IκB (Bioworld Technology, 
USA), and GAPDH (Sigma, USA) at 4 ℃ overnight. 
Then, the membranes were exposed to the corresponding 
secondary antibodies for 1 h. Finally, the proteins were 
visualized using a Bio-Rad imaging system. 

Luciferase reporter gene assay

Luciferase reporter gene assays were carried out using 
the Dual-luciferase Reporter Assay System (Promega, 
USA). Briefly, samples were transfected with miR-1247-3p  
mimic, miR-control, and the vector containing MEG3, 
MEG3 mutant, SIRT1, or SIRT1 mutant fragment using 
Lipofectamine 2000 (Invitrogen, USA). Luciferase activity 
was analyzed and Renilla was used for normalization.

Transepithelial electrical resistance (TEER) measurements

To analyze the barrier function of the intestine, TEER 
was measured. 2×105 cells/mL Caco-2 cells were layered 
on collagen-covered polycarbonate penetrable support 
supplements (Corning, USA). The medium was replaced 
every 2 days. The intestinal barrier was measured at 3 weeks 
by TEER using the Millicell ERS-2 (Electrical Resistance 
System; Merck-Millipore, USA). 

Immunofluorescence analysis

Caco-2 cells were fixed by 4% paraformaldehyde for  
30 min, treated with Triton X 100 (0.2%) for 10 min, 
and then treated with bovine serum albumin (BSA, 2%) 
for 30 minutes. The slides were incubated with occludin 
(Proteintech, China) and CLDN1 (Proteintech, China) 
antibodies at 4 ℃ overnight, and then incubated with 
secondary antibodies (Proteintech, China) for 1 h at 37 ℃. 
The slides were stained with Hoechst (Beyotime, China) for 
10 min at 25 ℃. A Nikon microscope (Tokyo, Japan) was 
used to analyze immunofluorescence.

ELISA assays

The levels of interleukin (IL)-1β, tumor necrosis factor 
(TNF)-α ,  interferon-gamma (IFN)-γ ,  IL-10,  and 
transforming growth factor beta (TGFb)-1 in the culture 
medium of Caco-2 cells were analyzed with a double-
antibody ELISA kit (R&D, USA). 

Establishment of a CA rat model

Sprague-Dawley (SD) rats were used to establish a CA-
induced intestinal barrier dysfunction model in vivo, as 
previously described (37). Briefly, two acupuncture pins 
were placed in the fourth rib of the right sternal edge and 
the left sternal edge. The stimulating wire was attached, 
and a 60-Hz, 2 mA current was delivered. The current 
was maintained for 3 minutes to avoid unintentional 
defibrillation. After 6 minutes, the resuscitation was 
started; the rats were given adrenaline (2.2 g/100 g) 
administration, chest compression (200 times/min), and 
mechanical ventilation (100% FiO2, 0.65 mL/100 g,  
100 breaths/min). The mechanical oxygenation and 
hemodynamic monitoring were maintained with 21% 
oxygen for a further 2 h. After recovery, the rats were 
closely monitored. 

Next, the rats were intravenously injected via the tail 
with ADV4, ADV4 MEG3, ADV1, ADV1 MEG3 shRNA 
or treated with percutaneous tunneled drainage catheter 
(PTDC) for further analysis. The serum levels of D-lactic 
acid and endotoxin in the rats were measured using the 
corresponding kit (Horseshoe Crab, China). Sections of the 
intestinal mucosa of the rats were stained with hematoxylin 
and eosin (HE). Immunohistochemical (IHC) staining with 
the appropriate antibodies (Proteintech, China) was also 
performed to analyze the expression levels of occludin and 
CLDN1 in the intestinal mucosa of the rats. The animal 
care and experimental procedures were authorized by the 
Animal Ethics Committee of The First Affiliated Hospital 
of Xiamen University (20190227), in compliance with the 
First Affiliated Hospital of Xiamen University guidelines 
for the care and use of animals.

Statistical analysis

Data were expressed as mean ± SD, and the statistical analysis 
was performed by GraphPad prism 7. The unpaired Student’s 
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t-test was applied for comparing two groups, and the one-
way ANOVA was applied for comparing among multiple 
groups. P<0.05 were considered as statistically significant.

Results

LncRNA MEG3 protected Caco-2 cells from OGD-induced 
I/R injury in vitro

Cell proliferation and apoptosis have been reported to be 
the crucial contributors to intestinal I/R injury (38). To 
assess the effect of lncRNA MEG3 on intestinal I/R injury 
in vitro, we constructed an OGD model in the human 
colorectal adenocarcinoma Caco-2 cells by treating them 
with OGD/reoxygenation (OGD/R) to mimic intestinal I/R 
injury. 

Interestingly, we found that the expression levels of 
MEG3 were reduced in the OGD cell model, in which 
the overexpression of MEG3 could rescue this reduction 
whereas the depletion of MEG3 by shRNA could further 
decrease the expression in the system (Figure 1A), suggesting 
that OGD-induced intestinal I/R hindered the expression 
of MEG3 in Caco-2 cells. As expected, cell viability was 
decreased in OGD-treated Caco-2 cells (Figure 1B).  
Surprisingly, MEG3 overexpression increased the cell 
viability, but the MEG3 shRNA decreased cell viability in 
the cells, indicating that MEG3 enhances cell proliferation 
in response to OGD-induced cell injury (Figure 1B). 
Consistently, cell apoptosis was attenuated by MEG3 
overexpression, while the knockdown of MEG3 enhanced 
cell apoptosis in the OGD-treated cells (Figure 1C,D). 

Several key proteins, including Bcl-2, Bax, and caspase-3, 
are involved in the modulation of cell apoptosis and can 
serve as markers of apoptosis (39,40). Intriguingly, we 
found that MEG3 overexpression rescued the expression of 
Bcl-2 in OGD-treated cells and reduced the expression of 
Bax and caspase-3 induced by OGD treatment, while the 
depletion of MEG3 exerted the opposite effect (Figure 1E).  
These results suggested that MEG3 can protect Caco-2  
cells from OGD-induced I/R injury by modulating 
apoptosis. 

LncRNA MEG3 relieved OGD-induced intestinal barrier 
dysfunction in vitro 

Next, we investigated the role of MEG3 in the regulation 
of the intestinal barrier in vitro. TEER is an indicator of 
intestinal barrier function (41). Interestingly, the TEER 

value in Caco-2 cells was significantly reduced after OGD 
treatment (Figure 2A). Strikingly, the OGD-inhibited 
TEER level was rescued by the overexpression of MEG3 
and further decreased by the MEG3 shRNA (Figure 2A), 
suggesting that MEG3 can alleviate the impairment of the 
intestinal barrier by OGD. Besides, as a control, TEER 
values in the monolayers were not changed (Figure 2B). 
Tight junction proteins including occludin and CLDN1, 
play a critical role in maintaining the function of the 
intestinal barrier (42). Significantly, immunofluorescence 
revealed that the expression levels of occludin and 
CLDN1 were reduced in OGD-treated Caco-2 cells; 
this effect could be rescued by MEG3 overexpression but 
was reinforced by the depletion of MEG3 (Figure 2C,D), 
indicating that MEG3 relieved OGD-induced intestinal 
barrier dysfunction in vitro.

NF-κB signaling might be involved in the protective 
mechanism of MEG3 against OGD-induced I/R injury 
in vitro

Next, we attempted to determine the mechanism underlying 
MEG3’s mediation of the intestinal barrier in OGD-induced 
I/R injury. Surprisingly, we found that the expression 
levels of inflammatory factors including IL-1β, TNF-α, 
IFN-γ, IL-10, and TGFb-1 in the culture medium of 
OGD-treated Caco-2 cells were significantly attenuated 
by MEG3 overexpression, whereas cells transfected with 
MEG3 shRNA enhanced the expression levels of IL-1β, 
TNF-α, IFN-γ, IL-10, and TGFb-1 (Figure 3A,B,C,D,E).  
These observations suggested that MEG3 protects 
against inflammation in OGD-related cell injury. The 
phosphorylation of p65 subunits of NF-κB has been reported 
to be necessary for p65 activation (43). Moreover, the 
function of p65 can be suppressed by NF-κB inhibitor (IκB), 
with the phosphorylation of IκB causing IκB degradation 
and the activation of p65 (44). We found that the levels of 
p65 phosphorylation (p-p65) and p65 downstream gene 
cyclin D1 were up-regulated, whereas phosphorylation of 
IκB (p-IκB) was down-regulated, in OGD-treated Caco-2 
cells (Figure 3F). Remarkably, these effects could be rescued 
by MEG3 overexpression and enhanced by the depletion of 
MEG3 (Figure 3F), suggesting that MEG3 impaired NF-
κB signaling in the OGD model. Moreover, the NF-κB 
inhibitor PDTC could reverse the effect of MEG3 depletion 
on cell proliferation and apoptosis as demonstrated by 
the increases in cell viability and Bcl-2 expression, as well 
as the decreased expression of Bax (Figure 3G,H). Taken 
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Figure 1 MEG3 protects Caco-2 cells from OGD induced I/R injury in vitro. (A-E) Untreated Caco-2 cells and oxygen and glucose 
deprivation-treated Caco-2 cells were infected with ADV4, ADV4 MEG3, ADV1, or ADV1 MEG3 shRNA as indicated. (A) The expression 
levels of lncRNA MEG3 were measured by qPCR. (B) Cell viability was analyzed by MTT assays. (C) Cell apoptosis was assessed by flow 
cytometry. (D) Cell apoptosis was assessed by TUNEL staining. Mean ± SD of at least three experiments is shown. (E) The expression levels 
of Bcl-2, Bax, caspase-3, and GAPDH were detected by western blot. Statistically significant differences are indicated: **P<0.01, #P<0.05, 
##P<0.01. MEG3, maternally expressed 3; OGD, oxygen and glucose deprivation; qPCR, quantitative polymerase chain reaction; Bcl-2, B-cell 
lymphoma 2; Bax, B cell lymphoma/leukmia-2 (Bcl-2) associated x protein; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; SD, 
standard deviation; I/R, ischemia/reperfusion.
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Figure 2 MEG3 relieves OGD-induced intestinal barrier dysfunction in vitro. (A,B) Untreated Caco-2 cells and oxygen and glucose 
deprivation-treated Caco-2 cells were infected with ADV4, ADV4 MEG3, ADV1, or ADV1 MEG3 shRNA as indicated. (A,B) The 
transepithelial electrical resistance (TEER) levels were measured, with the TEER values in the monolayers serving as a control; (C,D) the 
expression levels of occludin and claudin-1 were measured by immunofluorescence analysis. Mean ± SD of at least three experiments is 
shown. Statistically significant differences are indicated: **P<0.01, ##P<0.01. SD, standard deviation; OGD, oxygen and glucose deprivation.
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Figure 3 NF-κB signaling is involved in the protective effect of MEG3 against OGD-induced Caco-2 cell I/R injury. (A-F) Untreated 
Caco-2 cells and OGD-treated Caco-2 cells were infected with ADV4, ADV4 MEG3, ADV1, or ADV1 MEG3 shRNA as indicated. (A-E)  
The levels of IL-1β, TNF-α, IFN-γ, IL-10, and TGFb-1 in the culture medium of the cells were determined by ELISA assays. (F) The 
expression levels of phosphorylation of p65 (p-p65), p65, phosphorylation of IκB, IκB, cyclin D1, and GAPDH were measured by Western 
blot analysis. (G,H) Untreated Caco-2 cells or OGD-treated Caco-2 cells were infected with ADV1, ADV1 MEG3 shRNA or treated with 
PDTC as indicated. (G) Cell viability was analyzed by MTT assays. (H) The expression levels of Bcl-2, Bax, and GAPDH were detected by 
western blot. Mean ± SD of at least three experiments is shown. Statistically significant differences are indicated: *P<0.05, **P<0.01, #P<0.05, 
##P<0.01. IL-1β, interleukin-1β; TNF-α, tumor necrosis factor-α; IFN-γ, interferon-gamma-γ; IL-10, inflammatory factors including 
interleukin -10; TGFb-1, transforming growth factor beta-1; ELISA, enzyme-linked immunosorbent assay; NF-κB, nuclear factor-kappa B; 
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together, these findings indicated that NF-κB signaling may 
be involved in MEG3-induced protective function against 
OGD-induced I/R injury in vitro.

MEG3 attenuated OGD-induced I/R injury in vitro by 
sponging miR-34a-3p

Next, we further investigated the mechanism by which 
MEG3 modulates the activation of NF-κB signaling. 
MiRNAs have been reported to be involved in lncRNA-
mediated NF-κB signaling (45,46). Therefore, we 
hypothesized that miRNA was involved in MEG3-
regulated p65 inactivation. We performed a bioinformatics 
analysis using the DIANA tools web server (http://carolina.
imis.athena-innovation.gr/diana_tools/web/index.php). 
Interestingly, we identified that MEG3 contained a binding 
sequence of miR-34a-3p (Figure 4A). Furthermore, we 
observed that miR-34a-3p mimic significantly reduced the 
luciferase activity of wild-type MEG3 but did not affect 
that of MEG3 with mutation of the miR-34a-3p binding 
site (Figure 4B), which indicated that MEG3 can was able to 
target miR-34a-3p. Meanwhile, OGD treatment enhanced 
the expression of miR-34a-3p in Caco-2 cells in which 
this effect was impaired by MEG3 overexpression and 
enhanced by MEG3 depletion (Figure 4C). Remarkably, the 
inhibition of MEG3 by OGD treatment was enhanced by 
miR-34a-3p mimic, whereas miR-34a-3p inhibitor rescued 
MEG3 expression (Figure 4D), which indicated that MEG3 
responds to OGD treatment in vitro by sponging miR-34a-
3p. Moreover, miR-34a-3p mimic inhibited the cell viability 
of OGD-treated cells, while miR-34a-3p inhibitor enhanced 
the cell viability (Figure 4E). More importantly, in OGD-
treated Caco-2 cells miR-34a-3p mimic impaired MEG3 
overexpression-induced cell proliferation and reversed MEG3 
overexpression-inhibited cell apoptosis (Figure 4F,G,H).  
These results suggested that MEG3 attenuated OGD-
induced I/R injury in vitro by sponging miR-34a-3p.

MEG3 activated SIRT1 expression in response to OGD 
treatment in vitro by sponging miR-34a-3p

Next, we further explored the potential target of miR-
34a-3p in the MEG3-mediated NF-κB signaling pathway. 
SIRT1 has been shown to inhibit NF-κB signaling, and 
miRNA can target SIRT1, thereby activating p65 function 
(36,47,48). We performed a bioinformatics analysis using 
Targetscan (http://www.targetscan.org/vert_72/) to identify 
the miR-34a-3p-targeted site within SIRT1 3’ untranslated 

region (UTR) (Figure 5A). Luciferase reporter gene assays 
showed that the luciferase activity of wild-type SIRT1 
but not that of SIRT1 with mutation of the miR-34a-3p 
binding site was reduced by miR-34a-3p mimic (Figure 5B),  
indicating that miR-34a-3p can target SIRT1. The expression  
levels of SIRT1 were reduced by OGD treatment and further 
inhibited by miR-34a-3p mimic but enhanced by miR-34a-
3p inhibitor (Figure 5C); these observations suggest that 
miR-34a-3p is able to down-regulate SIRT1. Moreover, 
the overexpression of MEG3 significantly rescued OGD-
decreased SIRT1 expression, while miR-34a-3p mimic 
impaired this rescue (Figure 5D). These findings suggested 
that MEG3 activated the expression of SIRT1 in response to 
OGD treatment in vitro by sponging miR-34a-3p.

MEG3 protected Caco-2 cells from OGD-induced I/R 
injury in vitro via miR-34a-3p/NF-κB signaling

We further explored the function of MEG3/miR-34a-3p/
NF-κB signaling in OGD-induced I/R injury in Caco-
2 cells. Interestingly, we found that the NF-κB inhibitor 
PDTC rescued the decreased expression of MEG3 and 
blocked the expression of miR-34a-3p induced by OCD 
in a feedback event (Figure 6A,B). Significantly, PDTC 
attenuated the upregulation of IL-1β and TNF-α levels 
caused by MEG3 depletion and further consolidated the 
inhibitive effect of MEG3 overexpression on IL-1β, TNF-α, 
IFN-γ, IL-10, and TGFb-1 expression (Figure 6C,D,E,F,G). 
Similar results were observed in the western blot analysis of 
p-p65, p-IκB, and cyclin D1 (Figure 6H). Moreover, PDTC 
attenuated the MEG3 overexpression-inhibited on cell 
apoptosis and MEG3 depletion-induced cell apoptosis as 
demonstrated by increased Bcl-2 expression and decreased 
Bax expression (Figure 6I). Together, our findings suggested 
that MEG3 protected Caco-2 cells from OGD-induced I/R 
injury via miR-34a-3p/NF-κB signaling in vitro. 

MEG3 relieved CA-induced intestinal barrier dysfunction 
via NF-κB signaling in vivo

Next, we examined the role of MEG3 in the CA-induced 
intestinal I/R injury and intestinal barrier dysfunction 
in vivo by establishing a CA-induced I/R rat model. We 
found that the levels of lactic acid and endotoxin in the 
serum of the CA-treated rats were elevated. Moreover, 
these increases were blocked by MEG3 overexpression and 
reinforced by MEG3 depletion (Figure 7A,B). Meanwhile, 
PDTC attenuated the increases in the levels of lactic 

http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php
http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php
http://www.targetscan.org/vert_72/
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Figure 4 MEG3 sponges miR-34a-3p to protect against OGD-induced Caco-2 cell I/R injury. (A) The interaction of MEG3 and miR-
34a-3p was identified by bioinformatics analysis using the DIANA tools web-server (http://carolina.imis.athena-innovation.gr/diana_tools/
web/index.php). (B) The luciferase activities of wild-type MEG3 (MEG3-WT) and MEG3 with mutation of the miR-34a-3p binding site 
(MEG3-MUT) were analyzed by luciferase reporter gene assays in Caco-2 cells treated with the control or miR-34a-3p mimic. (C) Caco-2 
cells and OGD-treated Caco-2 cells were infected with ADV4, ADV4 MEG3, ADV1 or ADV1 MEG3 shRNA, as indicated. The expression 
levels of miR-34a-3p were measured by qPCR. (D,E) Caco-2 cells and OGD-treated Caco-2 cells were treated with control, miR-34a-3p 
mimic, or miR-34a-3p inhibitor, as indicated. (D) The expression levels of MEG3 were determined by qPCR. (E) Cell viability was analyzed 
by MTT assays. (F,G) Caco-2 cells and OGD-treated Caco-2 cells were infected with ADV4, ADV4 MEG3, control, or miR-34a-3p mimic, 
as indicated. (F) Cell viability was analyzed by MTT assays. (G) Cell apoptosis was assessed by flow cytometry. (H) Cell apoptosis was 
assessed by TUNEL staining. Mean ± SD of at least three experiments is shown. Statistically significant differences are indicated: *P<0.05, 
**P<0.01, #P<0.05, ##P<0.01. MEG3, maternally expressed 3; OGD, oxygen and glucose deprivation; qPCR, quantitative polymerase chain 
reaction; SD, standard deviation; I/R, ischemia/reperfusion; TUNEL, Terminal deoxynucleotidyl transferase-mediated dUTP nick end 
labelling.
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Figure 5 MEG3 activates the expression of SIRT1 by sponging miR-34a-3p in response to OGD treatment in vitro. (A) The interaction 
between SIRT1 and miR-34a-3p was identified by bioinformatics analysis using Targetscan (http://www.targetscan.org/vert_72/) (B) The 
luciferase activity of wild-type SIRT1 SIRT1-WT) and SIRT1 with mutation of the miR-34a-3p binding site (SIRT1-MUT) were analyzed 
by luciferase reporter gene assays of Caco-2 cells treated with control or miR-34a-3p mimic. (C) Caco-2 cells or OGD-treated Caco-2 cells 
were treated with control, miR-34a-3p mimic, or miR-34a-3p inhibitor, as indicated. The expression levels of SIRT1 were analyzed by 
qPCR. (D) Caco-2 cells or OGD-treated Caco-2 cells were infected with ADV4, ADV4 MEG3, control, or miR-34a-3p mimic as indicated. 
The expression levels of SIRT1 were measured by western blot. Mean ± SD of at least three experiments is shown. Statistically significant 
differences are indicated: **P<0.01, ##P<0.01. MEG3, maternally expressed 3; OGD, oxygen and glucose deprivation; qPCR, quantitative 
polymerase chain reaction; SD, standard deviation; SIRT1, sirtuin 1.

acid and endotoxin induced by MEG3 depletion but 
enhanced the decreases in these levels caused by MEG3 
overexpression (Figure 7A,B). Similar results were observed 
by HE staining of sections of intestinal mucosa from the 
rats (Figure 7C). Furthermore, the expression levels of 
occludin and claudin-1 in the intestinal mucosa of the rats 
were significantly reduced by CA-induced intestinal I/R, 
and this effect could be rescued by MEG3 overexpression 
but reinforced by the depletion of MEG3 (Figure 7D,E). 
Additionally, PDTC reversed the occludin and CLDN1 
expression caused decreased by MEG3 depletion but 
further enhanced the MEG3 overexpression-elevated 
expression of these genes (Figure 7A,B). Taken together, our 
results suggested that MEG3 alleviated CA-induced barrier 

dysfunction in vivo via NF-κB signaling.

Discussion

Intestinal I/R causes intestinal barrier dysfunction through 
various mechanisms (49). Nurr1 has been reported to 
support the restoration of the intestine after I/R injury 
via repressing p21 (50). Phosphatase and tensin homolog 
(PTEN) perform an essential role in relieving renal 
dysfunction after I/R by preserving the capacity of the 
intestinal barrier (51). MitoQ defends the function of 
the intestinal barrier by alleviating mitochondrial DNA 
damage via the Nrf2/ARE pathway (52). Ginsenoside 
Rb1 was shown to inhibit intestinal I/R-induced oxidative 
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Figure 6 MEG3 protects Caco-2 cells from OGD-induced I/R injury via miR-34a-3p/NF-κB signaling. (A–I) Untreated or OGD-treated 
Caco-2 cells were infected with ADV4, ADV4 MEG3, ADV1, or ADV1 MEG3 shRNA or treated with PDTC as indicated. (A) The 
expression levels of MEG3 were analyzed by qPCR. (B) The expression levels of miR-34a-3p were measured by qPCR. (C-G) The levels 
of IL-1β, TNF-α, IFN-γ, IL-10, and TGFb-1 in the culture medium of the cells were determined by ELISA assays. (H) The expression 
levels of phosphorylation of p65 (p-p65), p65, phosphorylation of IκB, IκB, cyclin D1, and GAPDH were assessed by western blot. (I) The 
expression levels of Bcl-2, Bax, and GAPDH were detected by western blot. Mean ± SD of at least three experiments is shown. Statistically 
significant differences are indicated: *P<0.05, **P<0.01, #P<0.05, ##P<0.01, &&P<0.01. NF-κB, nuclear factor-kappa B; MEG3, maternally 
expressed 3; OGD, oxygen and glucose deprivation; I/R, ischemia/reperfusion; IL-1β, interleukin-1β; TNF-α, tumor necrosis factor-α; 
IFN-γ, interferon-gamma-γ; IL-10, inflammatory factors including interleukin 10; TGFb-1, transforming growth factor beta-1; ELISA, 
enzyme-linked immunosorbent assay; SD, standard deviation.
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Figure 7 MEG3 relieves CA-induced intestinal barrier dysfunction through NF-κB signaling in vivo. (A-E) An in vivo CA model was 
established to assess the effect of CA on intestinal barrier function. Sprague-Dawley rats were intravenously injected with ADV4, ADV4 
MEG3, ADV1, or ADV1 MEG3 shRNA via the tail, or treated with PTDC as indicated. (A,B) The levels of D-lactic acid and endotoxin in 
the serum of the rats were measured by using the corresponding test kits. (C) The intestinal injury was analyzed by hematoxylin and eosin (HE) 
staining in sections of intestinal mucosa from the rats. (D,E) The expression levels of occludin and claudin-1 in the intestinal mucosa of the 
rats were determined by immunohistochemical (IHC) staining. Mean ± SD of at least three experiments is shown. Statistically significant 
differences are indicated: *P<0.05, **P<0.01, #P<0.05, ##P<0.01, &P<0.05, &&P<0.01. The observation positions in (C-E) are marked with red 
arrows. NF-κB, nuclear factor-kappa B; MEG3, maternally expressed 3; CA, Cardiac arrest.
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stress and inflammation by activating the PI3K/Akt 
signaling pathway (53). G protein-coupled estrogen 
receptor was reported to shield the intestine from I/
R damage in rats by preserving the cell proliferation of 
crypt (54). Glial cell line-derived neurotrophic  factor 
(GDNF) plays a vital role in the intestinal barrier in 
severe I/R injury (13). LncRNAs have also been found to 
participate in intestinal I/R injury and intestinal barrier 
disruption. LncRNA H19 plays a restoring role in 
intestinal I/R-induced intestinal barrier dysfunction (55).  
Repression of lncRNA NEAT1 can help to overcome 
the inflammatory response in inflammatory bowel 
disease (IBD) via modulating the intestinal barrier and 
through exosome-mediated macrophage polarization (56).  
Long noncoding RNA SPRY4-IT1 regulates intestinal 
barrier capacity by tempering the expression of tight 
junction proteins (57). In the present study, we not only 
demonstrated that lncRNA MEG3 protected human 
colorectal adenocarcinoma Caco-2 cells from OGD-
induced I/R injury but also identified that MEG3 alleviated 
OGD-induced intestinal barrier dysfunction in vitro. 
Our results offer new evidence that lncRNA participates 
in the modulation of intestinal I/R injury and mucosal 
barrier. Moreover, systemic I/R, as a primary post–cardiac 
arrest syndrome, is a leading cause of intestinal injury and 
intestinal barrier dysfunction (58). Here, we also showed 
that MEG3 relieved CA-induced intestinal injury and 
barrier dysfunction in vivo. Our study provides convincing 
evidence of the protective role of lncRNA in CA-related 
intestinal barrier.

MiRNAs have been reported to be involved in the 
modulation of intestinal I/R and the intestinal barrier. 
The dysfunction of the intestinal barrier provoked by  
I/R was shown to up-regulate miRNA-21 (59). Meanwhile, 
miRNA-378 was observed to protect against intestinal I/R 
insult by repressing cell apoptosis of the intestinal mucosa (60).  
MicroRNA-682–modulated decrease of PTEN in intestinal 
epithelial cells has been shown to enhance intestinal I/R 
injury (61). Furthermore, the repression of miR-34a-5p  
relieves intestinal I/R-induced apoptosis as well as the activation 
of oxygen species via modulating SIRT1 signaling (62).  
The decrease of IRAK1 by microRNA-146a can also 
protect the intestine against I/R injury (63). 

Our study novelty reported that miR-34a-3p contributed 
to OGD-induced I/R injury in Caco-2 cells in vitro and is 
sponged by lncRNA MEG3. Our study provides valuable 
information that miRNA promotes intestine I/R injury. 
Moreover, a previous study showed that Escherichia coli nissle 

1917 preserves the function of the intestinal barrier by 
restraining NF-κB-regulated activation of the myosin light 
chain kinase (MLCK) signaling pathway (64). Nontoxic 
doses of Ochratoxin A (OTA) worsen the Deoxynivalenol 
(DON)-induced dysfunction of the intestinal barrier 
by activating the NF-κB pathway in IPEC-J2 cells (65). 
Interference of CREB-modulated zonula occludens-1 
(ZO-1) and enhancement of NF-κB-mediated IL-6 by 
MCT4 impair the function of the intestinal barrier (66). 
Furthermore, numerous studies have shown that SIRT1 
blocks the activation of NF-κB signaling; however, miRNA 
targeted to SIRT1 is able to rescue this inactivation (33-36).  
Moreover, SIRT1-mediated p65 inhibition is involved in 
I/R injury (67). SIRT1/NF-κB signaling plays a pivotal 
role in the modulation of the intestinal barrier (68). 
Meanwhile, Xue et al. find that down-regulation of MEG3 
leads to the inhibition of inflammation and induces M2 
macrophage polarization via miR-223/TRAF6/NF-κB axis, 
thus alleviating VMC (69). Chen et al. reveal that MEG3 
participates in caerulein-induced inflammatory injuries 
by targeting the miR-195-5p/FGFR2 regulatory axis via 
mediating the NF-κB pathway in HPDE cells (70). Bao et al.  
report that LncRNA MEG3 activates the NF-κB signal 
in GBC cells to affect the proliferation and apoptosis of 
GBC cells (71). Furthermore, Tong et al. find that MEG3 
could alleviate HG-inducing apoptosis and inflammation 
via inhibiting NF-κB signaling pathway by targeting miR-
34a/SIRT1 axis (72). Those researches reveal the significant 
relationship between MEG3 and NF-κB pathway. Our 
mechanism study showed that MEG3 inhibited the 
expression of inflammatory factors such as IL-1β and 
TNF-α, as well as NF-κB signaling. MEG3 activates SIRT1 
expression by sponging miR-34a-3p in response to the 
OGD treatment in vitro. These data uncover an innovative 
mechanism underlying the response to intestinal I/R injury.

In conclusion, we discovered that lncRNA MEG3 
exerted a protective effect on intestinal barrier from CA-
related I/R injury via miR-34a-3p/SIRT1/NF-κB signaling 
in vivo and in vitro. Our finding gives a new insight into 
the mechanism by which MEG3 restores the function of 
the intestinal barrier in response to I/R injury, presenting a 
potential therapeutic candidate for intestinal injury.
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