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Analyzing fundus images to detect diabetic retinopathy (DR) using 
deep learning system in the Yangtze River delta region of China
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Background: This study aimed to establish and evaluate an artificial intelligence-based deep learning 
system (DLS) for automatic detection of diabetic retinopathy. This could be important in developing an 
advanced tele-screening system for diabetic retinopathy.
Methods: A DLS with a convolutional neural network was developed to recognize fundus images of 
referable diabetic retinopathy. A total data set of 41,866 color fundus images were obtained from 17 cities 
in the Yangtze River Delta Urban Agglomeration (YRDUA). Five experienced retinal specialists and 15 
ophthalmologists were recruited to verify images. For training, 80% of the data set was used, and the other 
20% served as the validation data set. To effectively understand the learning process, the DLS automatically 
superimposed a heatmap on the original image. The regions utilized by the DLS were highlighted for 
diagnosis.
Results: Using the local validation data set, the DLS achieved an area under the curve of 0.9824. Based 
on the manual screening criteria, an operating point was set at about 0.9 sensitivity to evaluate the DLS. 
Specificity was recorded at 0.9609 and sensitivity was 0.9003. The DLSs showed excellent reliability, 
repeatability, and high efficiency. After analyzing the misclassification, it was found that 88.6% of the false-
positives were mild non-proliferative diabetic retinopathy (NPDR) whereas, 81.6% of the false-negatives 
were intraretinal microvascular abnormalities.
Conclusions: The DLS efficiently detected fundus images from complex sources in the real world. 
Incorporating DLS technology in tele-screening will advance the current screening programs to offer a cost-
effective and time-efficient solution for detecting diabetic retinopathy.
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Introduction

Diabetes mellitus (DM) and its associated complications 
pose a major global health threat. The latest edition of 
the International Diabetes Federation (IDF) diabetes atlas 
shows that 463 million adults aged 20–79 years had diabetes 

mellitus globally in 2019. This estimate is projected to 
rise to 578 million by 2030, and 700 million by 2045 (1). 
Pharmacologic therapy including metformin and insulin 
remains standard therapy for DM. Currently, for patients 
with atherosclerotic cardiovascular disease, chronic kidney 

226

Original Article

https://crossmark.crossref.org/dialog/?doi=10.21037/atm-20-3275


© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(3):226 | http://dx.doi.org/10.21037/atm-20-3275

Page 2 of 10 Lu et al. Deep learning system for detecting diabetic retinopathy

disease, and heart failure, glucagon-like peptide-1 receptor 
agonist or sodium-glucose cotransporter-2 inhibitor are 
considered as the best choice for a second agent (2,3). Based 
on drug-specific effects and patient factors, personalized 
combination therapy is increasingly advocated. Diabetic 
retinopathy (DR), a serious complication that arises 
from DM, causing blindness and vision impairment in 
the working-age population across the globe (4,5), can 
be divided into two types: non-proliferative diabetic 
retinopathy (NPDR) and proliferative diabetic retinopathy 
(PDR). The global prevalence for DR ranges from 18% 
to 30% in type 2 diabetic patients, whereas, for PDR, 
the global prevalence ranges between 2.9% to 4.4% (6). 
Notably, China has the highest number of DM patients 
in the world with about 116.4 million cases (1). The 
prevalence rates are 18.45% for DR, 15.06% for NPDR, 
and 0.99% for PDR. In addition, DM patients from rural 
areas in China have been shown to have a higher risk of 
developing DR than those in urban areas (7,8).

The diagnosis of DR contains all features of the 
comprehensive adult medical eye evaluation, including 
history, eye clinical examination and a number of tests 
ancillary to the clinical examination (9). Particularly, the 
ancillary imaging tests can unveiling vital information 
not detectable to the clinical examination. Currently, the 
application of optical coherence tomography angiography 
(OCTA) has added a new perspective on our understanding 
of  d iabet ic  ret inopathy  by  detect ing prec l in ica l 
microvascular changes, quantifying regions of macular 
nonperfusion and identify retinal neovascular tissue (8,10). 
However, fundus photography is the most widespread 
diagnosis and screening method by recording retinal 
images. Diabetic retinopathy is treatable at its early stages. 
Annual DR screening for diabetic patients is recommended 
by many guidelines (9,11). Governments and foundations 
have provided hospitals in China with screening services. 
However, a nationwide traditional screening system 
that relies on in-person dilated eye examination remains 
impractical. This is as a result of inadequate funds, access 
issues, and few trained eye care personnel. There is a need 
to devise new effective screening strategies to curb the 
rapidly increasing burden of diabetes. 

Recent advances in telemedicine and machine learning 
(a branch of computer science that focuses on teaching 
machines to detect patterns in data) can provide solutions 
to these problems (12,13). Deep learning, a subclass of 
machine learning, mimics the way the human brain works 
and uses artificial neural networks to solve any feature 

expression problem. In medical practice, this technology 
has been used to automatically categorize massive medical 
images (14,15). 

For DR screening, several deep learning systems (DLS) 
have been developed to grade images from multiple imaging 
techniques including fundus camera, optical coherence 
tomography (OCT), and OCTA (16-18). The DLS showed 
excellent performance similar to board-certified specialists. 
Therefore, integrating tele-screening with DLS provides a 
cost-effective solution. Retinal images for DM patients can 
be taken from the nearest primary care clinics without any 
trained ophthalmologist, this provides solutions to access 
problems. Through DLS, a few ophthalmologists can do 
scale screenings. Yangtze River Delta Urban Agglomeration 
(YRDUA) containing 26 cities, located in Yangtze River 
Delta Region of China is one of the highly populated 
and developed regions of China. It is also one of the six 
megalopolitan regions in the world (19). 

This study aimed to create and train a DLS for referable 
DR detection using data set for about 41,866 retinal 
photographs obtained from departments of ophthalmology 
in hospitals from the 17/26 cities in YRDUA. We believe 
that the large volume and high complexity of the raw retinal 
fundus image data from real-world sources in a certain area 
can provide more characteristic original disease information 
and data complexity compared with the public databases, 
which ensures robust performance in future practical 
applications of our DLS. We present the following article in 
accordance with the STROBE reporting checklist (available 
at http://dx.doi.org/10.21037/atm-20-3275). 

Methods

All the data used in this study were pseudonymized. The 
basic abstraction of our DLS and the structure of the 
artificial neural network are shown in Figure 1. Original 
fundus images from hospitals were pre-processed by 
cropping and resizing to obtain input images with a 
resolution of 224×224 pixels.

Data collection 

A total data set of consecutive 41,866 color fundus images 
obtained from departments of ophthalmology in hospitals 
among 17/26 cities in YRDUA between January 1, 2018 
and June 1, 2019 was created. From the total data set, 80% 
constituted the training data set (Figure 2). It was considered 
that consecutive images from different cameras in different 
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Figure 1 The basic convolutional neural network (CNN) architecture and workflow of our DLSs. Conv, convolution layers.

Figure 2 Workflow diagram showing the overview of developing deep learning systems to detect DR.
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cities were more valuable than those from public data 
sets. The quality of retinal images varied considerably and 
were perfect representatives for local patients. The DLS 
for this study thus was more suitable to local patients after 
training. Three different desktop retinal cameras and digital 
retinography systems (Canon, Topcon, and Heidelberg) 
were used in the 18 hospitals. Similar imaging protocols 
were applied for the 3 camera types. All images for the 
total data set were maculalutea-centered 45° color fundus 
photographs. Depending on the patient's condition, the 
doctor decides whether to dilate the pupils.

Definitions and the reference standard

According to  the Internat ional  Class i f icat ion of 
Diabetic Retinopathy (ICDR), International Council of 
Ophthalmology (ICO) Guidelines for Diabetic Eye Care 
2017, DR stages can be classified into 5 grades: no DR, mild 
NPDR, moderate NPDR, severe NPDR, and PDR (20).  
In this study, referable diabetic retinopathy (RDR) was 
defined as moderate NPDR, severe NPDR, and PDR (21),  
while none referable diabetic retinopathy (NRDR) was 
defined as fundus photographs of no DR(normal or 
other diseases) and mild NPDR. Many Chinese retinal 
specialists recommend that some moderate NDR patients 
and all patients with worse DR should receive pan-retinal 
photocoagulation (PRP). This has also been highlighted in 
the ICO Guidelines for Diabetic Eye Care as a significant 
criterion for screening RDR from DM patients 

For manual grading, 15 licensed ophthalmologists and 5 
experienced retinal specialists were recruited from the two 
eye centers. They were divided into 5 groups. Graders in 
the same group evaluated the same images. Each individual 
was blinded to the grading made by the other graders, and 
the results of the in-person dilated fundus exam. Then, 
grader would make an independent decision of the fundus 
photographs. Consistent results obtained from separate 
graders in one group were analyzed and used as the 
reference standard. Results that differed among same group 
of graders were cross-checked by an experienced retinal 
specialist for the final grading (22). 

Besides, due to the complexity of our data sources, a 
DLS was trained to select quality images from the total 
data set for grading. All the graders assessed the quality and 
gradability of the images before they were classified as DR. 
The following criteria were used to determine a gradable 
image (21,23).

(I) The focus should be good enough for grading of 

smaller retinal lesions.
(II) Getting images with perfect exposure because 

dark and washed-out areas interfere with detailed 
grading. 

(III) Image field definition: primary field must include 
the entire optic nerve head and macula.

(IV) Fewer artifacts: avoid dust spots, arc defects, and 
eyelash images.

(V) There should be no other errors in the fundus 
photograph, such as the absence of objects in the 
picture. 

(VI) Images must be fundus photographs (For the 
few hospitals that did not equip anterior segment 
cameras, retinal cameras are used for anterior 
segment photography).

In general, for this research, we adopted a deep 
convolutional neural network for the two DLSs pre-trained 
on the ImageNet dataset named Visual Geometry Group 
16 (VGG16) architecture. One DLS was used to classify 
the referable DR and the other DLS was used to assess the 
quality and gradability of images. All graders used online 
annotation software linked with the DLS.

Validation data set and statistical analyses

The remaining 20% of the total data set was used as the 
local validation data set and had the same data sources 
with the training data set (Figure 2). Retinal cameras, 
digital retinography systems, and associated protocols 
were consistent with the training data set. As with manual 
grading, DLSs performance was calculated based on 
sensitivity, specificity, and area under the receiver operating 
curve (AUC) (24). The receiver operating curves were 
plotted by varying the operating threshold (21). Based on 
the guidelines and criteria of Australia, UK, and Singapore 
(25-27), the results were evaluated at 0.900 sensitivity 
operating point. The false-positive and false-negative 
images of the validation data set were classified by 5 
experienced retinal specialists (28). The Clopper-Pearson 
method was used to calculate the 95% CIs). To provide more 
detailed guidance for clinical analysis, a visualization heatmap 
highlighting strong prognostic regions of the fundus images 
was created using Rishab Gargeya’s method (29). Stata 
version 14 (StataCorp) was used for all statistical analyses. 

Ethical statement

The study was conducted in accordance with the 
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Declaration of Helsinki (as revised in 2013). The study 
was approved by the Ethics Committee of First Affiliated 
Hospital, School of Medicine, Zhejiang University 
(Hangzhou, Zhejiang, China) (NO. 2019-1561) and 
individual consent for this retrospective analysis was waived.

Results

A total of 41,866 color fundus images obtained from 
departments of ophthalmology in hospitals from 17/26 
cities in YRDUA between January 1, 2018 and June 1, 
2019 were included in the training and validation data set. 
From that, 2,634 images were labeled as ungradable, and 
39,232 images were used for DR severity grading. Each 
group graded between 7,508 and 9,204 (median 8,032) 
fundus photographs. About 10% of the graded photographs 
were submitted to experienced retinal specialists for final 
grading. After a simple random sampling, 31,386 images 
were assigned to the training data set and the remaining 
7,846 images were used for validation. The proportion 
of referable diabetic retinopathy and gradable images are 
summarized in Table 1.

Performance and evaluation of the DLSs

Performance of the DLSs in validation data set was 
evaluated at an operating point close to 0.9 sensitivity. In 
the non-referable/referable diabetic retinopathy (NRDR/
RDR) classification, the DLS achieved an AUC of 0.9824 
(with 95% CI: 0.9733 to 0.9915), specificity of 0.9609 (with 
95% CI: 0.9327 to 0.9796) and sensitivity of 0.9003 (with 
95% CI: 0.8870 to 0.9125). Besides, for image gradability, 
AUC was recorded at 0.9945 (with 95% CI: 0.9918 to 
0.9971), sensitivity, 0.9001 (with 95% CI: 0.8883 to 0.9110), 

and specificity 0.9790 (with 95% CI: 0.9590 to 0.9909) 
(Figure 3A,B).

The DLSs also revealed excellent reliability, repeatability, 
and high efficiency. We selected 100 images from each study 
data set as the initial sample and transformed the images by 
random treatments (cutting less than 5% of the side length, 
0–3-pixel random horizontal shift, turning left and right, 
rotating less than 15°) nine times. Thereafter, the DLSs 
were tested on the initial sample and the 9 treated samples. 
The outcomes for the two DLSs were consistent. Besides, 
it averagely took 8.7s seconds to select gradable images and 
10.3 seconds to detect RDR.

Incorrect grading analysis

The analyses of false-negative and false-positive images 
were performed by experienced retinal specialists. The total 
number of false-negative classification was 38. The most 
common clinical feature was the undetected RDR with 
intraretinal microvascular abnormalities [n=31 (81.6%)]. 
Moreover, there were 4 RDR with retinal photocoagulation 
laser scars and 3 RDR characterized by massive retinal 
hemorrhage. Besides, among the 487 false-positive images, 
431 (88.6%) mild NPDR images were characterized as 
RDR. The remaining images were other abnormalities in 
the fundus, for example, age-related macular degeneration, 
retinal vein occlusion, proliferative retinopathy, myopic 
maculopathy, and normal fundus photos with or without 
artifacts (Table 2).

Visualization heatmap analysis

Visualization analysis could present the learning procedure 
of our DLS and reveal the areas contributing most to 

Table 1 Summarizing the training and local validation data set

Training data set (%) Validation data set (%)

Referable diabetic retinopathy

Yes 4,206 (13.4) 1,044 (13.3)

No 27,180 (86.6) 6,802 (86.7)

Total 31,386 7,846

Gradability of images

Gradable 31,555 (94.2) 7,677 (91.7)

Ungradable 1,938 (5.8) 696 (8.3)

Total 33,493 8,373
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Figure 3 Receiver operating characteristic (ROC) curves for our DLSs. (A) DLS for DR; (B) DLS for image gradability. AUC, area under 
the receiver operating curve.

Table 2 Analyses of false-negative and false-positive images in the local validation data set

Feature No Proportion

False-negative

IRMA 31 81.6%

PRP laser scar 4 10.5%

Massive retinal hemorrhage 3 7.9%

Total 38 100%

False-positive

Mild NPDR 431 88.6%

AMD 10 2.1%

RVO 8 1.6%

Proliferative retinopathy 7 1.4%

Myopic maculopathy 7 1.4%

Normal fundus images 24 4.9%

Total 487 100.0%

IRMA, intraretinal microvascular abnormality; PRP, peripheral retinal photocoagulation; NPDR, non-proliferative diabetic retinopathy; AMD, 
age-related macular degeneration; RVO, retinal vein occlusions. 

the DLS. At the end of the network, a convolutional 
visualization layer was implanted, and a visualization 
heatmap automatically generated. The original RDR fundus 
image has been displayed in Figure 4A. From the overlying 
fundus heatmap on Figure 4A, the regions that the DLS 
considered most significant in making its decision are 
highlighted in Figure 4B. Typical lesions were observed in 

such regions, for example, hard exudate, neovascularization, 
and retinal hemorrhage. The lesions were used by 
ophthalmologists to diagnose DR.

Discussion

Advanced computer science and the availability of big data 
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have improved artificial intelligence (AI) through the use 
of machine learning and deep learning techniques. The 
applications of these techniques in healthcare systems have 
improved disease screening and clinical diagnosis (30). 
Ophthalmologists require a variety of image data to help 
them in making the correct diagnosis of ocular diseases, 
particularly fundus diseases. The digital fundus photograph 
is the most basic and significant image used. Recent studies 
have shown that deep learning systems associated with 
fundus photographs are vital tools in identifying DR, 
glaucoma, retinopathy of prematurity (ROP), and age-
related macular degeneration (AMD) (31-34). 

China, one of the biggest developing countries in the 
world has made great progress in improving her health 
care systems. However, there is an increasing number of 
DM patients in the country. Patients from rural areas lack a 
basic understanding of DM and its complications. Besides, 
patients exhibiting DR symptoms, hardly seek any medical 
advice until when the disease has progressed enough to 
cause vision loss. Factors including limited financing 
resources and trained eye care personnel indicate that there 
is a need to develop a low-cost and effective screening 
method for early detection of the disease. In this study, a 
novel DLS designed to automatically recognize diabetic 
retinopathy in retinal fundus images achieved great success. 
All the original fundus images from desktop retinal cameras 
and digital retinography systems were obtained from 
hospitals of the Yangtze River Delta Urban Agglomeration. 
Thereafter, the training data set and the validation data set 
were constructed. In real-world screening conditions, the 

rate of detecting ungradable images or poor-quality images 
has been reported at 20% (35,36). There was a demand to 
automatically assess the quality and gradability of retinal 
fundus images for DR screening (37). Hence, we developed 
another DLS to analyze the gradability of images captured 
by different examiners using different cameras to ensure 
each image in data sets was strictly a fundus image with the 
required quality and field definition. Other domestic and 
international studies have trained and validated the DLSs 
using high-quality photographs from public databases 
(23,29). Based on this, we created a real-world regional 
screening tool for local DM patients at a low cost. After 
training, the DLSs recorded high AUC, sensitivity and 
specificity performance in the local validation data set. The 
results showed high reliability and repeatability. 

From the literature, the distribution of misclassification 
including false negatives and false positives was reported 
rarely. Analyzing such issues could optimize AI when 
managing medical image categorization tasks. Generally, the 
DLS from this study shows low rates of false-negative rate 
and false-positive. Most false-negative cases are caused by 
other complicated intraretinal microvascular abnormalities 
and signs, which suggest a more precise direction of 
optimization. Moreover, 88.6% of false-positive images are 
mild NPDR, which leads to unnecessary referrals, increase 
economic and psychological burden of patients and waste 
of resources. Future research should focus on upgrading 
the modified DLS from this study to solve the underlying 
drawbacks. 

Although the designed DLS displayed a promising 

Figure 4 Visualization of DLS. (A) An original RDR fundus image with typical pathologic regions; (B) A heatmap generated from deep 
features overlaid on the original image, highlighting the valuable areas for prediction. 
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prospect, this study had limitations. First, the DLS has no 
function to detect diabetic macular edema (DME). Previous 
studies have, however, reported deep learning systems 
that identified RDR and referable diabetic macular edema 
(RDME) based on retinal images (24,28,38). According to 
the ICDR, DME is defined as any hard exudates within a 
one-disc diameter of the fovea or an area of hard exudates 
in the macular area that encompassed at least 50% of the 
disc area. OCT was considered the most sensitive method 
to identify DME and also provide a quantitative assessment 
of DME in determining DME severity (20). Unlike OCT, 
the definition of DME depending on fundus image is kind 
of out of date. Moreover, deep learning has been applied to 
analyze OCT images. For instance, Schlegl et al. developed 
a fully automated diagnostic method based on deep learning 
to detect and quantify macular fluid in conventional OCT 
images (39). Therefore, the ground truth about DME must 
include OCT imaging, and the DLS for DME recognition 
may apply a multi-modal method combined with fundus 
image and OCT image. We have been working on it. 
Second, since this study aimed at creating a real-world 
regional screening tool for local DM patients, the DLS 
only validated the local data set. Therefore, for its extensive 
application, massive external validation is needed. Third, 
the imaging protocols of our data sources required that 
examiners just take one-field photos for each patient. This 
is in contrast with standard seven-field stereoscopic images, 
one-field photos could decrease sensitivity to DR. Lastly the 
developed DLS cannot identify ocular diseases other than 
DR, this is not an automated comprehensive diagnostic 
platform to screen fundus diseases.

In future practical applications, we think there are some 
key issues worth mentioning. We suggest that the DLS 
should be integrated into every desktop retinal cameras and 
digital retinography systems at the screening sites, rather 
than acting as a terminal for processing data collected 
from the screening sites. Additionally, we need to monitor 
the DLS on a regular basis and iterate on it using the 
accumulated data to further improve the performance of the 
DLS.

In conclusion, this study demonstrates that the DLS 
created is capable of processing original images from 
different sources in the real world and achieves excellent 
outcomes in the local validation data set. This work 
provides a framework to further establish a regional 
telemedicine screening platform for detecting DR. This 
will greatly enlarge the scope of screening in a cost-effective 
and time-efficient way. Patients and ophthalmologists thus 

will significantly benefit from these advancements thereby 
reducing the rise in global DR cases.

Acknowledgments

The authors thank Hangzhou Zhicheng Technology Co., 
Ltd. for providing technical support.
Funding: This work was supported by grants from the 
National Natural Science Foundation of China [grant No. 
81670842], the Science and technology project of Zhejiang 
Province [grant No. 2019C03046], the Fundamental 
Research Funds for the Central Universities [grant No. 
WK9110000099]. 

Footnote

Reporting Checklist: The authors have completed the 
STROBE reporting checklist. Available at http://dx.doi.
org/10.21037/atm-20-3275 

Data Sharing Statement: Available at http://dx.doi.
org/10.21037/atm-20-3275

Peer Review File: Available at http://dx.doi.org/10.21037/
atm-20-3275

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (Available at http://dx.doi.
org/10.21037/atm-20-3275). The authors have no conflicts 
of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The study was approved by the Ethics 
Committee of First Affiliated Hospital, School of Medicine, 
Zhejiang University (Hangzhou, Zhejiang, China) (No. 
2019-1561) and individual consent for this retrospective 
analysis was waived.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 

http://dx.doi.org/10.21037/atm-20-3275
http://dx.doi.org/10.21037/atm-20-3275
http://dx.doi.org/10.21037/atm-20-3275
http://dx.doi.org/10.21037/atm-20-3275
http://dx.doi.org/10.21037/atm-20-3275
http://dx.doi.org/10.21037/atm-20-3275
http://dx.doi.org/10.21037/atm-20-3275
http://dx.doi.org/10.21037/atm-20-3275


Annals of Translational Medicine, Vol 9, No 3 February 2021 Page 9 of 10

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(3):226 | http://dx.doi.org/10.21037/atm-20-3275

original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Williams R, Colagiuri S, Chan J, et al. IDF Atlas 9th 
Edition 2019.; 2019.

2. Wang W, Liu H, Xiao S, et al. Effects of Insulin Plus 
Glucagon-Like Peptide-1 Receptor Agonists (GLP-1RAs) 
in Treating Type 1 Diabetes Mellitus: A Systematic Review 
and Meta-Analysis. Diabetes Ther 2017;8:727-38.

3. Patoulias D, Imprialos K, Stavropoulos K, et al. SGLT-2 
Inhibitors in Type 1 Diabetes Mellitus: A Comprehensive 
Review of the Literature. Curr Clin Pharmacol 
2018;13:261-72.

4. Yau JWY, Rogers SL, Kawasaki R, et al. Global Prevalence 
and Major Risk Factors of Diabetic Retinopathy. Diabetes 
Care 2012;35:556-64.

5. Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. 
Lancet 2010;376:124-36.

6. Thomas RL, Dunstan FD, Luzio SD, et al. Prevalence of 
diabetic retinopathy within a national diabetic retinopathy 
screening service. Br J Ophthalmol 2015;99:64-8.

7. Song P, Yu J, Chan KY, et al. Prevalence, risk factors and 
burden of diabetic retinopathy in China: a systematic 
review and meta-analysis. J Glob Health 2018;8:010803.

8. Vujosevic S, Muraca A, Alkabes M, et al. Early 
microvascular and neural changes in patients with type 
1 and type 2 diabetes mellitus without clinical signs of 
diabetic retinopathy. Retina 2019;39:435-45.

9. Flaxel CJ, Adelman RA, Bailey ST, et al. Diabetic 
Retinopathy Preferred Practice Pattern(R). 
Ophthalmology 2020;127:P66-145.

10. Russell JF, Shi Y, Hinkle JW, et al. Longitudinal 
Wide-Field Swept-Source OCT Angiography of 
Neovascularization in Proliferative Diabetic Retinopathy 
after Panretinal Photocoagulation. Ophthalmol Retina 
2019;3:350-61.

11. Solomon SD, Chew E, Duh EJ, et al. Diabetic 
Retinopathy: A Position Statement by the American 
Diabetes Association. Diabetes Care 2017;40:412-8.

12. Liesenfeld B, Kohner E, Piehlmeier W, et al. A telemedical 
approach to the screening of diabetic retinopathy: digital 
fundus photography. Diabetes Care 2000;23:345-8.

13. Deo RC. Machine Learning in Medicine. Circulation 
2015;132:1920-30.

14. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level 

classification of skin cancer with deep neural networks. 
Nature 2017;542:115-8.

15. Ehteshami Bejnordi B, Veta M, Johannes Van Diest P, et 
al. Diagnostic Assessment of Deep Learning Algorithms 
for Detection of Lymph Node Metastases in Women With 
Breast Cancer. JAMA 2017;318:2199.

16. Guo Y, Hormel TT, Xiong H, et al. Development and 
validation of a deep learning algorithm for distinguishing 
the nonperfusion area from signal reduction artifacts on 
OCT angiography. Biomed Opt Express 2019;10:3257.

17. Kuwayama S, Ayatsuka Y, Yanagisono D, et al. Automated 
Detection of Macular Diseases by Optical Coherence 
Tomography and Artificial Intelligence Machine Learning 
of Optical Coherence Tomography Images. J Ophthalmol 
2019;2019:6319581.

18. Tufail A, Rudisill C, Egan C, et al. Automated Diabetic 
Retinopathy Image Assessment Software. Ophthalmology 
2017;124:343-51.

19. Xu M, He C, Liu Z, et al. How Did Urban Land 
Expand in China between 1992 and 2015? A Multi-Scale 
Landscape Analysis. PLoS One 2016;11:e0154839.

20. Muqit M. ICO Guidelines For Diabetic Eye Care 2017. 
Available online: http://www.icoph.org/enhancing_
eyecare/diabetic_eyecare.html

21. Gulshan V, Peng L, Coram M, et al. Development and 
Validation of a Deep Learning Algorithm for Detection 
of Diabetic Retinopathy in Retinal Fundus Photographs. 
JAMA 2016;316:2402.

22. Verbraak FD, Abramoff MD, Bausch GC, et al. Diagnostic 
Accuracy of a Device for the Automated Detection of 
Diabetic Retinopathy in a Primary Care Setting. Diabetes 
Care 2019;42:651-6.

23. Yang WH, Zheng B, Wu MN, et al. An Evaluation System 
of Fundus Photograph-Based Intelligent Diagnostic 
Technology for Diabetic Retinopathy and Applicability for 
Research. Diabetes Ther 2019;10:1811-22.

24. Sahlsten J, Jaskari J, Kivinen J, et al. Deep Learning 
Fundus Image Analysis for Diabetic Retinopathy and 
Macular Edema Grading. Sci Rep 2019;9:10750.

25. Ting DSW, Cheung CY, Lim G, et al. Development 
and Validation of a Deep Learning System for Diabetic 
Retinopathy and Related Eye Diseases Using Retinal 
Images From Multiethnic Populations With Diabetes. 
JAMA 2017;318:2211.

26. National Health Service (NHS) Diabetic Eye Screening 
Programme and Population Screening Programmes. 
Diabetic eye screening: commission and provide.; 2019.

27. Chakrabarti R, Harper C, Keeffe J. Diabetic retinopathy 

https://creativecommons.org/licenses/by-nc-nd/4.0/


© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(3):226 | http://dx.doi.org/10.21037/atm-20-3275

Page 10 of 10 Lu et al. Deep learning system for detecting diabetic retinopathy

management guidelines. Exp Rev Ophthalmol 2014;7.
28. Li Z, Keel S, Liu C, et al. An Automated Grading System 

for Detection of Vision-Threatening Referable Diabetic 
Retinopathy on the Basis of Color Fundus Photographs. 
Diabetes Care 2018;41:2509-16.

29. Gargeya R, Leng T. Automated Identification of Diabetic 
Retinopathy Using Deep Learning. Ophthalmology 
2017;124:962-9.

30. Ting DSW, Peng L, Varadarajan AV, et al. Deep 
learning in ophthalmology: The technical and clinical 
considerations. Prog Retin Eye Res 2019;72:100759.

31. Gulshan V, Rajan RP, Widner K, et al. Performance 
of a Deep-Learning Algorithm vs Manual Grading 
for Detecting Diabetic Retinopathy in India. JAMA 
Ophthalmol 2019;137:987.

32. Liu H, Li L, Wormstone IM, et al. Development 
and Validation of a Deep Learning System to Detect 
Glaucomatous Optic Neuropathy Using Fundus 
Photographs. JAMA Ophthalmol 2019;137:1353.

33. Burlina PM, Joshi N, Pacheco KD, et al. Assessment of 
Deep Generative Models for High-Resolution Synthetic 
Retinal Image Generation of Age-Related Macular 
Degeneration. JAMA Ophthalmol 2019;137:258.

34. Gupta K, Campbell JP, Taylor S, et al. A Quantitative 

Severity Scale for Retinopathy of Prematurity Using Deep 
Learning to Monitor Disease Regression After Treatment. 
JAMA Ophthalmol 2019;137:1029.

35. Scanlon PH, Malhotra R, Thomas G, et al. The 
effectiveness of screening for diabetic retinopathy by digital 
imaging photography and technician ophthalmoscopy. 
Diabetic Med 2003;20:467-74.

36. Scanlon PH, Foy C, Malhotra R, et al. The influence of 
age, duration of diabetes, cataract, and pupil size on image 
quality in digital photographic retinal screening. Am J 
Ophthalmol 2006;141:603.

37. Saha SK, Fernando B, Cuadros J, et al. Automated 
Quality Assessment of Colour Fundus Images for Diabetic 
Retinopathy Screening in Telemedicine. J Digit Imaging 
2018;31:869-78.

38. Krause J, Gulshan V, Rahimy E, et al. Grader Variability 
and the Importance of Reference Standards for Evaluating 
Machine Learning Models for Diabetic Retinopathy. 
Ophthalmology 2018;125:1264-72.

39. Schlegl T, Waldstein SM, Bogunovic H, et al. Fully 
Automated Detection and Quantification of Macular 
Fluid in OCT Using Deep Learning. Ophthalmology 
2018;125:549-58.

Cite this article as: Lu L, Ren P, Lu Q, Zhou E, Yu W, Huang J,  
He X, Han W. Analyzing fundus images to detect diabetic 
retinopathy (DR) using deep learning system in the Yangtze 
River delta region of China. Ann Transl Med 2021;9(3):226. 
doi: 10.21037/atm-20-3275


