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Background: Sepsis is the primary cause of mortality in the intensive care unit (ICU), mainly due to 
sepsis-induced dysfunction of essential organs such as the heart and lungs. This study investigated the 
myocardium’s epigenetic characterization from septic mice to identify potential treatment targets for septic 
myocardial dysfunction.
Methods: Cecal ligation and puncture (CLP) was used to induce sepsis in male C57BL/6 mice. Hearts 
were collected 24 h after surgery to determine the expression profiles of long noncoding RNAs (lncRNAs) 
and messenger RNAs (mRNAs) by microarray. To validate the reliability of microarray results, we randomly 
chose six differentially expressed lncRNAs for qRT-PCR. Functional mapping of differentially expressed 
mRNAs was annotated with gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analyses; lncRNA-mRNA co-expression network was constructed to reveal connections between 
lncRNAs and mRNAs. 
Results: Microarray analysis indicated that 1,568 lncRNAs and 2,166 mRNAs were differentially expressed 
in the myocardium from septic mice, which was further confirmed by qRT-PCR. KEGG pathway analysis 
showed that numerous differentially expressed mRNAs were relevant to tumor necrosis factor (TNF) and 
phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) signaling pathways. Moreover, according to the 
lncRNA-mRNA co-expression network constructed by the above six lncRNAs and their interacting mRNAs, 
the co-expression network profiles had 57 network nodes and 134 connections, including 76 positive 
interactions and 58 negative interactions.
Conclusions: In mouse hearts, sepsis resulted in differential expression of lncRNAs and mRNAs related 
to TNF and PI3K-Akt signaling pathways, suggesting that lncRNAs and their interacting mRNAs may 
participate in the pathogenesis of septic myocardial dysfunction by regulating TNF and PI3K-Akt signaling 
pathways.
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Introduction

Sepsis, which is now defined as life-threatening organ 
dysfunction caused by the deregulated host response 

to infection, is currently the leading cause of mortality 

in the intensive care unit (ICU) (1,2). In the United 

States, admissions for sepsis have exceeded those for 

199

Original Article

https://crossmark.crossref.org/dialog/?doi=10.21037/atm-20-3830


Li et al. Expression profiles of lncRNAs and mRNAs in septic mouse hearts

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(3):199 | http://dx.doi.org/10.21037/atm-20-3830

Page 2 of 15

myocardial infarction and stroke (3). According to a recent 
epidemiological study, there are approximately 5 million 
patients with sepsis in China each year, and the mortality 
rate is greater than 30% (4). Therefore, although enormous 
improvements have been made in treating sepsis, such 
as anti-infection strategy and extracorporeal life support 
technology, the number of deaths is still rising steadily (5),  
and sepsis remains the major challenge for intensive 
care physicians (6,7). Numerous evidence-based clinical 
studies have shown that the fundamental cause of the high 
mortality rate in patients with sepsis is the dysfunction and 
failure of essential organs, such as the heart and lung (8,9). 

Septic myocardial dysfunction (SMD) as a critical 
component of sepsis-induced multiple organ dysfunction 
is closely associated with adverse outcomes and high  
mortality (10). For example, in contrast to 20% mortality 
for septic patients without cardiac involvement, the 
mortality rate of patients with SMD ranges from 70% to 
90% (11). Thus, effectively suppressing multiple organ 
dysfunction, particularly SMD, is crucial to improve the 
prognosis of septic patients.

Long noncoding RNAs (lncRNAs), characterized 
by a transcript of more than 200 nucleotides without 
the capability to translate into proteins, have long been 
considered as part of transcriptional noise (12). However, 
increasing evidence has demonstrated that lncRNAs are 
novel regulators of chromatin remodeling, transcriptional, 
and post-transcriptional gene regulation (12). Recently, the 
potential role of lncRNAs in the pathogenesis of SMD has 
attracted some attention. Besides, several lncRNAs have 
been reported to correlate with SMD (13-17). In animal 
studies, the overexpression of lncRNA CRNDE played 
a protective role against sepsis-induced cardiomyocyte 
apoptosis and oxidative damage by modulating the 
microRNA-29a/SIRT1 axis (16); similarly, sepsis-induced 
cardiomyocyte apoptosis was significantly increased when 
lncRNA Pvt1 was silenced (17). In human studies, plasma 
levels of at least four lncRNAs in septic patients were 
substantially different from those in healthy volunteers, 
suggesting that circulating lncRNAs are a novel noninvasive 
diagnostic biomarker of SMD (18). However, the precise 
role of lncRNAs in SMD pathogenesis is still unclear, 
especially the expression profiles of lncRNAs and messenger 
RNAs (mRNAs) and the interacting pathways between 
lncRNAs and mRNAs.

In this study, microarray technology was used to analyze 
the expression profiles of lncRNAs and mRNAs in septic 
mice’s hearts, thus evaluating the feasibility of lncRNAs as 

potential treatment targets for SMD.
We present the following article in accordance with the 

ARRIVE reporting checklist (available at http://dx.doi.
org/10.21037/atm-20-3830). 

Methods

Ethical statement

Experiments were performed under a project license (NO.: 
SHDSYY-2018-1524) granted by the Animal Ethics Committee 
of Shanghai Tenth People’s Hospital, Tongji University, in 
compliance with the guidelines described in the National 
Institutes of Health’s Guide for the Care and Use of Laboratory 
Animals (NIH Publication No. 85-23, revised 1996).

Study design

Specific pathogen-free (SPF) male C57BL/6 mice (21–25 g)  
were purchased from Shanghai Laboratory Animal Co. Ltd. 
(Shanghai, China) and housed in the animal room (SPF 
class) of Shanghai Tenth People’s Hospital. All mice were 
labeled and divided into experimental and control groups 
using a computer-based randomized digital method. Mice 
in the experimental group were modeled to sepsis, and only 
sham operation was conducted in the control group. Samples 
were taken to verify the expression profiles of lncRNAs and 
mRNAs in the myocardial tissues 24 h after the procedure.

Sepsis model

Cecal ligation and puncture (CLP) was performed 
as previously described to induce sepsis (19). The 
mouse was anesthetized with pentobarbital (75 mg/kg) 
intraperitoneally. The abdomen’s lower quadrant was 
trimmed using an electric shaver and disinfected with 
alcohol cotton balls three times. In the midline of the 
abdominal skin, a longitudinal incision was made with a 
scalpel. Small scissors were used to lengthen the incision 
to facilitate access to the peritoneal cavity. A 1-cm incision 
was made along with the linea alba to locate and exteriorize 
the cecum. Black-braided silk nonabsorbable suture (4-0) 
was used to ligate the cecum to acquire the middle grade of 
sepsis according to anatomical locations. The cecum was 
then perforated with a 21-G needle by a one-way through-
and-through puncture between the ligation and the end of 
the cecum from mesenteric to the anti-mesenteric direction. 
Finally, the cecum was put back into the abdominal cavity, 
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and the peritoneum, fasciae, abdominal musculature, and 
skin were closed in proper order. Postoperatively, animals 
were recovered by injecting pre-heated normal saline  
(37 ℃; 5 mL/100 g) subcutaneously. In sham-operated mice 
(the control group), the operation was done identically, 
except that the cecum was not ligated and punctured. 
All animals were sacrificed humanely by an overdose of 
pentobarbital 24 h after surgery, and hearts were collected 
promptly for further studies. To verify that SMD was 
induced successfully by CLP, histological analysis, terminal 
deoxynucleotidyl transferase dUTP nick end labeling 
(TUNEL) immunostaining, and Western blot analysis 
were performed in heart tissue samples. Plasma levels of 
myocardial enzymes and tumor necrosis factor-α (TNF-α) 
were also determined (Figure 1 and Figure S1). 

Enzyme-linked immunosorbent assay (ELISA)

The concentration of serum TNF-α was determined by an 
ELISA kit (70-EK282/3-96, Multi Sciences Biotech Co. 
Ltd., Hangzhou, China) following the instruction manual. 
A microplate reader (Synergy 4 Hybrid Microplate Reader, 
BioTek, Vermont, USA) was used to measure the optical 
density spectrophotometrically at 450 and 630 nm.

Histological analysis of heart tissue

Mice were perfused transcardially with 0.9% normal saline. 
Fresh heart tissue samples were then collected, fixed with 
4% paraformaldehyde, and embedded in paraffin. After 
deparaffinization and dehydration, transverse sections (6 µm)  
were stained with hematoxylin-eosin and analyzed under a 
light microscope.

TUNEL immunostaining

For TUNEL staining, it was carried with a One Step 
TUNEL Apoptos i s  Assay  Kit  (C1086,  Beyot ime 
Biotechnology, Shanghai, China) in accordance with the 
manufacturer’s instructions, and the slides were finally 
viewed under a fluorescence microscope (IX71, Olympus, 
Tokyo, Japan). The ratio of cell apoptosis was calculated 
as the percentage of apoptotic nuclei/the total number of 
nuclei in 10 randomly selected areas.

Biochemical analysis

Plasma levels of creatine aspartate aminotransferase (AST), 

lactate dehydrogenase (LDH), and creatine kinase-MB 
(CK-MB) were determined by a VITROS 5600 automated 
biochemical analyzer (Ortho Clinical Diagnostics, New 
York, USA).

RNA extraction

The total RNA of mouse hearts was extracted in TRIzol 
reagent (Invitrogen, Grand Island, NY, USA) according 
to the instruction and operation manual. Briefly, isolated 
hearts were ground in 1 mL TRIzol reagent, and 200 µL  
chloroform was added to the myocardial  t i ssue’s 
homogenate to extract RNA. The supernatant (600 µL)  
was transferred to a new Eppendorf (EP) tube after 
centrifugation at 12,000 rpm for 15 min at 4 ℃, and the 
same volume of isopropanol was added. The mixed solution 
was vortexed sharply for 15 s, kept at room temperature 
for 10 min, and then centrifuged at 12,000 rpm for 10 min  
at 4 ℃. The supernatant was removed, and the RNA pellet 
was washed with 75% alcohol two times, dried on an 
operating platform at room temperature, and dissolved in 
diethyl pyrocarbonate treated water. A NanoDrop ND-
1000 was used to determine RNA quality and quantity, and 
the integrity of RNA was evaluated by standard denaturing 
agarose gel electrophoresis (Figure S2).

Microarray analysis

The Arraystar Mouse LncRNA Microarray V3.0 (Arraystar, 
Rockville, MD, USA) was applied to profile mouse 
lncRNAs and protein-coding transcripts. Sample marking 
and array hybridization were carried out in accordance with 
the Agilent One-Color Microarray-Based Gene Expression 
Analysis protocol (Agilent Technology, USA) with a slight 
adjustment. In short, after removing rRNAs, the mRNA 
was purified from total RNA (mRNA-ONLY™ Eukaryotic 
mRNA Isolation Kit, Epicentre). Each specimen was then 
amplified and transcribed into fluorescent complementary 
RNA (cRNA) along the transcripts’ full length without 3' 
bias using a randomized priming method (Arraystar Flash 
RNA Labeling Kit, Arraystar). The labeled cRNAs were 
purified by RNeasy Mini Kit (Qiagen, Hilden, Germany). 
The density and specific activity of the labeled cRNAs 
(pmol Cy3/μg cRNA) were determined by NanoDrop ND-
1000. Each labeled cRNA (1 μg) was fragmented by adding 
5 μL 10× blocking agent and 1 μL of 25× fragmentation 
buffer, then warmed up the mixed solution at 60 ℃ for 
30 min, 25 μL 2× GE hybridization buffer was added 
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Figure 1 Myocardial damage following CLP-induced sepsis. (A) Compared with the control group, the concentration of serum TNF-a 
in the sepsis group was significantly increased. (B) HE staining showed normal cardiomyocyte morphology and regular arrangement of 
myocardial fibers in the control group [1] and apparent myocardial injury in the sepsis group [2] (magnification ×200). (C) Plasma levels 
of CK-MB, AST, and LDH in the sepsis group were also markedly higher than those in the control group. (D) Representative images of 
TUNEL staining (magnification ×200) and quantitative analysis of the apoptosis ratio. Data were expressed as the percentage of TUNEL-
positive nuclei/total nuclei. Data are presented as mean ± standard deviation (n=6 per group). **, P<0.01, comparing sepsis samples with 
controls. CLP, cecal ligation and puncture; TNF-α, tumor necrosis factor α; CK-MB, creatine kinase-MB, AST, aspartate aminotransferase; 
LDH, lactate dehydrogenase; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling; DAPI, 4',6-diamidino-2-
phenylindole, respectively.
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to dilute the labeled cRNA. The hybridization solution  
(50 μL) was dispensed with the gasket slide and assembled 
on the lncRNA expression microarray slide. The slides 
were incubated at 65 ℃ for 17 h in an Agilent hybridization 
oven. In the end, the hybridized arrays were washed, fixed, 
and scanned by the Agilent DNA Microarray Scanner (part 
number G2505C).

Quantitative real-time polymerase chain reaction  
(qRT-PCR)

To identify microarray data’s replicability by qRT-PCR, 
a computer-based randomized digital method was chosen 
to randomly select six lncRNAs from the differentially 
expressed lncRNAs. In brief, the top 80 up-regulated or 
down-regulated lncRNAs were numbered from 1 to 80, 
respectively. The starting point and the order of sampling 
were randomly determined to generate a random number 
table by a computer. Finally, three up-regulated lncRNAs 
(Gm14832, GAS5, and Trib3) and three down-regulated 
lncRNAs (AK086021, Gm10497, and Ccdc104) were 
selected respectively from the top 80 up-regulated or down-
regulated lncRNAs by extracting three random numbers in 
turn. The cDNA synthesis kit (RR036A, Takara Bio Inc., 
Shiga, Japan) was used to synthesize cDNA from RNA 
according to the kit’s instructions. The gene expression 
of cDNA was detected by the SYBR® Premix Ex Taq™ II 
(RR820A, Takara Bio Inc., Shiga, Japan) with an automated 
PCR instrument (7500 system). The reaction conditions 
were the following: incubation at 95 ℃ for 30 s, followed 
by 40 cycles of 95 ℃ for 5 s and 60 ℃ for 34 s, and finally 
annealing and extension at 95 ℃ for 15 s, 60 ℃ for 1 min, 
and 95 ℃ for 15 s. The specific gene primer sequences are 
listed in Table S1. β-actin was selected as an internal control.

Gene ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analyses

GO and KEGG pathway analyses were performed to clarify 
the roles of all differentially expressed mRNAs as previously 
described (20). GO analysis was conducted to identify the 
gene and gene product enrichment, and therefore elucidate 
the biological roles of all aberrantly expressed mRNAs (http://
www.geneontology.org). The GO covered three domains: 
biological processes (BP), cellular components (CC), and 
molecular functions (MF). Based on pathway analysis, KEGG 
pathway analysis (http://www.genome.jp/kegg/pathway.
html) is designed for the functional mapping of genes. The 

thresholds to define markedly enriched GO terms/pathways 
were P≤0.05 and fractional disappearance rate ≤0.05.

Construction of lncRNA-mRNA co-expression network

The co-expression network was constructed to identify 
any potential interactions between the differentially 
expressed lncRNAs and mRNAs according to correlation 
analysis. The lncRNA-mRNA co-expression network’s 
rationale is the standardized signal intensities of specific 
lncRNA and mRNA expression levels. Cytoscape software 
(version 2.8.3, the Cytoscape Consortium, San Diego, 
CA, USA) was used to construct the lncRNA-mRNA co-
expression network. The Pearson correlation coefficients 
(PCCs) were applied here to devise the lncRNA-mRNA 
co-expression network, PCCs ≥0.9 were chosen to build 
the network.

The primary method steps of this study are summarized 
in Figure 2.

Statistical analysis

All results were calculated and analyzed using SPSS 21.0 
statistical software package (SPSS Inc., USA). The grouping 
was performed randomly; all data were presented as mean ± 
standard deviation (SD). Fold change (FC) and independent 
sample t-test were used to analyze the statistically significant 
difference in microarray results. The cut-off values for 
differentially expressed lncRNAs and mRNAs were FC ≥2 
and P≤0.05. The false discovery rate (FDR) was determined 
to acquire the corrected P value, as described by Benjamini 
and Hochberg (21,22).

Results 

Myocardial injury by CLP-induced sepsis

In the experimental group, CLP caused a significant increase 
in serum TNF-α concentration, indicating the occurrence 
of sepsis (Figure 1A). Myocardial injury due to CLP was 
verified by abnormal morphological changes (Figure 1B) 
and markedly increased myocardial enzymes (Figure 1C) in 
the experimental group. In the myocardium, the myocardial 
injury was also proved by significantly increased expression 
of apoptosis-related proteins B-cell lymphoma-2 (Bcl-2) 
and Bcl-2-associated X protein (Bax), and positive TUNEL 
staining. The ratio of apoptosis-positive cells in myocardial 
tissue was distinctly increased in CLP mice than in sham-

https://cdn.amegroups.cn/static/public/ATM-20-3830-supplementary.pdf
http://www.genome.jp/kegg/pathway.html
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operated mice (Figure 1D). In the septic mice, the expression 
level of Bcl-2 was notably reduced, the level of Bax was 
considerably increased, and the ratio of Bcl-2 to Bax was 
markedly decreased (Figure S1).

Expression profiles of lncRNAs and mRNAs in septic 
myocardium

Six paired myocardial samples (sepsis and control groups, 
respectively) were collected for microarray analysis. The 

hierarchical clustering technique was used to illustrate the 
differential lncRNAs and mRNAs expression profiles in 
sepsis and control groups (Figure 3A,B). Subsequently, the 
heterogeneity of lncRNAs and mRNAs expression in these 
two groups was shown in the scatter plots (Figure 3C,D). 
With the criteria as FC ≥2 and P≤0.05, volcano plots were 
used to further identify the association between the FCs 
and the statistically significant difference of differentially 
expressed lncRNAs and mRNAs (Figure 3E,F). Microarray 
analysis indicated that 1,568 lncRNAs were differentially 

Figure 2 Diagram of study procedures. Septic myocardial dysfunction was verified by significantly increased myocardial enzymes, 
abnormal morphological changes, and cardiomyocyte apoptosis. The differentially expressed lncRNAs and mRNAs were determined using 
microarray analysis. The lncRNA microarray results were validated by qRT-PCR. GO and KEGG analyses were carried out to clarify the 
biological roles and forecast the signal pathways of the differentially expressed mRNAs. The relations between the validated lncRNAs and 
their interacting mRNAs were evaluated by the co-expression network. SMD, septic myocardial dysfunction; TNF, tumor necrosis factor; 
IL, interleukin; CLP, cecal ligation and puncture; lncRNAs, long noncoding RNAs; qRT-PCR, quantitative real-time polymerase chain 
reaction; GO, gene ontology; KEGG, Kyoto encyclopedia of genes and genomes.

https://cdn.amegroups.cn/static/public/ATM-20-3830-supplementary.pdf
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Figure 3 The expression profiles of lncRNAs and mRNAs in mouse myocardium between sepsis and control groups (n=6 per group). 
Hierarchical clustering analysis found that 1,568 lncRNAs (A) and 2,166 mRNAs (B) in mouse hearts were differentially expressed in 
the sepsis group (S1–S6) compared with those in the control group (C1–C6). The red and green shades represent a high and low relative 
expression. Scatter plots were used to distinguish the differentially expressed lncRNAs (C) and mRNAs (D). The values shown on the X and 
Y axes represent the average normalized signal values (log2 scale) of control and sepsis groups, respectively. The dotted lines represent a 2-fold 
change of lncRNAs or mRNAs in expression variation between the two groups. Volcano plots of all differentially expressed lncRNAs (E) and 
mRNAs (F). The red and green plots represent significantly upregulated and downregulated genes (fold-change ≥2.0 and P value ≤0.05), 
respectively. S and C represent sepsis and control groups, respectively. lncRNAs: long noncoding RNAs; mRNAs: messenger RNAs.
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expressed in the sepsis group, including 695 evident up-
regulation and 873 prominent down-regulation. The top 10 
up-regulated and top 10 down-regulated lncRNAs are listed 
in Table 1. Moreover, 2,166 aberrantly expressed mRNAs 
also met the above criteria, in which 1,393 mRNAs were 
up-regulated, while 773 mRNAs were down-regulated. 
The top 10 most differentially expressed mRNAs (both up-
regulation and down-regulation) are listed in Table 2.

Validation of microarray data by qRT-PCR

Quantitative RT-PCR indicated that the six randomly 
selected lncRNAs (up: Gm14832, GAS5, and Trib3; down: 
AK086021, Gm10497, and Ccdc104) in septic myocardium 
were distinctly deregulated in comparison with those in the 
control samples (Figure 4A,B), which were consistent with 
the microarray results (Figure S3). Hence, the reliability 

Table 1 Top 10 up-regulated and top 10 down-regulated lncRNAs in microarray analysis

Upregulated 
lncRNAs

FC FDR Relationship
Downregulated  
lncRNAs

FC FDR Relationship

Angptl4 271.8 9.2×10−8 Exon sense-overlapping XLOC_001505 10.9 1.6×10−2 Intergenic

Cfb 50.3 6.3×10−6 Exon sense-overlapping Dbp 10.8 1.3×10−4 Exon sense-overlapping

AK145274 35.9 2.0×10−6 Bidirectional AK086021 9.6 2.1×10−4 Intergenic

Uc446 35.5 2.8×10−5 Intronic antisense MouselincRNA1514 8.7 1.7×10−4 Intergenic

Ccl4 23.3 4.3×10−4 Exon sense-overlapping Myl2 8.4 1.8×10−2 Exon sense-overlapping

Serpinb1-ps1 19.7 1.6×10−6 Intergenic Gm10701 8.2 2.9×10−3 Intronic antisense

Gm12522 19.6 6.1×10−3 Natural antisense AK050516 8.1 1.5×10−5 Intronic antisense

Gm14832 19.4 2.7×10−4 Intron sense-overlapping Gm26882 7.3 3.5×10−2 Natural antisense

AK139592 16.2 7.1×10−5 Intergenic AK009210 7.2 1.8×10−4 Intergenic

Gbp5 15.9 2.4×10−5 Exon sense-overlapping Gm10497 7.0 2.0×10−2 Natural antisense

FC and FDR were compared between sepsis and control groups (n=6 per group). FC, fold change; FDR, false discovery rates; lncRNAs, 
long noncoding RNAs.

Table 2 Characteristics of the top 10 most upregulated and downregulated mRNAs in septic myocardium

Upregulated mRNAs FC FDR Downregulated mRNAs FC FDR

Saa3 507.7 1.6×10−7 Aplnr 37.8 1.5×10−5

Cxcl2 427.7 2.8×10−7 Lmod3 30.8 1.1×10−2

Saa2 371.5 4.7×10−7 Kbtbd13 17.1 1.1×10−5

Reg3g 269.1 1.6×10−5 Adh1 13.2 1.2×10−4

Angptl4 205.3 1.6×10−7 Adra2c 12.7 6.6×10−5

Reg3b 165.2 1.4×10−6 Fam26e 12.1 4.6×10−6

Cxcl10 162.0 1.1×10−5 Trpc3 11.6 1.2×10−5

Nog 145.3 1.9×10−7 Gja10 11.3 2.6×10−2

Ccl7 124.9 1.5×10−6 Fam184b 10.9 3.6×10−5

Ccl2 85.4 1.1×10−5 Lrrn1 10.9 1.3×10−2

FC and FDR were compared between sepsis and control groups (n=6 per group). mRNAs, messenger RNAs; FC, fold change; FDR, false 
discovery rate respectively.

https://cdn.amegroups.cn/static/public/ATM-20-3830-supplementary.pdf
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and reproducibility of the microarray analysis were further 
confirmed by qRT-PCR.

GO and KEGG pathway analyses

There were 2,166 distinctly deregulated mRNAs in the 
septic myocardium. GO analysis revealed that 1,393 up-
regulated mRNAs were involved in 2,450 BP, 179 CC, 345 
MF, and 773 down-regulated mRNAs who participated in 
744 BP, 98 CC, and 166 MF. As shown in Figure 5A,B,C, for 
the upregulated mRNAs, the highest enrichment scores of 
the top 10 GO terms were the immune system process (GO: 

0002376, 300 genes) in BP, cell part (GO: 0044464, 1,038 
genes) in CC, and binding (GO: 0005488, 952 genes) in 
MF, respectively. However, for the downregulated mRNAs, 
the top enrichment in BP, CC, and MF was the single-
organism process (GO: 0044699, 490 genes), cell part (GO: 
0044464, 551 genes), and protein binding (GO: 0005515, 
313 genes) separately (Figure 5D,E,F).

In KEGG pathway analysis, the up-regulated mRNAs 
were primarily associated with these pathways: TNF signaling 
pathway (mmu04668), herpes simplex infection (mmu05168), 
antigen processing and presentation (mmu04612), influenza A 
(mmu05164), pertussis (mmu05133), and NOD-like receptor 

Figure 4 Validation of six differentially expressed lncRNAs by qRT-PCR. The expression levels of lncRNA Gm14832, GAS5, and Trib3 
were up-regulated (A), and lncRNA AK086021, Gm10497, and Ccdc104 were down-regulated (B) in the sepsis group in comparison to 
those in the control group. Data are presented as mean ± standard deviation (n=9 per group). **, P<0.01, comparing sepsis samples with 
controls. LncRNAs, long noncoding RNAs; qRT-PCR, quantitative real-time polymerase chain reaction. 
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signaling pathway (mmu04621) (Figure 6A). However, 
as shown in Figure 6B, breast cancer (mmu05224), axon 
guidance (mmu04360), central carbon metabolism in cancer 
(mmu05230), endocrine, and other factor-regulated calcium 
reabsorption (mmu04961), phosphatidylinositol-3-kinase/
protein kinase B (PI3K-Akt) signaling pathway (mmu04151) 
and cGMP-PKG signaling pathway (mmu04022) achieved 

the highest enrichment scores in down-regulated mRNAs. 
Among the above pathways, previous studies demonstrated 
that the TNF signaling pathway (Figure 6C) was involved 
in the SMD and myocardial infarction (23,24), and the 
PI3K-Akt signaling pathway (Figure 6D) was related to 
cardiac hypertrophy, cardiac remodeling, and cardiac 
fibrosis (25-27).

Figure 5 Gene ontology (GO) enrichment analysis of differentially expressed (DE) mRNAs. The top 10 GO terms of up-regulated mRNAs 
(A,B,C) and down-regulated mRNAs (D,E,F) are listed. The gene ontology consists of three domains: biological processes (BP) (A,D), 
cellular components (CC) (B,E), and molecular functions (MF) (C,F).  
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LncRNA-mRNA co-expression network analysis

The co-expression network was created based on the above-
identified six lncRNAs and their interacting mRNAs, which 
were extremely relevant to the TNF (40 mRNAs) and 
PI3K-Akt (12 mRNAs) signaling pathways. Our analysis 
indicated that the lncRNA-mRNA co-expression network 
comprised 57 network nodes and 134 connections, including 
76 positive interactions and 58 negative interactions. 
As shown in Figure 7 and Table S2, lncRNA GM14832 
interacted with 32 mRNAs; lncRNA GAS5 interacted with 
nine mRNAs; lncRNA Trib3 interacted with 37 mRNAs; 
lncRNA AK086021 interacted with 27 mRNAs; lncRNA 
Gm10497 interacted with seven mRNAs, and lncRNA 
Ccdc104 interacted with 26 mRNAs, respectively.

Discussion 

In this study, microarray analysis indicated that CLP-

induced sepsis led to aberrant expression of 1,568 lncRNAs 
(695 up-regulated and 873 down-regulated) and 2,166 
mRNAs (1,393 up-regulated and 773 down-regulated) in 
mouse hearts, which was further validated by qRT-PCR. 
As far as we know, this is the first analysis of the expression 
profiles of lncRNAs and mRNAs by microarray technology 
in mouse myocardium after CLP-induced sepsis. Moreover, 
KEGG pathway analysis found that many aberrantly 
expressed mRNAs were associated with TNF and PI3K-
Akt signaling pathways; and lncRNA-mRNA co-expression 
network analysis further demonstrated that several 
dysregulated lncRNAs had positive or negative interactions 
with numerous mRNAs that were extremely relevant to 
TNF and PI3K-Akt signaling pathways. Given the essential 
role of these two pathways during the occurrence of various 
heart diseases, our investigation suggested that lncRNAs 
and their interacting mRNAs may play a crucial role in the 
pathophysiological process of SMD by regulating TNF and 
PI3K-Akt signaling pathways.

Since the previously thought “junk genes”, lncRNAs, is 
now disclosed to be “functional genes” that can regulate 
gene expression from multiple levels, the potential role 
of lncRNAs in SMD has raised some concern recently. 
In an endotoxemia model, the overexpression of lncRNA 
HOTAIR in cardiomyocytes caused an enormous release 
of cytokine TNF-α by activating the NF-κB signaling 
pathway, which aggravated myocardial damage (14). 
Another study conducted in the sepsis model found that 
the overexpression of lncRNA MALAT1 in cardiomyocytes 
significantly increased TNF-α gene expression; however, 
the expression level of TNF-α was considerably reduced 
by blocking lncRNA MALAT1 overexpression (15). The 
above studies implied the involvement of lncRNAs in 
SMD by regulating the gene expression of TNF-α. In our 
research, up to 1,568 differentially expressed lncRNAs were 
identified in the myocardial tissue from CLP-induced septic 
mice, further indicating that lncRNAs indeed participate in 
the occurrence and development of SMD. This notion is 
also supported by a recent study from Chowdhury et al. (13),  
they found that sepsis-induced positive or negative 
regulation of many lncRNAs expression. 

To elucidate the potential target genes that may be 
regulated by lncRNAs during SMD, GO and KEGG 
pathway analyses were used to assess the roles of all 
differentially expressed mRNAs. It turned out that many 
identified aberrantly expressed mRNAs were associated with 
TNF and PI3K-Akt signaling pathways. More importantly, 
we further prove it by lncRNA-mRNA co-expression 

Figure 7 LncRNA-mRNA co-expression network analysis. Six 
differentially expressed lncRNAs interacted with 40 identified 
mRNAs closely related to the TNF signaling pathway, and 12 
identified mRNAs were extremely relevant to the PI3K-Akt 
signaling pathway. The three red dots represent up-regulated 
lncRNAs, the three green dots represent down-regulated 
lncRNAs, and 51 blue dots represent deregulated mRNAs in 
the above pathways. Besides, 76 positive relationships (marked 
with continuous lines) and 58 negative relationships (marked 
with dotted lines) are listed. LncRNAs: long noncoding RNAs; 
mRNAs, messenger RNAs; TNF, tumor necrosis factor; PI3K, 
phosphatidylinositol-3-kinase.

https://cdn.amegroups.cn/static/public/ATM-20-3830-supplementary.pdf
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network analysis, as several aberrantly expressed lncRNAs 
had positive or negative interactions with numerous 
mRNAs that were closely related to TNF and PI3K-
Akt signaling pathways. Hence, our study indicated that 
lncRNAs and their interacting mRNAs might contribute 
to the occurrence and development of SMD and function 
as critical regulators of TNF and PI3K-Akt signaling 
pathways. 

Previous studies have demonstrated that many signaling 
pathways were involved in the pathogenesis of SMD 
(14,28-31). As an essential inducer of the overwhelming 
inflammatory response during sepsis, TNF-α was one 
of the major causes of cardiac dysfunction (30,31). For 
instance, Yu et al. (30) found that A1 adrenoceptor 
activation significantly improved ventricular contractility 
by suppressing lipopolysaccharide (LPS)-induced TNF-α 
expression. Besides, LPS-stimulated inflammatory storm in 
macrophages was reported to be inhibited by the knockdown 
of lncRNA-CCL2, which alleviated organ injury due to 
sepsis (32). Based on these studies, and combined with our 
finding that differentially expressed lncRNAs and their 
interacting mRNAs in septic myocardium are connected 
to the TNF signaling pathway, it is reasonable to surmise 
that the TNF signaling pathway is a target for lncRNAs to 
modulate the pathogenesis of SMD. Another regulatory 
target of lncRNAs in SMD may be the PI3K-Akt signaling 
pathway as this pathway can regulate several intracellular 
signals, such as the NF-κB signaling pathway, the p53 
signaling pathway, and apoptosis (29,33). Furthermore, 
the involvement of the PI3K-Akt signaling pathway in 
myocardial dysfunction has been demonstrated, including 
SMD, myocardial ischemia-reperfusion injury, and cardiac 
hypertrophy (33,34).

Autophagy, a lysosome-dependent process to degrade 
abnormal proteins and damaged organelles, is also reported 
to play a critical role in the pathogenesis of SMD (35-37).  
Recently, an increasing number of studies indicated that 
lncRNAs could modulate autophagy through multiple 
levels, including autophagy-related genes, phagophore 
nucleation, autophagosome elongation/closure, and 
autolysosome fusion (38,39). It has also been identified that 
the PI3K-Akt signaling pathway is essential in modulating 
autophagy and therefore preventing myocardial ischemia/
reperfusion injury and myocardial fibrosis (40-42). Our 
microarray results did find that several autophagy-
related lncRNAs, such as GAS5 and Neat1 (39,43), were 
abnormally expressed. Thus, it is also possible that lncRNAs 
play a vital role in SMD by modulating autophagy via the 

PI3K-Akt signaling pathway, but further studies are needed 
to confirm this speculation.

Although this study disclosed the expression profiles of 
lncRNAs and mRNAs in the myocardium derived from 
septic mice, TNF and PI3K-Akt signaling pathways were 
inferred to be the target genes regulated by aberrantly 
expressed lncRNAs during SMD, the limitations of our 
investigation should be mentioned here. First, the sample 
size was not large enough, which may cause a misjudgment 
of our results. Second, this study was only a preliminary 
screening in practical terms. No definite lncRNAs 
or mRNAs had been demonstrated to be involved in 
regulating TNF and PI3K-Akt signaling pathways, nor had 
any lncRNAs or mRNAs been identified to be associated 
with SMD. Hopefully, future studies would elucidate 
how specific lncRNAs contribute to the occurrence and 
development of SMD, particularly the actions of TNF and 
PI3K-Akt signaling pathways. 

Conclusions

In summary, our study identified the profiles of aberrantly 
expressed lncRNAs and mRNAs in the myocardium of 
septic mice for the first time. According to the lncRNA-
mRNA co-expression network and KEGG pathway 
analyses, we suggested that lncRNAs and their interacting 
mRNAs may be involved in the pathogenesis of SMD by 
regulating TNF and PI3K-Akt signaling pathways. 
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Supplementary

Table S2 The mRNAs correlated with the six identified lncRNAs in TNF and PI3K-Akt signaling pathways

LncRNAs Signaling pathways Numbers mRNAs

Gm14832 TNF 27 Atf4, Birc3, Ccl12, Ccl2, Ccl120, Cebpb, Creb1, Creb3l1, Csf1, Csf2, Cxcl1, Cxcl10, Cxcl2, 
Edn1, Icam1, Ifi47, Il6, Irf1, Jun, Junb, Map3k8, Mlkl, Pik3r1, Ripk1, Rps6ka5, Socs3,  
Tnfrsf1b

PI3K-Akt 5 Efna2, Epor, Pik3r1, Rbl2, Ywhaq

GAS5 TNF 7 Atf4, Creb3, Csf1, Jun, Pik3r1, Tnfrsf1a, Tnfrsf1b

PI3K-Akt 2 Fgf1, Pik3r1

Trib3 TNF 27 Atf4, Birc3, Ccl12, Ccl2, Ccl120, Cebpb, Creb1, Creb3l1, Csf1, Csf2, Cxcl1, Cxcl10, Cxcl2, 
Cxcl3, Il6, Irf1, Map3k8, Mapk10, Mapk12, Mapk14, Mlkl, Mmp9, Pik3r1, Rela, Ripk3, 
Socs3, Tnfrsf1b

PI3K-Akt 10 Efna2, Epor, Fgf16, Myc, Pik3r1, Pkn1, Rps6kb2, Thbs2, Vtn, Ywhaq

AK086021 TNF 22 Birc3, Ccl12, Ccl2, Cebpb, Creb3l1, Csf1, Csf2, Cxcl1, Cxcl10, Cxcl2, Icam1, Ifi47, Il1b, Il6, 
Irf1, Junb, Map3k8, Mlkl, Pik3r1, Ripk1, Socs3, Tnfrsf1b

PI3K-Akt 5 Efna2, Pik3r1, Rps6kb2, Thbs2, Vtn

Gm10497 TNF 5 Fas, Map2k7, Mapk10, Mapk14, Rps6ka5

PI3K-Akt 2 Pkn1, Rbl2

Ccdc104 TNF 19 Atf4, Ccl2, Cebpb, Creb3l1, Csf1, Cxcl1, Cxcl10, Cxcl2, Cxcl3, Il6, Map2k4, Map3k8, 
Mapk12, Mapk14, Mmp9, Rela, Ripk1, Socs3, Tnfrsf1b

PI3K-Akt 7 Efna2, Epor, Fgf16, Rps6kb2, Thbs2, Vtn, Ywhaq

LncRNAs, TNF, PI3K-Akt and mRNAs represent long noncoding RNAs, tumor necrosis factor, phosphatidylinositol-3-kinase/protein kinase 
B signaling pathways and messenger RNAs respectively. 

Table S1 Primers designed for qRT-PCR to validate the lncRNA candidates

Gene Forward primer (5'→3') Reverse primer (5'→3')

β-actin (M) GCTCCTTCGTTGCCGGTCCA TTGCACATGCCGGAGCCGTT

Gm14832 (M) CTCAGCCAGTAAGTCCAGCCTACC CCGGAGCACCGTTGAGACTCTC

GAS5 (M) ACTCTTGACAGCTGGGGTGA GGGACCACATGCACACACAA

Trib3 (M) CTCCAGGACAAGGAAGAAACCG CTCCAGGACAAGGAAGAAACCG

AK086021 (M) TCAGGAGAAGCAGCAATGCAGTTC AGCCACTAGGAAGGATGGTGTAGC

Gm10497 (M) TCTCCTTCGCCGCCGTCTAG TTGAGGCTGGTCGGAGACACC

Ccdc104 (M) TGTACAGCCACCCTCAGGTA CACGTTCTGGAGCATAGCATTC

LncRNAs and qRT-PCR represent long noncoding RNAs and quantitative real-time polymerase chain reaction respectively.  
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Figure S1 The expression levels of apoptosis-related proteins in myocardial tissue. (A) The protein levels of Bcl-2 and Bax were detected by 
Western blotting. (B) The relative protein levels of Bcl-2 and Bax were determined after normalization to tubulin. The ratio of Bcl-2 to Bax 
was calculated with the relative protein levels.

Figure S2 RNA integrity and gDNA contamination test by denaturing agarose gel electrophoresis. S and C represent sepsis and control 
groups respectively.
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Figure S3 The expression levels of lncRNA Gm14832, GAS5 and Trib3 (A, up-regulation) and lncRNA AK086021, Gm10497 and Ccdc104 
(B, down-regulation) in microarray analysis.
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