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Background: Microsatellite instability (MSI) is a predictive biomarker for response to chemotherapy and 
a prognostic biomarker for clinical outcomes of rectal cancer. The purpose of this study was to develop and 
validate radiomics models for preoperative prediction of the MSI status of rectal cancer based on magnetic 
resonance (MR) images.
Methods: This study retrospectively recruited 491 rectal cancer patients with pathologically confirmed 
MSI status. Patients were randomly divided into a training cohort (n=327) and a validation cohort (n=164). 
The most predictive radiomics features were selected using intraclass correlation coefficient (ICC) analysis, 
the two-sample t test, and the least absolute shrinkage and selection operator (LASSO) method. XGBoost 
models were constructed in the training cohort to discriminate the MSI status using clinical factors, 
radiomics features, or a combined model incorporating both the radiomics signature and independent 
clinical characteristics. The diagnostic performance of these three models was evaluated in the validation 
cohort based on their area under the curve (AUC), sensitivity, specificity, and accuracy.
Results: Among the 491 rectal cancer patients, the prevalence of MSI was 10.39% (51/491). Following 
ICC analysis, two-sample t test, and LASSO regression, six radiomics features were selected for subsequent 
analysis. The combined model, which incorporated both the clinical factors and radiomics features achieved 
an AUC of 0.895 [95% confidence interval (CI), 0.838–0.938] in the validation cohort, and showed better 
performance in predicting MSI status than the other two models using either clinical factors (P=0.015) or 
radiomics features (P=0.204) alone.
Conclusions: Radiomics features based on preoperative T2-weighted MR imaging (MRI) are associated 
with the MSI status of rectal cancer. Combinational analysis of clinical factors and radiomics features may 
improve predictive performance and potentially contribute to noninvasive personalized therapy selection.
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Introduction

Rectal cancer is one of the most common cancers worldwide 
and has high rates of morbidity and mortality (1). In the 
last decade, significant progress in the treatment of locally 
advanced rectal cancer has been achieved via neoadjuvant 
chemoradiotherapy (2), followed by total mesorectal 
excision (TME) (3). However, responses to chemotherapy 
and prognoses of rectal cancer patients are quite different, 
even for patients in the same pathological stage. The 
most plausible explanation for these multifarious clinical 
outcomes is associated with the strong heterogeneity both 
between and inside tumors (4).

Microsatellite instability (MSI), which is frequently 
analyzed by testing the loss of one or more mismatch 
repair (MMR) proteins by immunohistochemistry 
(IHC), serves not only as a predictive biomarker for 
responses to chemotherapy but also as a prognostic 
biomarker for clinical outcomes (5-7). To date, there is 
considerable evidence that suggests that patients with 
stage II rectal cancer with high-frequency MSI (MSI-H) 
obtain no benefit from 5-fluorouracil (5-FU)-based 
adjuvant therapy (8,9), and these patients have shown a 
significantly better prognosis than those characterized 
by microsatellite stability (MSS) (10,11). Therefore, 
s ince 2016,  the National  Comprehensive Cancer 
Network (NCCN) guidelines have recommended MSI 
evaluation for all patients with stage II rectal cancer (12).  
Furthermore, since MSI determines whether rectal cancer 
patients respond well to immunotherapy, the European 
Society for Medical Oncology (ESMO) also recommended 
MSI evaluation for cancer immunotherapy in 2019 (13). 

Microsatellite status is currently assessed by genetic or 
IHC analyses of biopsies; these procedures are considered 
the gold standard in clinical practice but still present two 
challenges. First, since tumors have spatial and temporal 
heterogeneities (14), the results of MSI evaluation may vary 
depending on where and when the specimens are obtained. 
Second, the risks of invasive sampling and potential 
complications limit the application of these methods for 
real-time monitoring of disease progression and biological 
characteristics of the tumor (15). Thus, the development 
of a method that is noninvasive, displays convenient 
repeatability, and reflects intratumoral heterogeneity to help 
identify microsatellite status is crucial to provide an adjunct 
to histological assessment in real time.

Radiomics analysis, in which several high-throughput 
quantitative features are extracted from radiological images, 

provides valuable information associated with tumoral 
heterogeneity (16). This method has recently gained 
attention as a promising tool for predicting prognosis and 
guiding clinical decision-making (17,18). Recent studies 
on rectal cancer have provided encouraging evidence that 
radiomics can be applied to predict characteristics including 
therapeutic responses (19,20), lymph node metastasis 
(21,22), and KRAS mutations (23,24). Three recent studies, 
including all left- and right-sided colorectal cancers, 
reported that radiomics analysis based on computed 
tomography (CT) data could predict MSI in colorectal 
cancer (25-27); however, MSI prevalence in colorectal 
cancer is not evenly distributed, and it gradually varies 
from the proximal colon to the rectum (28). Furthermore, 
magnetic resonance imaging (MRI) has been recommended 
by both NCCN (29) and ESMO (30) guidelines as the 
preferred imaging examination for rectal cancer in clinical 
practice. However, to the best of our knowledge, no 
study to date has reported whether the MRI-based image 
signature is associated with the MSI status in rectal cancer.

We hypothesize that if MRI-based imaging features 
associated with MSI status can be determined, they could 
provide noninvasive clinical predictors in patients with 
rectal cancer. Therefore, this retrospective study performed 
a radiomics analysis to identify MRI-based image 
biomarkers of MSI in rectal cancer patients.

We present the following article in accordance with the 
TRIPOD reporting checklist (available at http://dx.doi.
org/10.21037/atm-20-7673).

Methods

Study population

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013), and was 
approved by the Medical Ethics Committee of West 
China Hospital (No. 2019-1159). Individual informed 
consent for this retrospective analysis was waived. Between 
January 2016 and May 2019, 715 consecutive patients with 
histopathologically confirmed rectal cancer who underwent 
preoperative MRI examinations were initially retrieved. 
Of these, 224 patients were excluded for the following 
reasons: (I) without MSI evaluation (n=87); (II) receiving 
chemoradiotherapy before MRI (n=82); (III) small tumors 
(<5 mm) that are difficult to identify on images (n=9); 
(IV) insufficient T2-weighted imaging quality to draw the 
region of interest (ROI), such as an obvious motion artifact 
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caused by respiration or intestinal peristalsis (n=18); and 
(V) mucinous adenocarcinoma (n=28). Finally, 491 patients 
were retrospectively enrolled in this study.

Clinical and laboratory variables

Clinical variables comprised age, sex, and T-stage based 
on MR (MR-T stage). Laboratory analysis included 
carcinoembryonic antigen (CEA) and carbohydrate antigen 
19-9 (CA19-9), which had threshold values of 3.4 ng/mL  
and 22 U/mL, respectively. IHC for MMR proteins, 
including mutL homologue 1 (MLH1), mutS homologue 
2 (MSH2), mutS homologue 6 (MSH6), and postmeiotic 
segregation increased 2 (PMS2), was performed using the 
standard streptavidin–biotin–peroxidase procedure. Tumors 
displaying loss of an MMR protein were collectively 
referred as defective mismatch repair (dMMR) and expected 
to have MSI-H, whereas those with intact MMR proteins 
were classified as proficient mismatch repair (pMMR) and 
expected to have MSS or MSI-low (MSI-L). Considering 
the Bethesda guidelines for colorectal cancers suggest that 
the terms MSI-H or MSI-L should be discontinued and 
MSI-L tumors included with MSS tumors (13), we regarded 
MSI-H as MSI and MSI-L as MSS in our study.

MRI protocol

All of the patients underwent preoperative rectal MRI on a 
3T Magnetom Skyra MR scanner (Siemens Healthineers, 
Malvern, PA, USA) with a phased-array 18-channel 
body coil in the supine position. MRI protocols did not 
change during the 41-month study. Two rectal suppository 
pills were inserted to remove feces at 1 hour before 
MRI, and 10 mg of racanisodamine hydrochloride was 
injected intravenously to reduce rectal motility (unless 
contraindicated) at 30 min before MRI. High-resolution 
rectal MRI protocol comprised turbo spin echo sagittal, 
oblique coronal (angulated parallel to the long axis of the 
rectal tumor), and oblique axial (angulated perpendicular 
to the long axis of the rectal tumor) T2- and diffusion-
weighted imaging using readout-segmented echo-planar 
imaging of long variable echo trains. The scan parameters 
used for the oblique axial T2-weighted imaging sequence 
were as follows: repetition time/echo time, 6,890/100; 
slice thickness, 3 mm; voxel size, 0.3×0.3×3 mm; field of 
view, 180 mm; matrix, 384×346; slices, 48; average, 3; 
total scanning time, 5 min and 5 s; and parallel acquisition 
technique with generalized auto-calibrating partial parallel 

acquisition acceleration factor, 2. Fat saturation techniques 
were not required.

Tumor segmentation

MR images were retrieved from the picture archiving and 
communication system to a local workstation for image 
segmentation and analysis. A radiologist with more than 
10 years of experience in abdominal imaging manually 
segmented the tumor region volumetrically on all oblique 
axial (angulated perpendicular to the long axis of the 
rectal tumor) T2-weighted imaging slices using the ITK-
SNAP software (v3.6.0, http://www.itksnap.org). When the 
boundary was uncertain, another radiologist with 20 years 
of experience in abdominal diagnosis was consulted for a 
final decision. Both radiologists were blinded to all clinical 
and pathological findings. Meanwhile, the necrosis area, 
intraluminal air regions, and uninvaded rectal wall were 
excluded from the ROIs with caution.

Radiomics analysis

Feature extraction
The radiomics features from the manually segmented 
tumor region were automatically extracted using an open-
source Python package (PyRadiomics version 2.1.2, https://
github.com/Radiomics/pyradiomics) (31). Three groups of 
radiomics features were extracted: (I) shape features (n=14); 
(II) first-order intensity statistics features (n=288); and (III) 
texture features [Gray Level Co-occurrence Matrix (n=336), 
Gray Level Dependence Matrix (GLDM, n=224), Gray 
Level Run Length Matrix (GLRLM, n=256), Gray Level 
Size Zone Matrix (n=256), and Neighboring Gray Tone 
Difference Matrix (n=80)]. Ultimately, 1,454 radiomics 
features were extracted from the manually-labeled ROI 
regions; all of these features had generally been used in 
previous radiomics studies (32,33). 

Inter-observer reproducibility evaluation
To ensure the reproducibility and accuracy of radiomics 
features extracted from MR imaging, 50 MR scans were 
randomly selected for double-blind manual segmentation by 
two radiologists. The radiomics features from the 50 paired 
segmentation results were automatically extracted, and the 
inter- and intra-observer agreement was evaluated using 
intraclass correlation coefficients (ICC). In related research, 
an ICC of >0.75 was interpreted as being indicative of 
almost perfect agreement (34).

http://www.itksnap.org
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Feature selection

Extracted radiomics features that met the criteria of having 
an ICC of >0.75 were used for further analysis. To prevent 
overfitting of the model, we applied a two-step feature 
selection method. First, we used the two-sample t test to 
select differential features between MSS and MSI groups in 
the training cohort (35). Key radiomics features that were 
most closely associated with the determination of colorectal 
cancer MSI status were then selected from the differential 
features using the Least Absolute Shrinkage and Selection 
Operator (LASSO) algorithm (36). Finally, six features were 
selected after dimension reduction, including textural (two 
GLRLM features and three GLDM features), and first-
order statistics (one feature) features. The textural features 
included regular texture features such as GLDM and 
GLRLM, and first-order statistics reflected the distribution 
of voxel intensities within the region.

The feature extraction and selection process were 
implemented using Python 3.6.0 (www.python.org). 

Development of the radiomics models

Based on the selected radiomics features and clinical 
variables, we used the XGBoost classifier (37) to develop the 
radiomics clinical model (RC model), the radiomics imaging 
model (RI model), and the combined radiomics model (RIC 
model), incorporating both the radiomics signature and 
independent clinical characteristics. The development of 
the RC model was conducted with the following five clinical 
variables: sex, age, MR-T stage, CEA, and CA19-9. The RI 
model was constructed with six selected radiomics features. 
The RIC model was established with the combination of 
six radiomics features plus five clinical variables. Since there 
were considerably more MSS patients than MSI patients 
in this study (440 MSS vs. 51 MSI), the weights of MSI 
and MSS class were adjusted according to their inversely 
proportional prevalence to minimize the class imbalance 
problem. The detailed parameters of model development 
are summarized in the supplementary files (Appendix 1).  
The development and validation of these models were 
performed using InferScholar platform version 3.1 
(InferVision, Beijing, China).

Statistical analysis

To evaluate the capacity of the predictive models for the 
discrimination of the MSI from MSS tumors in the training 

and validation cohorts, a receiver operating characteristic 
(ROC) curve was plotted for the calculation of sensitivity 
and specificity, and the area under the curve (AUC) was also 
quantified. Sensitivity was determined by TP/(TP + FN) 
and specificity was computed by TN/(FP + TN), where TP, 
FP, FN, and TN refer to true positive, false positive, false 
negative, and true negative, respectively. The maximum 
value of the AUC is 1.0, indicating a perfect discrimination, 
while 0.5 indicates a very poor model with a random chance 
of correctly discriminating the outcome. Generally, an AUC 
of >0.7 indicates a good model (38).

The Mann-Whitney U test was performed to evaluate 
the differences in variables with a continuous distribution 
across categories. The association between categorical 
variables was accessed using the Chi-square test or 
Fisher’s exact test. Delong’s test was used to compare the 
diagnostic performance of the different models (39). All 
tests were two-sided, and P<0.05 was considered statistically 
significant. All analyses were performed using Prism 5 for 
Windows (Version 5.01) and MedCalc (Version 18.11.3).

Results

Study design and patient characteristics

Among the 491 patients, there were 318 men and 173 
women with a median age of 61 years (range, 21–91 years). 
Based on the analysis of the MMR protein, the patients 
were classified into two groups: an MSI group (n=51) 
and an MSS group (n=440). The prevalence of MSI was 
10.39% (51/491). The patients were randomly divided 
into a training cohort (291 MSS and 36 MSI-H, n=327) 
and a validation cohort (149 MSS and 15 MSI-H, n=164). 
The RC, RI, and RIC models were applied in the training 
cohort, and their performances were evaluated in the 
validation cohort (Figure 1). 

There were no significant differences between the 
two cohorts in terms of MSI-H prevalence (11.01% and 
9.15% in the training and validation cohorts, respectively, 
P=0.733). Furthermore, there were no notable differences 
in sex, age, MR-T category, CEA, and CA199 between the 
MSI and MSS groups in the training and validation cohorts 
(all P values >0.05). The patients’ demographic and clinical 
data are shown in Table 1.

Radiomics feature selection and model construction

The study framework is shown in Figure 2A, and the 

http://www.python.org
https://cdn.amegroups.cn/static/public/ATM-20-7673-supplementary.pdf
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architecture of the combined radiomics model incorporating 
both the radiomics signature and independent clinical 
characteristics is shown in Figure 2B. Briefly, radiomics 
features were first extracted from the manual segmentation 
region following inter-observer reproducibility evaluation. 
The two-sample t test and LASSO regression methods were 
applied to determine the most useful predictive features 
that were commonly applied in the regression of high-
dimensional data, and the six most important features were 
selected to build the radiomics models (Figure 3). Finally, the 
diagnostic efficiency of the RC, RI, and RIC models were 
evaluated by analyzing the ROC curve. The six selected 
radiomics features showed excellent inter-reader agreement,  
with ICCs ranging from 0.8924 to 0.9607 (Table 2), and the 
feature heatmap was plotted according to the normalized 
radiomics feature values (Figure 4).

Development and validation of the radiomics models

ROC analysis was performed to determine the diagnostic 
performance of the RC, RI, and RIC models with respect 

to the AUC. The predictive score of the RC, RI, and 
RIC models for each patient in the validation cohort is 
shown in Figure 5. The AUC of the RC model was 0.756 
[95% confidence interval (CI), 0.705–0.801] and 0.685 
(95% CI, 0.608–0.755) in the training and validation 
cohorts, respectively (Figure 5A), indicating that effective 
classification of MSS and MSI was not satisfied based on 
pure clinical information. The six selected features-based 
RI model discriminated MSI from MSS with an AUC of 
0.945 (95% CI, 0.914–0.967) and 0.784 (95% CI, 0.713–
0.844) in the training and validation cohorts, respectively 
(Figure 5B). The RIC model, which incorporated both the 
radiomics signature and independent clinicopathological 
characteristics, outperformed the other two models with 
an AUC of 0.989 (95% CI, 0.970–0.997) and 0.895 (95% 
CI, 0.838–0.938) in the training and validation cohorts, 
respectively (Figure 5C). The detailed sensitivity, specificity, 
and AUC of these predictive models with or without 
incorporation of clinicopathological characteristics are 
summarized in Table 3. The results in the validation cohort 
suggested that the RIC model showed better performance 

Patient recruitment (n=715)
1. Rectal cancer patients from January 2016 to May 2019 at our hospital 
2. MRI examination within two weeks before biopsy or surgery
3. Pathologically confirmed as adenocarcinoma

440 MSS patients and 51 MSI patients 
enrolled for further analysis

Exclusion criteria
1. No available MSI testing result (n = 87)
2. Mucinous adenocarcinoma (n=28)
3. Receiving chemoradiotherapy before MR (n=82)
4. Low MR image quality (n=18)
5. Small tumors hard to identify on images (n=9)

Training cohort
(291 MSS + 36 MSI)

Validation cohort
(149 MSS + 15 MSI)

Performance evaluation 
and model comparison

Model development

Parameter fine-tuning

Figure 1 Patient enrollment and study design. MRI, magnetic resonance imaging; MSI, microsatellite instability; MSS, microsatellite 
stability.
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than the RI model, however the difference was not 
statistically significant (Delong’s test, P=0.204). Compared 
with the clinical variables alone, integrating the radiomics 
signature and clinicopathological characteristics could 
significantly improve the predictive performance (Delong’s 
test, P=0.015). 

Discussion

To the best of our knowledge, this is the first study to 
evaluate the significance of the radiomics approach to 
predict MSI status in rectal cancer based on preoperative 
MRI data. Our results showed that radiomics analysis 
achieved a better predictive performance with a model that 
combined both imaging features and clinical variables (AUC 
0.895) than the models using either imaging features or 
clinical factors alone (AUC of 0.784 and 0.685, respectively). 
This suggests that MRI is useful for predicting the MSI 
status of rectal cancer patients and thus has the potential to 
aid in the determination of therapeutic strategies.

Literature reviews report a prevalence of MSI of 
approximately 17% in colorectal cancer (13). The incidence 
of MSI reported by two previous radiomics studies based on 
CT data was 25.21% (25) and 32% (26). Our study showed 
a prevalence of MSI of 10.39% in rectal cancer, which is 
clearly lower than that reported by the previous studies. A 
possible explanation for the lower prevalence of MSI in our 
study compared to those in the aforementioned studies is 

that these studies enrolled patients with colorectal cancer, 
including right- and left-sided colon and rectal cancer, 
whereas our study merely included patients with rectal 
cancer. Furthermore, it has been reported that the rate of 
MSI is higher in right-sided colorectal cancer than in left-
sided colorectal cancer (28).

Considering that MSI plays a key role in the prognosis 
and treatment of rectal cancer and that MSI evaluation 
by IHC and polymerase chain reaction (PCR) may not be 
routinely available, recent studies have attempted to identify 
MSI using methods other than IHC and PCR. Fan et al. (25) 
and Golia et al. (26) investigated the relationship between 
imaging features and MSI status in colorectal cancer using 
radiomics analysis based on conventional CT data. Both of 
these studies concluded that the combined model of clinical 
and CT imaging features was more effective in predicting 
MSI than the independent clinical or radiomics features. 
A more recent study (27) reported that radiomics analysis 
based on iodine-based material decomposition images 
with dual-energy CT imaging provides a relatively high 
diagnostic value for predicting MSI status in colorectal 
cancer. All three radiomics studies mentioned above were 
based on CT data and included all left- and right-sided 
colorectal cancers. However, significant pathological 
differences between left and right-sided colorectal cancers, 
including MSI status, have been recognized (28). In the 
present study, we focused only on rectal cancer, which may 
reduce the bias caused by pathological differences between 

Table 1 Patient clinicopathological characteristics

Characteristic
Training cohort (n=327) Validation cohort (n=164)

MSS (n=291) MSI (n=36) P value MSS (n=149) MSI (n=15) P value

Gender, male/female 195/96 27/9 0.33 88/61 8/7 0.67

Age, mean (SD), years 60.5±4.9 59.2±12.8 0.59 60.7±11.3 55.4±12.1 0.09

MR-T category 0.51 0.61

T1 17 2 9 0

T2 117 18 61 8

T3 146 16 75 7

T4 11 0 4 0

CEA, mean (SD) 11.99±0.16 7.65±15.43 0.41 10.39±28.39 4.22±4.12 0.42

CA19-9, mean (SD) 23.55±5.86 15.18±15.59 0.22 16.76±18.08 25.32±36.93 0.13

The differences in characteristic dichotomous variables between the two cohorts were calculated using the Chi-square test or Fisher’s 
exact test, whereas the Mann-Whitney U test was conducted to compare differences in actual variables. MSS, microsatellite stability; MSI, 
microsatellite instability; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; SD, standard deviation.
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Figure 2 Flowchart of the study and the architecture of the RIC model. (A) 1,454 quantitative radiomic features were automatically 
extracted from manually-segmented tumor regions in T2-weighted imaging data, and key predictive features were subsequently selected 
using ICC analysis, the variance threshold approach, and the LASSO method. Finally, the performance of the radiomics models was 
evaluated by ROC analysis. (B) The radiomics and clinical features were extracted from T2-weighted imaging and medical records, 
respectively. The six selected radiomics features and five clinical features were used as input together for multivariable logistic regression 
analysis. MSI, microsatellite instability; MSS, microsatellite stability; RIC, radiomics imaging and clinical; ICC, intraclass correlation 
coefficient; LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic.

A

B
Shape features 

Statistics features 

Textural features 

Wavelet features
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Figure 3 Radiomics feature selection using the variance threshold method and LASSO regression model. (A) Tuning parameter lambda 
selection using the 10-fold cross-validation method. (B) The coefficient profile plot was produced against the log (alpha) sequence, which 
resulted in six nonzero coefficients. AUC, area under the curve; LASSO, least absolute shrinkage and selection operator.

Figure 4 Heatmap of the six selected radiomic features in the training and validation cohorts. Each row represented a radiomic feature, 
and each column corresponded to one patient (separately grouped for the MSI vs. MSS cohort). MSI, microsatellite instability; MSS, 
microsatellite stability.
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Table 2 Characteristics of the selected radiomics features

Radiomics feature
Inter-observer agreement

Radiomics feature values  
(mean ± standard deviation) P value

ICC 95% CI MSS cohort MSI cohort

gldm_DependenceNonUniformityNormaliz
ed_logarithm

0.8924 0.8179–0.9375 0.077±0.021 0.087±0.025 <0.01

gldm_DependenceNonUniformityNormaliz
ed_exponential

0.9321 0.8834–0.9609 0.122±0.055 0.161±0.137 <0.01

gldm_SmallDependenceLowGrayLevelEm
phasis_exponential

0.9607 0.9318–0.9775 0.006±0.002 0.007±0.003 <0.01

glrlm_ShortRunLowGrayLevelEmphasis_
exponential

0.9129 0.8514–0.9496 0.280±0.063 0.338±0.113 <0.01

glrlm_RunLengthNonUniformityNormalize
d_wavelet-HHH

0.9283 0.8771–0.9587 0.487±0.052 0.526±0.082 <0.01

firstorder_Skewness_wavelet-HLL 0.9475 0.9208–0.9672 –0.110±1.173 0.451±1.610 <0.01

ICC, intraclass correlation coefficient; MSS, microsatellite stability; MSI, microsatellite instability.
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Figure 5 A comparison of the diagnostic performance of the three models. (A) Left, the predictive scores of the RC model for each patient 
in the validation cohort. Right, the ROC curve of the RC model in the training and validation cohorts. (B) Left, the predictive scores of the 
RI model for each patient in the validation cohort. Right, the ROC curve of the RI model in the training and validation cohorts. (C) Left, 
the predictive scores of the RIC model for each patient in the validation cohort. Right, the ROC curve of the RIC model in the training 
and validation cohorts. RI, radiomics imaging; RC, radiomics clinical; RIC, radiomics imaging and clinical; ROC, receiver operating 
characteristic.
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left- and right-sided colorectal cancers. Furthermore, 
compared to CT, soft-tissue resolution is higher with MRI, 
which is the preferred imaging method for rectal cancer 
(29,30), and may therefore provide more valuable data 
for radiomics analysis via high-throughput extraction of 
quantitative imaging features. The present study compared 
the effects of using clinical or radiomics characteristics 
alone, or a combination of these characteristics to classify 
MSI status in rectal cancer based on MRI data. The 
combination model incorporating clinical and radiomics 
features exhibited superior discerning ability in predicting 
MSI of rectal cancer, higher than that of the models that 
included clinical or radiomics features alone. The results 
of the present study, which utilized MRI data instead of 
CT images, are consistent with those reported by previous 
radiomics studies based on CT data, however we obtained 
relatively higher AUCs. This suggests that radiomics 
analysis based on MRI data has a better performance than 
that based on CT for predicting the MSI status in rectal 
cancer.

As a preliminary study, this research had several 
limitations. Firstly, although 491 patients with rectal cancer 
were enrolled in our study, the sample size of the MSI 
group was significantly smaller than that of the MSS group 
owing to the low prevalence of MSI in rectal cancer. This 
potentially reduced the statistical performance, and thus, 
further data collection and research are needed. Secondly, 
as a single-center retrospective study, our results need to 
be validated by future multicenter studies to evaluate or 
improve the performance of our prediction models. Thirdly, 
manual segmentation is time-consuming and may be a 
source of observer variability. Previous study has developed 
automatic segmentation method for rectal cancer based on 
CT data (40). But so far, there is no automatic segmentation 
method for rectal cancer based on MRI data. In the future, 
automatic segmentation of rectal cancer based on MRI 

data may help in improving efficiency and eliminating the 
subjective influence of manual segmentation.

In conclusion, this preliminary study presents a radiomics 
prediction model that incorporates both MRI features and 
clinical variables to identify MSI in rectal cancer. This 
combined analysis of multiple predictors is now regarded 
as the most promising method to assist clinical practice. 
The combined prediction model in our study is a potential 
tool for the noninvasive prediction of MSI in rectal cancer, 
which is beneficial for individualized treatment and 
prognosis prediction.
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Supplementary 

We used the XGBoost package from scikit learn (Swami A, Jain R. Scikit-learn: machine learning in python. Journal of 
Machine Learning Research 2013;12:2825-2830.) to construct the predictive models. The parameters were set as follows: 
booster = “gbtree”, objective = “binary:logistic”, max_depth = 3, learning_rate = 0.1, n_estimators = 100, silent = True, n_jobs 
= 1, nthread = None, gamma = 0, min_child_weight = 1, max_delta_steP=0, subsample = 1, colsample_bytree = 1, colsample_
bylevel = 1, reg_alpha = 0, reg_lambda = 1, scale_pos_weight = 1, base_score = 0.5, random_state = 0.


