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Background: This study aimed to develop and validate a model for mortality risk stratification of intensive 
care unit (ICU) patients with acute kidney injury (AKI) using the machine learning technique.
Methods: Eligible data were extracted from the Medical Information Mart for Intensive Care (MIMIC-
III) database. Calibration, discrimination, and risk classification for mortality prediction were evaluated 
using conventional scoring systems and the new algorithm. A 10-fold cross-validation was performed. The 
predictive models were externally validated using the eICU database and also patients treated at the Second 
People’s Hospital of Shenzhen between January 2015 to October 2018.
Results: For the new model, the areas under the receiver operating characteristic curves (AUROCs) for 
mortality during hospitalization and at 28 and 90 days after discharge were 0.91, 0.87, and 0.87, respectively, 
which were higher than for the Simplified Acute Physiology Score (SAPS II) and Sequential Organ Failure 
Assessment (SOFA). For external validation, the AUROC was 0.82 for in-hospital mortality, higher than 
SOFA, SAPS II, and Acute Physiology and Chronic Health Evaluation (APACHE) IV in the eICU database, 
but for the 28- and 90-day mortality, the new model had AUROCs (0.79 and 0.80, respectively) similar to 
that of SAPS II in the SZ2 database. The reclassification indexes were superior for the new model compared 
with the conventional scoring systems.
Conclusions: The new risk stratification model shows high performance in predicting mortality in ICU 
patients with AKI.
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Introduction

Acute kidney injury (AKI) is a common but complex disease 
in critically ill patients, leading to high morbidity and 
mortality (1,2). In addition, AKI is associated with increased 
length of hospital stay (LOS), total health-related costs, and 
mortality (3-6). In-hospital mortality in patients with AKI 
has recently been estimated to be between 20% and 25% 
(7,8), while critically ill patients with AKI requiring dialysis 
have a mortality rate exceeding 50% (9,10). Currently, 
the diagnosis criteria for AKI mostly depend on serum 
creatinine (SCr) assessment (3), and diagnosing AKI based 
on SCr might delay AKI detection, leading to a more 
advanced stage at diagnosis and irreversible damage and 
loss of organ function (11). Therefore, the development of 
new predictive models for risk stratification in patients with 
AKI in the intensive care unit (ICU) is crucial in reducing 
unnecessary kidney stress and improving patient outcomes 
(4,12).

The burden of care for critically ill patients is massive. 
The basis of critical care is a risk stratification approach for 
classifying patients by severity levels and thus optimizing 
personal care. Precision delivery is based on this prediction-
personalization approach, deployed precisely at the right 
moment in the course of clinical management for improved 
clinical outcomes (13,14). Traditionally, several rule-
based severities scoring systems, and their modifications, 
are used based on the clinical experiences of physicians; 
those systems include, for example, the Sequential Organ 
Failure Assessment (SOFA), Simplified Acute Physiology 
Score (SAPS II), and Acute Physiology and Chronic Health 
Evaluation (APACHE) IV (15,16).

Machine-learning techniques are being increasingly 
used to examine the risk stratification of patients (17,18). 
Novel machine learning applications can offer improved 
predictive performance by maximally leveraging large-scale, 
complex electronic health record (EHR) and identifying 
the most robust signals within the noise (19,20). They can 
rapidly assess voluminous and complex data to identify 
clinically relevant risk levels by applying computationally 
intensive statistical modeling (19,20). Nevertheless, none 
of these models reaches sufficient precision to be used 
for an individual patient (21). In addition, studies have 
unanimously concluded that non-parametric methods 
might perform at least as well, if not better, than standard 
logistic regression-based techniques in predicting ICU  
mortality (22). Therefore, more robust methods for staging 
AKI are required (23).

Therefore ,  this  s tudy a imed to develop a  r i sk 
stratification system for ICU patients with AKI at admission 
using machine-learning. We present the following article in 
accordance with the TRIPOD reporting checklist (available 
at http://dx.doi.org/10.21037/atm-20-5723).

Methods

Study population

This study is a cohort retrospective study based on three 
different population. Three databases were used: the 
publicly available Medical Information Mart for Intensive 
Care (MIMIC-III) database (24) (internal validation), the 
publicly available eICU Collaborative Research Database 
(external validation), and Shenzhen Second Renmin 
Hospital database (SZ2) (also external validation). In this 
study, all patients diagnosed with AKI in the ICU according 
to the diagnostic criteria described in the “Kidney Disease 
Improving Global Outcomes” (KDIGO) clinical practice 
guidelines were included according to the diagnostic 
codes in the hospital information system (25). Therefore, 
the diagnosis of AKI was: (I) increase in SCr ≥0.3 mg/dL 
within 48 h or ≥50% within 7 days, and (II) urine output  
<0.5 mL/kg/h for 6 h. Baseline SCr was defined as the mean 
creatinine level before hospital admission within 3 months 
(25-27). If the patients had no available data, then the SCr 
was estimated using the back-calculation method from the 
Modification of Diet in Renal Disease (MRDR) formula 
with a GFR of 75 mL/min/1.73 m2 (28). The patients who 
had been hospitalized once or more were enrolled. The 
patients who received dialysis (renal replacement) in the 
ICU were identified (29) and excluded.

The predictive model was built and internally validated 
using data extracted from the publicly available MIMIC-
III database (24). During the model building process, 10% 
of the data from the MIMIC cohort were not used for 
model building but for the validation process. Hence, it was 
defined as an internal validation (30).

External validation of the predictive performance of 
the developed algorithm was evaluated using the above 
metrics but in a completely independent dataset. The 
data used for external validation were extracted from the 
publicly available eICU Collaborative Research Database 
and SZ2. The eICU is a multi-center ICU database with 
high granularity data for over 200,000 admissions to ICUs 
monitored by the eICU Programs across the United 
States. It was created by the Laboratory for Computational 
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Physiology (LCP) at the Massachusetts Institute of 
Technology (MIT) and the eICU Research Institute (eRI) 
at Philips Healthcare (31). A total of 1,087 events made 
by a total of 1,063 patients were included from the eICU 
database.

The other external dataset was obtained from our local 
hospital, and a total of 84 randomly selected patients 
with AKI admitted to the general adult ICU in the 
Second People’s Hospital of Shenzhen (a tertiary-care 
teaching hospital) from January 2015 to October 2018 
were included. The study was approved by the ethics 
committee of the Second People’s Hospital of Shenzhen 
(#20180515001). For the data from this hospital, informed 
consent was obtained from all patients or their families by 
telephone. All patient privacy data were protected under 
the confidentiality policy.

For eICU and SZ2, the inclusion criteria were the septic 
shock 3.0 criteria: (I) persisting hypotension requiring 
vasopressors to maintain mean arterial pressure (MAP)  
≥65 mmHg, and (II) blood lactate >2 mmol/L despite 
adequate volume resuscitation. The exclusion criteria were 
(I) <18 years of age, (II) history of chronic kidney disease 
and kidney transplantation, (III) end-stage malignant 
tumors, (IV) septic shock occurred 24 h after admission, (V) 
death within 12 h of admission despite cardiopulmonary and 
brain resuscitation, (VI) missing data (without creatinine in 
24 h after admission), and (VII) trauma and other causes of 
renal contusion injury. In SZ2, the patients were followed 
by phone calls every week.

The assessed features included baseline demographic 
features, vital signs, laboratory measurements, medications, 
and diagnostic codes. The averaged laboratory data (since 
a given indicator might have been measured more than 
once during the first 24 h) included in the model were 
those obtained within 24 h of admission to the ICU. The 
averaged values for biochemical parameters within 24 h of 
admission to the ICU were used for downstream analysis. 
If variables were missing, for laboratory results, we used the 
mean of the normal range; for the absent height and weight, 
we used age and sex to stratify the liner relationship then 
interpolation; for the other categorical variables, we used 
“null” as the default value.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the institutional ethics board of the Second 
People’s Hospital of Shenzhen (No. 20180515001), and 
individual consent for this retrospective analysis was 
waived. The flowchart of data processing is shown in 

Figure 1.

Prediction algorithm

In this study, the proposed algorithm was built based on the 
random forest algorithm method (32) with improvement in 
feature selection (Figure 2) and consisted of two steps:

(I) Feature selection. Because the relative rank of 
each feature could be used to reflect its relative 
significance (12-14), a random forest algorithm was 
first applied to rank the contributions of the various 
features. Then, a stepwise multivariable regression 
analysis was performed to further screen the selected 
variables. Variables with P<0.10 were included in the 
final model building.

(II) Model building. The risk stratification model was 
constructed based on the selected feature subspaces 
using the random forest algorithm. In addition, 
we developed a new version of the SAPS II score 
by fitting a main-term logistic regression model 
to our data using the same explanatory variables as 
those used in the original SAPS II score. The same 
procedure was used to build a new version of the 
APACHE IV and SOFA scores. Mortality prediction 
based on the traditional scores was obtained by 
regressing hospital mortality on the scores using a 
main-term logistic regression (22). The model was 
written in the Python scripting language (v3.6.5) 
[The Python Software Foundation (PSF), https://
www.python.org; Wilmington, DE, USA].

Performance evaluation

In this study, the predictive performances of scores yielded 
by the current and conventional models were comparatively 
assessed. A 10-fold cross-validation was performed in 
all experiments for the different classification methods. 
In addition to the area under the receiver operating 
characteristic curve (AUROC), accuracy, specificity, 
sensitivity, and F-measure (F1) were also assessed to evaluate 
the performance of the constructed model. Discrimination 
was evaluated using AUROC, as well as the box plots of 
predicted probabilities of death for survivors and non-
survivors, and the corresponding discrimination slopes, 
defined as the differences between the mean predicted 
risks in survivors and non-survivors. The calibration of 
the predictive model was assessed by the conventional 
Hosmer-Lemeshow test. Under perfect calibration, a 
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Figure 1 Flowchart of data processing. ICU, intensive care unit; AKI, acute kidney injury; RBC, red blood cell; BUN, blood urea nitrogen; 
INR, international normalized ratio; SOFA, Sequential Organ Failure Assessment; SAPS II, Simplified Acute Physiology Score II; 
APACHE, Acute Physiology and Chronic Health Evaluation.

prediction algorithm would satisfy the logistic regression 
equation (22). Summary reclassification measures, including 
continuous net reclassification index (cNRI) and integrated 
discrimination improvement (IDI), were relative metrics 
that have been designed to overcome the limitations of the 
usual discrimination and calibration measures (33-35). We 
computed the reclassification tables and associated summary 
measures to measure reclassification for the various 
methods. Finally, we used decision curve analysis (DCA) (36)  
to estimate the clinical usefulness and net benefit of 
different prediction models to facilitate the comparison 
among them.

Statistical analysis

Exploratory data analysis was performed for each selected 
variable. Median values with interquartile ranges or 
means with standard deviations (SDs) were calculated for 
continuous variables. Percentages were determined for 
categorical variables. Patient demographics, vital signs, 

laboratory results, and admission diagnoses were compared 
among databases by the Kruskal-Wallis rank-sum test, chi-
square test, or Fisher’s exact test, as appropriate. P<0.05 
was considered statistically significant. Statistical analyses 
were performed using Python 3.7.0 and R 3.6.3 Bell Labs 
(New Providence, NJ, USA) and EmpowerStats (www.
empowerstats.com) on May 16, 2020.

Results

Patient characteristics

There were 3,411 patients with AKI were included from 
the MIMIC-III population (development set), with a total 
of 3,540 encounters, 1,063 patients with AKI were included 
from the eICU, with a total of 1,087 encounters, and 84 
patients with AKI were included from the SZ2 (external 
validation sets). There was some heterogeneity among the 
different patient cohorts. All patient features are shown in 
Table 1.
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Figure 2 Building procedure for the proposed risk stratification algorithms. The following features were finally selected for model building: 
age, gender, length of stay in intensive care unit (ICU) (los_icu), weight, height, body mass index (BMI), diabetes, heart-related diseases, 
lung-related diseases, no comorbidity, has two diseases, more than three diseases, hypertension, Simplified Acute Physiology Score II (SAPS 
II). The follow features were collected within 24 h after ICU admission: albumin serum (ALB), alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), white blood cell (WBC), platelet count (PLT), neutrophil (NEUT), lymphocyte (LY), serum total bilirubin 
(TBIL), serum creatinine (SCr), blood urea nitrogen (BUN), red blood cell (RBC), hemoglobin (HBG), hematocrit (HCT), activated partial 
thromboplastin time (PTT), prothrombin time (PT), international normalized ratio (INR), neutrophils/lymphocyte ratio (NLR), platelet/
lymphocyte ratio (PLR), PCO2, PO2, temperature, respirate, mean blood pressure (MEANBP), heart rate, glucose, SpO2, diastolic blood 
pressure (DIASBP), CO2, chloride (CL), lactate, sodium, plasma cells, mechanic ventilation (MV), min Glasgow coma scale (MINGCS), 
specimen.
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Table 1 Characteristics of the study population

Data source MIMIC-III eICU SZ2 P value

N 3,540 1,087 84

Age (years) 65.96 (52.72, 78.33) 67.00 (57.50, 78.00) 67.00 (52.75, 78.25) 0.009

Length of stay in ICU (days) 4.07 (2.18, 8.14) 3.79 (1.96, 7.79) 7.00 (3.00, 19.25) <0.001

SAPS II 43.00 (33.00, 54.00) 93.00 (73.00, 118.00) 30.50 (20.00, 36.00) <0.001

Albumin serum (g/dL) 3.10 (2.57, 3.60) 2.80 (2.40, 3.27) 2.42 (2.04, 2.86) <0.001

Total bilirubin serum (mg/dL) 0.68 (0.40, 1.30) 0.80 (0.50, 1.50) 1.13 (0.69, 1.78) <0.001

Creatinine serum (mg/dL) 1.15 (0.83, 1.80) 2.07 (1.52, 3.10) 2.85 (2.12, 3.56) <0.001

Hematocrit 32.20 (28.70, 36.34) 32.50 (27.91, 37.69) 33.20 (29.98, 37.75) 0.217

Hemoglobin (g/dL) 10.79 (9.53, 12.25) 10.55 (9.11, 12.25) 11.00 (9.57, 12.30) 0.008

Platelet count 210.00 (140.50, 289.50) 187.17 (122.09, 251.00) 120.00 (69.75, 196.25) <0.001

Prothrombin time (s) 14.65 (13.40, 17.37) 15.70 (12.90, 20.70) 15.80 (13.90, 21.95) <0.001

Blood urea nitrogen (mg/dL) 25.50 (16.00, 42.00) 36.67 (25.93, 55.54) 13.75 (10.68, 17.50) <0.001

White blood cell (×1,000) 12.50 (8.70, 17.44) 12.90 (9.23, 18.00) 14.47 (9.53, 22.86) 0.008

Red blood cell (×1,000) 3.69 (3.21, 4.36) 3.61 (3.10, 4.18) 3.66 (3.27, 4.42) <0.001

Alanine aminotransferase (U/L) 30.50 (17.50, 67.00) 34.00 (18.16, 98.00) 50.00 (28.00, 109.75) <0.001

Aspartate aminotransferase (U/L) 43.25 (25.00, 96.56) 52.75 (25.75, 180.50) 59.00 (33.25, 266.75) <0.001

Mechanic ventilation 2468 (69.7) 570 (52.4) 56 (66.7) <0.001

Gender (male) 1953 (55.2) 620 (57.0) 53 (63.1) 0.218

In-hospital death 838 (23.7) 388 (35.7) – <0.001

28-day mortality 966 (27.3) – 43 (51.2) <0.001

90-day mortality 1,179 (33.3) – 48 (57.1) <0.001

Stage KDIGO <0.001

1 584 (16.5) 368 (33.9) 34 (40.5)

2 704 (19.9) 358 (32.9) 35 (41.7)

3 2,252 (63.6) 361 (33.2) 15 (17.9)

Data are median (Q1–Q3), or n (%). P value: continuous variables were assessed by the Kruskal Wallis rank sum test, and count variables 
with a theoretical number <10 by the Fisher’s exact probability test. ICU, intensive care unit.

Feature selection

In most cases, models built on multiple variables perform 
better in prediction, but it is more cost-effective and 
efficient to use a few but important features. Since features 
built on the top of trees contribute more to predicting AKI 
in at-risk patients, the relative importance of each feature is 
provided in Figure 3.

Model building and validation performance

Three predictive models were built based on the above 
procedure (Figure 2). Feature selection was first conducted 
by machine learning, then the features were further 
selected after discussion with our physicians, unfavorable 
features were deleted and useful features were added before 
training. These three predictive models were targeted 
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Figure 3 Variables selected by machine knowledge, ranking by their importance levels. AKI, acute kidney injuries. CMO, comfort measures 
only; DNR, do not resuscitate; SAPS II, Simplified Acute Physiology Score II; SOFA, Sequential Organ Failure Assessment; BUN, blood 
urea nitrogen; SYSBP, systolic blood pressure; INR, international normalized ratio; PT, prothrombin time; WBC, white blood cells; LOS, 
length of stay; PTT, partial thromboplastin time.

on identifying patient mortality during hospitalization 
(Model_inpatient) and at 28 (Model_28) and 90 (Model_90) 
days after discharge. The AUROCs for Model_inpatient, 
Model_28, and Model_90 were 0.91, 0.87, and 0.87, 
respectively. Compared with traditional scoring systems 
(SAPS II and SOFA), all three newly developed models 
had better predictive performances based on AUROCs  
(Figure 4A,B,C).

The performances of the three models were externally 
validated in the eICU and SZ2 dataset. Since eICU only has 
inpatient records, while SZ2 only records post-discharge 
mortality, Model_inpatient was evaluated in the eICU 
dataset and Model_28 and Model_90 in the SZ2 dataset. The 
ROC curves for hospital mortality prediction in the external 
validation are provided in Figure 4D,E,F. For the eICU 
dataset, AUROCs were 0.67 and 0.73 for the SOFA and 
SAPS II scores, respectively; similar results were obtained 
for the APACHE IV, which yielded an AUROC of 0.74. 
Model_inpatient substantially outperformed the traditional 
scoring systems. The AUROC was 0.82, revealing a clear 
advantage of the newly developed algorithm over traditional 
scores (Figure 4D). For the SZ2 dataset, the performance 
of Model_28 and Model_90 behaved similarly compared to 
SAPS II (Figure 4E,F).

The accuracies, specificities, sensitivities, and F1 scores 
of the new risk stratification model for internal and external 
validation are shown in Figure 5. Even though external 
validation performed well, internal validation results were 
slightly better in general.

Discrimination and calibration

To better evaluate the discrimination potential of our 
predicted results, the whole population was grouped 
into five categories based on predicted risk scores. The 
observed mortality rate was determined for each group. 
As demonstrated in Table 2, the lower the relative rate 
of patient mortality, the lower the predicted risk score, 
especially in patients with risk scores greater than 60% 
or lower than 20%. These results suggested that the new 
algorithm could successfully identify survivors and non-
survivors, especially among patients with very high (0.8–1.0) 
and low (<0.2) risk scores.

Discrimination was also evaluated by assessing 
differences between the predicted probabilities of death 
among survivors and non-survivors using each prediction 
algorithm (Figure 6). The discrimination slopes were 0.085 
for the SOFA score, 0.16 for the SAPS II score, 0.257 for 
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Figure 4 Performances of the newly developed prediction models and traditional scoring systems for internal and external validation. 
Internal validation performance: The new predictive model targeted on identifying patient mortality in the MIMIC-III database during 
hospitalization (A), and at 28 (B) and 90 (C) days, versus the SOFA and SAPS II models. External validation performance: (D) the new 
predictive model targeted on identifying patient mortality during hospitalization in eICU database, versus the SOFA, SAPS II, and 
APACHE IV models. (E) The new predictive model targeted on identifying 28-day mortality after discharge in the SZ2 database, versus the 
SAPS II model. (F) The new predictive model targeted on identifying 90-day mortality after discharge in the SZ2 database, versus the SAPS 
II model. SOFA, Sequential Organ Failure Assessment; SAPS II, Simplified Acute Physiology Score II; APACHE, Acute Physiology and 
Chronic Health Evaluation.

the APACH IV score, and 0.32 for the RF score. The plots 
indicated a lack of fit for the traditional scores.

Prediction based on the RF exhibited excellent 
calibration properties (Figure 6), as reflected by a Brier 
scores of 0.159 (χ2=4.185, P=0.84) for Model_inpatient, 
0.177 (χ2=0.064, P=0.969) for Model_28, and 0.170 
(χ2=0.472, P=0.79) for Model_90. The calibration plots 
indicated a lack of fit for the traditional scoring methods. 
The newly developed algorithm performed better for the 

entire range of death probability.

Reclassification

We calculated the risk of each individual in the entire 
external validation cohort and divided all patients into three 
groups based on the risk cut-off at 95% sensitivity and 95% 
specificity (37). The reclassification tables involving the RF 
score and traditional scores are provided in Table 3. The 
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SAPSII (AUC =0.82)
minic_hos (AUC =0.91)
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SAPSII (AUC =0.78)
minic_90 (AUC =0.87)
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minic_28 (AUC =0.87)

SOFA (AUC =0.67)
SAPSII (AUC =0.73)
APACHE IV (AUC =0.74)
elCU (AUC =0.82)

SAPSII (AUC =0.80)
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Figure 5 Predictive performances of the new proposed models. Predictive performances measured by accuracy, specificity, and sensitivity 
of the three predictive models for mortality during hospitalization, and at 28 and 90 days after discharge, respectively, based on the internal 
MIMIC-III database and two external validation datasets (the eICU database for mortality during hospitalization, and the SZ2 dataset for 
28/90-day mortality).

Table 2 Relative risk ratios for various risk groups in both external validation datasets

Risk
Model_inpatient Model_28 Model_90

Patients, n Mortality, % RR Patients, n Mortality, % RR Patients, n Mortality, % RR

>80% 221 81.40 2.3 17 76.50 1.5 17 82.40 1.4

60–79% 216 43.50 1.2 17 70.60 1.4 17 70.60 1.2

40–59% 216 26.40 0.7 16 62.50 1.2 17 70.60 1.2

20–39% 220 18.60 0.5 17 41.20 0.8 16 50 0.9

<19% 214 7.50 0.2 17 6.90 0.1 17 11.80 0.2

Total 1,087 35.70 84 51.20 84 57.10

RR, relative ratio.

results show that the RF score proposals resulted in a large 
proportion of patients being reclassified.

We computed the cNRI and IDI considering RF as the 
updated model, and the SOFA, SAPS II, and APACHE 

IV scores as the initial models. In this case, positive values 
for the cNRI and IDI would indicate that RF has a better 
discriminative ability than the traditional methods, whereas 
negative values indicate the opposite. The results are 
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Figure 6 Calibration and discrimination potentials of the new RF-based algorithm and traditional scoring systems in external validation. 
(A,B,C,D) In-hospitalization mortality. (A) SOFA score (Brier score =0.210; χ2=4.992, P=0.759; discrimination slope =0.085); (B) SAPS II 
score (Brier score =0.192; χ2=7.188, P=0.517; discrimination slope =0.16); (C) APACHE IV score (Brier score =0.203; χ2=249.148, P=0; 
discrimination slope =0.257); (D) the newly developed algorithm (Brier score =0.159; χ2=4.185, P=0.84; discrimination slope =0.32). (E,F) 
Mortality within 28 days after discharge. (E) 28_SAPS II score (Brier score =0.177; χ2=1.181, P=0.554; discrimination slope =0.291); (F) 
28_RF score (Brier score =0.177; χ2=0.064, P=0.969; discrimination slope =0.294). (G,H) Mortality within 90 days after discharge. (G) 
90_SAPS II score (Brier score =0.172; χ2=0.404, P=0.817; discrimination slope =0.302); (H) 90_RF (Brier score =0.170; χ2=0.472, P=0.79; 
discrimination slope =0.306). SOFA, Sequential Organ Failure Assessment; SAPS II, Simplified Acute Physiology Score II; APACHE, Acute 
Physiology and Chronic Health Evaluation.
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Table 3 Reclassification (reclassification tables)

Initial model Updated model

Predicted probability according to 
initial model % Reclassified

Statistics

<12% 12–64% >64% NRI (95% CI) P

SOFA Model_inpatient 0.628 (0.555–0.701)

<12% 1 0 0 0 <0.001

12–64% 260 600 189 43

>64% 0 15 22 41

APACHE IV Model_inpatient 0.176 (0.100–0.252)

<12% 126 74 6 39 <0.001

12–64% 132 390 66 34

>64% 3 151 139 53

SAPS II Model_inpatient 0.457 (0.386–0.528)

<12% 49 12 0 20 <0.001

12–64% 212 566 136 38

>64% 0 37 75 33

Model_28 <13% 13–70% >70% 0.287 (0.039–0.535)

<13% 7 1 0 12 0.023

13–70% 11 25 13 49

>70% 0 5 22 19

Model_90 <15% 15–83% >83% 0.340 (0.058–0.623)

<15% 4 1 0 20 0.018

15–83% 12 31 18 49

>83% 0 7 11 39

SOFA, Sequential Organ Failure Assessment; SAPS II, Simplified Acute Physiology Score II; APACHE, Acute Physiology and Chronic 
Health Evaluation; NRI, net reclassification index.

summarized in Table 4. Compared with the SOFA, SAPS 
II, and APACHE IV systems, both cNRI and IDI showed 
positive values for the new algorithm. These findings 
indicated the superiority of the newly developed model in 
predicting mortality in AKI patients in the ICU.

Decision curve analysis

The decision curve of the three predictive models and 
traditional scores is provided in Figure 7A,B,C. The DCA 
graphically shows the clinical usefulness of each model 
based on a continuum of potential thresholds for major 
risk (X-axis) and the standardized net benefit of using the 
model to stratify the patients (Y-axis). In this analysis, for 

the eICU dataset, RF provided a larger standardized net 
benefit across the range of major high risk compared with 
the SOFA, SAPS II, and APACHE IV systems (Figure 7A). 
For the SZ2 dataset, RF had a superior overall standardized 
net benefit within the wide and practical ranges of threshold 
probabilities, and this is similar to the performance of the 
SAPS II (Figure 7B,C).

Discussion

Since mortality prediction remains challenging in patients 
with AKI in the ICU, the current study developed and 
validated a machine learning technique for the risk 
stratification of such patients. The new risk stratification 
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Table 4 Reclassification (reclassification statistics)

Model_inpatient Model_28 Model_90

SOFA

cNRI 0.864 (0.752, 0.977) – –

IDI 0.235 (0.207, 0.263) – –

SAPS II

cNRI 0.814 (0.700, 0.928) 0.001 (–0.427, 0.429) 0.097 (–0.334, 0.529)

IDI 0.160 (0.136, 0.184) 0.003 (–0.074, 0.079) 0.005 (–0.075, 0.085)

APACHE IV

cNRI 0.205 (0.084, 0.327) – –

IDI 0.063 (0.031, 0.095) – –

SOFA, Sequential Organ Failure Assessment; SAPS II, Simplified Acute Physiology Score II; APACHE, Acute Physiology and Chronic 
Health Evaluation; cNRI, continuous net reclassification index; IDI, integrated discrimination improvement.
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Figure 7 DCA of the new RF-based algorithm and traditional scoring systems in external validation. (A) In-hospitalization mortality; (B) 
mortality within 28 days after discharge; (C) mortality within 90 days after discharge. DCA, decision curve analysis.

model was superior in predicting mortality in ICU patients 

with AKI compared with the conventional severity scoring 

systems (SOFA, SAPS II, and APACHE IV) based on in-

hospital mortality as well as mortality at 28 and 90 days 

post-discharge.

Based on the retrospective MIMIC-III dataset and the 

KDIGO definition of AKI (25), a tree-based predictive 

algorithm was proposed to build three predictive models 

(Model_inpatient, Model_28, and Model_90). The 

prediction outcomes of these three models were mortality 

during hospitalization and at 28 and 90 days after discharge, 

respectively. Their performances were validated both 
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internally and externally, both in terms of discrimination 
and calibration, compared with traditional scoring systems. 
The results indicated that the tree-based predictive 
algorithm was robust in building prediction models for 
mortality during hospitalization and at 28 and 90 days after 
discharge. As shown above, the new model performed better 
than the traditional scoring systems, including APACHE 
IV, SOFA, and SAPS II, which are commonly used to 
stratify critically ill patients on the day of hospital admission 
(38,39). The results showed that the lower the relative rate 
of patient mortality, the lower the predicted risk score, 
indicating the excellent ability of our model in grading ICU 
patients with AKI.

The proposed predictive model provides advantages 
over currently used systems. Unlike the traditional scoring 
systems, including SOFA, SAPS II, and APACHE IV, which 
assess general disease severity scores, the developed method 
is specific to AKI in ICU settings. Besides, the SOFA score 
is based on logistic regression (40). The process leading 
to ICU death is highly complex, and accurately predicting 
mortality through linear relationships with explanatory 
variables is challenging. The newly proposed algorithm 
may also provide advantages over manual AKI detection 
methods, which might not be implemented unless a 
physician already suspects AKI and are subject to potential 
human error.

Non-parametric techniques have been advocated for 
the early detection of AKI and ICU mortality prediction 
but may not be applicable to AKI. Mohamadlou et al. 
have developed a decision tree-based machine learning 
algorithm with a strong predictive performance compared 
with the SOFA score in terms of AUROC (41), but these 
results were challenged by Kim et al. (42), who reported 
no clear benefit from neural networks and support vector 
machines compared with APACHE-IV. Rather, in the 
latter study, the optimal performance was achieved with a 
decision tree.

Interestingly, the new algorithms were externally 
validated for performance based on two separate datasets. 
In addition, its predictive ability, as well as calibration and 
discrimination potential, were also tested. As shown above, 
the current models yielded good results in both datasets. 
Therefore, this new algorithm might provide an efficient 
real-time risk stratification tool because of its accuracy and 
computational speed.

Based on the above findings, the newly developed model 
should be applied for the risk stratification of ICU patients 
with AKI, which would help provide appropriate care and 

improve the quality of life of the patients. In addition, 
similar specific models could be developed for various 
diseases to improve risk stratification.

The limitations of this study should be mentioned. 
First, due to incomplete datasets, the current models 
could not be compared to all the widely used scoring 
systems for predictive performance. The APACHE IV and 
SOFA systems serve as references in most hospitals, and 
performance comparison between each of these scores and 
the proposed algorithm should be carried out, especially 
in local hospitals. Second, since eICU only includes 
inpatient records, while the SZ2 only contained mortality 
information after discharge, external validation of Model_
inpatient was only possible based on eICU, while Model_28 
and Model_90 could only be tested using the SZ2. Third, 
there were differences in baseline features of patients 
among the three sources, including the training (MIMIC-
III) and validation (eICU and SZ2) sets, which could bias 
the results. Nevertheless, validation was still good in the 
different populations, demonstrating the generalizability 
of these models. Third, the data from the public databases 
are limited. AKI stage and the changes in kidney condition 
during ICU stay could not be examined in this study. 
Finally, the sample size was relatively small in the validation 
cohorts. Therefore, including additional variables and 
enlarging the sample size for external validation would be 
beneficial.

Conclusions

The prediction algorithms developed in this study have 
a significantly improved performance compared with 
currently available methods, including the SOFA, SAPS 
II, and APACHE IV systems, constituting promising 
tools for building mortality prediction models in both the 
clinical and research settings. This model was developed 
to predict the in-hospital, 28-day (after discharge), and 
90-day (after discharge) death risk of ICU patients who 
developed AKI, thus guiding the physicians to pay more 
attention to high-risk patients and anticipate potential 
complications.
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