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Abstract: It is increasingly important to accurately and comprehensively estimate the effects of particular 
clinical treatments. Although randomization is the current gold standard, randomized controlled trials (RCTs) 
are often limited in practice due to ethical and cost issues. Observational studies have also attracted a great 
deal of attention as, quite often, large historical datasets are available for these kinds of studies. However, 
observational studies also have their drawbacks, mainly including the systematic differences in baseline 
covariates, which relate to outcomes between treatment and control groups that can potentially bias results. 
Propensity score methods, which are a series of balancing methods in these studies, have become increasingly 
popular by virtue of the two major advantages of dimension reduction and design separation. Within this 
approach, propensity score matching (PSM) has been empirically proven, with outstanding performances 
across observational datasets. While PSM tutorials are available in the literature, there is still room for 
improvement. Some PSM tutorials provide step-by-step guidance, but only one or two packages have been 
covered, thereby limiting their scope and practicality. Several articles and books have expounded upon 
propensity scores in detail, exploring statistical principles and theories; however, the lack of explanations on 
function usage in programming language has made it difficult for researchers to understand and follow these 
materials. To this end, this tutorial was developed with a six-step PSM framework, in which we summarize 
the recent updates and provide step-by-step guidance to the R programming language. This tutorial offers 
researchers with a broad survey of PSM, ranging from data preprocessing to estimations of propensity 
scores, and from matching to analyses. We also explain generalized propensity scoring for multiple or 
continuous treatments, as well as time-dependent PSM. Lastly, we discuss the advantages and disadvantages 
of propensity score methods.
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What is propensity score analysis? Where is it 
used and why?

Where is it used?

It is essential to accurately estimate the effects of particular 
treatments or interventions in order to provide a solid 
evidential foundation for clinical practice. To this end, both 
randomized controlled trials (RCTs) and observational 
studies are commonly used tools. 

RCTs can be characterized as scientific experiments that 
estimate treatment effects by randomly allocating subjects to 
two or more groups of differing clinical interventions, and 
comparing outcomes with respect to measured responses (2). 
 Strategically designed randomized assignment reduces 
or even eliminates bias arising from the characteristics of 
subjects, clinicians, and administrators, or other confounding 
factors, and allows the effects of a particular treatment to 
be estimated by directly comparing outcomes between 
treated and untreated subjects. Therefore, randomization 
is the gold standard of causal inference (1-3). However, in 
some instances, RCTs cannot be implemented due to ethical 
issues, costs, and limited feasibility, which leaves the door 
open to implementing other new and innovative methods.

Observational studies have gained traction in recent 
years, owing to large amounts of available historical data, 
in which objects can be been observed, recorded, and 
compared, albeit without random treatment allocation 
(2,4). However, a major disadvantage of this approach 
is the presence of systematic differences in baseline 
covariates related to outcomes between treatment and 
control groups, which biases the results (1,5). To accurately 
estimate treatment effects from observational data, analysts 
have proposed several methods for balancing data, such 
as matching, stratification, and regression adjustments; 
however, each of these methods has its respective 
deficiency: (I) matching and stratification approaches group 
together individuals with the same or similar covariates, 
but these methods fail when too many covariates require 
balancing; i.e., it is difficult to find individuals for whom 
all covariates are similar. (II) For regression adjustments, 
it is often difficult to assess if models have correctly 
specified treatment assignments and covariates to outcomes. 

Goodness-of-fit measures, such as the coefficient of 
determination, R2 and mean squared error (MSE), do not 
test whether a model is correct for causal inference. Thus, 
a model that accurately predicts outcomes may still have 
biased estimates of treatment effects. Although regression 
is a simple and direct way to eliminate bias due to other 
factors, it is not entirely reliable.

What is propensity score analysis?

In recent decades, propensity score analysis (PSA) has 
attracted increasing attention (Figure 1). Propensity 
score (PS)1, as defined by Rosenbaum and Rubin, is the 
probability of receiving certain treatments, conditional on 
observed baseline covariates (6), and is estimated by using 
modeling to predict treatment allocation with covariates. 
In simple terms, PSA is based on the hypothesis that two 
patients with similar PSs have covariates which come 
from similar distributions. This means that by selecting or 
reweighting samples based on PS, researchers create new 
datasets where covariates are similar between treatment and 
control groups (7).

Methods including matching, weighting, stratification, 
and covariate adjustment based on PS all fall under the 
umbrella of PSA (8). For example, a complete analysis 
using propensity score matching (PSM) comprises six steps 
(Figure 2). The first step is to preprocess data sets, identify 
outliers, and interpolate missing values. In the second step, 
a model is specified, such as logistic regression, and trained 
on the dataset to predict whether a patient will be treated. 
For every patient, the trained model generates a probability 
of receiving treatment; i.e., his or her PS. The third step 
refers to matching based on PS, where different matching 
methods are tried, such as nearest neighbor, or optimal 
or genetic matching. In the fourth step, the balance of 
covariates between treatment and control groups is checked 
by calculating balance statistics and generating plots. A 
poor balance indicates that the model estimating PS needs 
to be respecified. In the fifth step, the treatment effects are 
estimated using matched data, and this is followed by the 
last step, where sensitivity analyses are performed to check 
the robustness of study results for hidden bias. These steps 

  

1 We indiscriminately used the terms propensity score and estimated propensity score. Guo and Fraser (1) summarized the meaning of these terms. In 

this tutorial, PS as estimated by our model, is called estimated propensity score, unless explicitly stated otherwise.
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are later explained in detail.

What are the differences between PSA and other methods?

When compared with conventional balancing methods, PSA 
has two major advantages: dimension reduction and design 
separation. In PSA, dimension reduction means that multiple 
covariates are replaced by one score to describe a patient. 
In other words, when matching or reweighting patients, 
PS alone, rather than multiple covariates, is considered (1). 
Additionally, these methods separate covariate balancing 
and effect estimating. As shown in Figure 2, whether or 
not covariates are balanced between treated and untreated 

subjects should be checked in the fourth step, and treatment 
effects should be estimated after this.

Why should I read this tutorial?

While many PSA tutorials and PS articles have been 
published, there is room for improvement in this area. Some 
tutorials have provided step-by-step guidance, but cover 
just one or two packages (9-11), which limits their scope 
and practicality. Other articles and books have explained 
PS and related methods, as well as associated statistical 
principles and theories, but they explain little about the 
function usage in programming language, making the text 
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Figure 2 The framework of propensity score matching.

Figure 1 The trend of numbers of publications with titles containing “propensity score” from 2000 to 2019.
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difficult for readers to follow (1,8). In 2014 and 2015, Yao 
et al. (12) evaluated cancer studies (CS) and cancer surgical 
studies (CSS) using PSA, and found that many studies did 
not clearly provide the covariates required to estimate PS 
(CS 12.1%, CSS 8.8%), neglected comparisons of baseline 
characteristics (CS 21.9%, CSS 15.6%), or failed to report 
matching algorithms (CS 19.0%, CSS 36.1%). A systematic 
review by Malla et al. (13) observed that approximately 49% 
of articles through 2010–2017 (45% in 2016 and 2017) 
did not report imputation methods for missing data when 
applying PSM. Zakrison et al. (14) reviewed observational 
studies using PSA in the acute care surgery literature and 
found that more than 33% of studies did not adequately 
report their methods. 

To this end, we composed this tutorial to introduce the 
PS concept and framework and to walk readers through how 
to implement PSM with R, with the aim of making readers 
capable of completing an analysis process using PSM.

Our ultimate goal is to equip researchers with a 
comprehensive understanding of PSM, ranging from data 
preprocessing to PS estimations, from matching based on 
PS to the subsequent analysis, from generalized propensity 
score (GPS) for multiple or continuous treatments to 
time-varying PSM, etc. Unlike previous studies where 
technical details were either too brief or too abstruse, we 
have shown each algorithm in a simple manner, described 
the basic principles concisely, and illustrated steps using 
figures. Thus, this tutorial is a crucial document for clinical 
analysts. The mind map for causal inference with PSM is 
summarized in Figure 3.

Why choose PSM in R?

There are at least three reasons why this tutorial focuses on 
PSM: (I) several studies have shown that PSM eliminates 
a higher proportion of systematic differences in baseline 
characteristics between treated and control groups when 
compared with other methods (15-17); (II) PSM is more 
robust for the misspecification of the PS estimating model 
(3,18); and (III) PSM is the most commonly used PS 
method, having been implemented in many fields (12,14). 
It is worth noting that apart from the matching element 
of this tutorial, the PSM framework is similar to that of 

other PS methods; therefore, this tutorial is also valuable to 
readers wishing to try other PS methods.

Nowadays, several programing languages including R 
(https://www.R-project.org/), Python (https://www.python.
org/), and STATA (https://www.stata.com), support various 
PS methods. We have chosen R to illustrate how to perform 
PSM in different packages, as it is free, open-sourced, and 
user-friendly. We used the R version 3.6.2 for Windows 
(2019-12-12), which can be download from https://cran.
r-project.org/. The package versions we used are listed in 
Table 1.

As some readers prefer to use other analytical tools 
such as Statistical Product and Service Solutions (SPSS) 
and Software for Statistics and Data Science (Stata), we 
provide package or tutorial recommendations for these 
tools in this part. We direct SPSS users to Huang et al. (19), 
who realized PSM in the PS matching module of SPSS 
and explain the analysis results. The software allows for 
the estimation of PS using logistic regression, and specifies 
options for nearest-neighbor matching, e.g., calipers, 
region of common support, matching with and without 
replacement, and matching one to many units. The 
program produces detailed statistics and graphs. For Stata 
users, psestimate, psmatch2, pscore, and other modules may 
be used for analysis. For example, psmatch2 implements full 
Mahalanobis and PSM, common support graphing, and 
covariate imbalance testing. Interested readers are directed 
to the package’s official documents.

The structure of this tutorial is as follows: Section ‘How 
do I start my PSM analysis when there are missing values in 
my dataset?’ covers data preparation, where we concentrate 
on methods for the interpolation of missing data for PSM. 
Section ‘How is PS estimated? What methods can be 
used?’ introduces approaches on how to estimate PS for 
dichotomous treatments using different models, such as 
logistic regression, random forests, and artificial neural 
networks. Section ‘How can patients with similar PSs be 
matched?’ concentrates on matching methods based on PS. 
Sections ‘What is a good match? Is my data balanced?’ and 
‘What should be done if covariates are still unbalanced after 
matching?’ focus on balancing diagnostics after matching. 
Sections ‘How can the effects of treatment after matching 
be estimated?’ and ‘What about unmeasured covariates 

  

2 We use the term “treatment” throughout this article to simplify the language, although it is sometimes better to use “exposure” or “intervention”.

https://www.stata.com
https://cran.r-project.org/
https://cran.r-project.org/
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Figure 3 The mind map of causal inference with propensity score matching.

related to treatment allocation and outcomes?’ center on 
analysis after matching, including estimating treatment 
effects and sensitivity analyses. In Section ‘How does PSM 
handle multiple or continuous treatments?’ and ‘How to 
apply PSM with time-dependent covariates and treatments’, 
we introduce GPS for multiple or continuous treatments, 
and time-dependent PSM. In the last section, we discuss 
PSM in terms of strengths and weaknesses, and we assess 
the limitations of this tutorial.

How do I get access to data from this tutorial?

To illustrate PSM in R, we constructed a dataset with 

known true PS values, for step-by-step guidance in each 
section. This dataset simulates the relationship between 
smoking and cardiovascular disease (CVD), with age 
and gender as the potentially confounding covariates. 
However, one must bear in mind that real data is not as 
simple as the simulated data in this tutorial, in which only 
two confounding factors are present. We will cover how 
to determine covariates from hundreds of variables in 
observational datasets for estimating PS (Section ‘Selection 
of covariates’).

In a hypothetical situation, we want to study the 
relationship between smoking and CVD incidence. Thus, 
CVD is the outcome variable (CVD = 0 when the patient 



Zhao et al. PSM with R

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(9):812 | http://dx.doi.org/10.21037/atm-20-3998

Page 6 of 39

does not have CVD; otherwise, CVD =1). Smoking is a 
binary variable which indicates whether the patient smokes 
or not. Gender (0= female, 1= male) and age are two 
confounding covariates, which are correlated to “treatment”2 
and outcome. Now, we assume that men smoke more than 
women, and middle-aged people smoke more than elderly 
and younger people. Lastly, we randomly set variable values 
as NA (missing).

Data is generated with the following code:

> set.seed(2020)

> x.Gender <- rep(0:1, c(400,600)) # 400 females and 600 

males

> x.Age <- round(abs(rnorm(1000, mean=45, sd=15))) 

> z <- (x.Age - 45) / 15 - (x.Age-45) ^ 2 / 100 + 2 * x.Gender

> tps <- exp(z) / (1+exp(z)) # The true PS

> Smoke <- as.numeric(runif(1000) < tps)

> z.y <- x.Gender + 0.3*x.Age + 5*Smoke - 20

> y <- exp(z.y) / (1+exp(z.y))

> CVD <- as.numeric(runif(1000) < y)

> x.Age.mask <- rbinom(1000, 1, 0.2) # Missing completely at 

random

> x.Age <- ifelse(x.Age.mask==1, NA, x.Age)

> data <- data.frame(x.Age, x.Gender, Smoke, CVD)

> head(data)

x.Age x.Gender Smoke CVD

1 51 0 1 0

2 50 0 0 0

3 29 0 0 0

4 28 0 0 0

5 3 0 0 0

6 56 0 1 1

Here, tps is the true PS which can balance data and needs 
to be estimated. 

Next, we use the CreateTableOne function in the tableone 
package, to summarize the distribution of baseline variates 
in each group, and test whether significant differences exist 
between different groups. If you do not have tableone, it 

Table 1 The R packages used in the tutorial

R Package Version Description

Hmisc 4.4.0 A package containing many functions useful for data analysis. Here we use it for imputing missing values

MatchIt 3.0.2 A package integrating multiple methods to estimate PS and match based on the estimated score

ggplot2 3.2.1 A system for declaratively creating graphics

nnet 7.3.12 A package for feed-forward neural networks with a single hidden layer, and for multinomial log-linear models. 
The function to set up multinomial log-linear models in this package will be used

tableone 0.10.0 Creates ‘Table 1’, i.e., description of baseline patient characteristics, which is essential in every medical  
research

DMwR 0.4.1 This package includes functions and data accompanying the book [18]. In this tutorial we use KNN  
imputation provided in this package

cobalt 4.0.0 Generate tables and plots for covariate balance diagnostics after matching, weighting or subclassification, 
based on propensity scores

weights 1.0.1 A package which provides a variety of functions for producing simple weighted statistic

Zelig 5.1.6 A framework that brings together an abundance of common statistical models found across packages into a 
unified interface

rbounds 2.1 A package to calculate Rosenbaum bounds for the treatment effect

randomForest 4.6.14 A package which implements Breiman’s random forest algorithm for classification and regression. It can also 
be used in unsupervised mode for assessing proximities among data points

PS, Propensity score; KNN, K-Nearest Neighbor.
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can be installed with the following code: install.packages 
(“tableone”). The results of following code are shown in 
Table 2.

> library(tableone)

> table2 <- CreateTableOne(vars = c('x.Age', 'x.Gender', 

'CVD'), 

data = data,  

factorVars = c('x.Gender', 'CVD'),

strata = 'Smoke',

smd=TRUE)

> table2 <- print(table2, 

smd=TRUE,

showAllLevels = TRUE,

noSpaces = TRUE, 

printToggle = FALSE)

> table2

> write.csv(table2, file = "Table2_before_matching.csv")

Here, the argument vars is a vector of variables to be 
described, factorVars is a vector of variables that should 
be handled as categorical variables, and strata is the 
column name that groups the data set. As can be seen, the 
covariates of age and gender are significantly different 
between the smoking and non-smoking groups. The SMD 
column refers to standardized mean differences between 
different groups, which is calculated by the following 
equations.

For continuous variable x:

( )
1 2

1 2

SMD of x
/ 2

X X
Var Var

−
=

+  
[1]

where 1X  and 2X  are the sample means for the treated 
and controlled groups, respectively; Var1 and Var2 are 
sample variances for the treated and controlled groups, 
respectively. 

For dichotomous variable x:

( ) ( )
1 2

1 1 2 2

SMD of x
1 1 / 2

ˆ ˆ

ˆ ˆ ˆ ˆ
p p

p p p p

−
=

 − + − 
 [2]

where 1p̂  and 2p̂  are the prevalence of dichotomous 
variables in the treated and control groups, respectively.

The use of SMD is recommended to measure the 
covariate differences between different groups when using 
PSM. It provides a fair scale to compare different types of 
covariates that are not influenced by the units of measure, 
because it standardizes the differences based on the variance 
of the samples.

How do I start my PSM analysis when there are 
missing values in my dataset?

Data preparation is the first step in PSM, as outliers 
or missing values will impede an accurate PS estimate. 
Although some models, like XGBoost, are immune to 
missing values, they are rarely used in estimating PS; 
meanwhile, common models, such as logistic regression and 
artificial neural network, cannot deal with missing values. 
Therefore, in this section, we focus on missing data, and 
demonstrate and compare different methods for missing 
values. 

Table 2 Baseline characteristics of our simulation data

Variables Level 0 1 P SMD

n  549 451

x.Age, mean (SD) 42.76 (19.69) 47.04 (8.14) <0.001 0.284

x.Gender, n (%) 0 299 (54.5) 101 (22.4) <0.001 0.698

 1 250 (45.5) 350 (77.6)

CVD, n (%) 0 452 (82.3) 230 (51.0) <0.001 0.705

  1 97 (17.7) 221 (49.0)

The numbers 0 and 1 in the first row indicates whether to smoke, 0 means not while 1 means yes. The variable n is the number of 
patients, x.Age and x.Gender are the independent variables and CVD is the indicator of cardiovascular disease. SMD, standardized mean 
difference; SD, standard deviation.
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How do I deal with missing values?

In theory, missing data may be classified as missing 
completely at random (MCAR), missing at random 
(MAR), and missing not at random (MNAR) (20), but 
these classifications are not focused on here. Complete 
case analysis is a simple method to deal with missing data. 
It deletes cases with missing values, and is based on the 
assumption that data are MCAR, and they substantially 
reduce sample size and increase variance (20,21). The 
approach is not recommended, particularly for small-
data analyses, or when miss ratios are high. The missing 
indicator method replaces missing values with a constant, 
usually 0, and adds missing indicators for each imputed 
covariate. This method has been criticized as it usually 
introduces bias (22). Replacing missing values with the 
mean, median, or mode is also widely used. Despite its 
simplicity, the approach reduces variability in the data 
set, and underestimates variance (8,21). The K-nearest 
neighbors (KNN) and random forests are machine-
learning methods that can be used to impute missing values  
(23-25). In addition to these, model-based single imputation 
methods, such as regression imputation, or matching-based 
single imputation methods, such as hot-deck imputation, are 
better-designed, but they amplify correlations in the data (8). 
Several studies (8,20,26) recommend multiple imputation 
(MI) to impute missing data, because this method does not 
reduce inherent variability.

Although MI is currently the preferred missing data 
imputation method, there is still debate as to which method 
is the most appropriate for PSM (8,27,28). In a simulation 
study, Choi et al. (29) compared four different methods: 
complete case analysis, the missing indicator method, MI, 
and combining MI and the missing indicator method. 
These authors found that MI would fail when data were 
non-randomly missing, and the optimal way to handle 
missing values depended on the missing data structure.

Combining MI and PSM is another contested issue. First, 
it has been recommended (30) to separately impute data 
for treatment and control groups, as missing mechanisms 
and covariate distributions may be different between these 
groups. However, this approach was not mentioned in 
recent studies (29). Its major disadvantage is that separate 
imputation mechanism reduces the sample size for 
imputation to each group, which biases the imputed values. 
Meanwhile, two methods that implement PSM with multiple 
imputed data have been compared (7). In the first, PSM is 
separately applied to each dataset imputed by MI, and the 

treatment effect estimates are averaged. In the second, PSs 
on each completed dataset are estimated, the scores for each 
record are averaged, and PSM is performed with averaged 
scores to estimate treatment effects. This second method has 
the greater potential to produce substantial bias reductions. 

How do I implement missing data methods with R?

Checking missing values
Here is a simple way to count the number of missing values 
in each column. 

> colmissing <- apply(data, 2, 

function(x){ sum(is.na(x)) })

> colmissing

x.Age x.Gender Smoke CVD

169 0 0 0

As can be seen, there are 169 missing values in the 
column x.Age. 

The Hmisc package contains several functions for data 
analysis. The data may be summarized as follows:

> library("Hmisc")

> describe(data)

4 Variables 1000 Observations

x.Age 

n Missing Distinct Info Mean Gmd .05 .10 .25 .50 .75 .90 .95

831 169 85 1 44.66 17.74 19 25 34 44 55 65 72

Lowest: 1   2   3   5   6, Highest: 84  85  86  93 101

x.Gender

n Missing Distinct Info Sum Mean Gmd

1000 0 2 0.72 600 0.6 0.4805

Smoke

n Missing Distinct Info Sum Mean Gmd

1000 0 2 0.743 451 0.451 0.4957

CVD

n Missing Distinct Info Sum Mean Gmd

1000 0 2 0.651 318 0.318 0.4342

 
Gmd refers to Gini’s mean difference, which is a robust 



Annals of Translational Medicine, Vol 9, No 9 May 2021 Page 9 of 39

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(9):812 | http://dx.doi.org/10.21037/atm-20-3998

measure of dispersion. The reader is directed to (31) for 
more information.

Completing the case analysis
The function na.omit returns a new data frame which 
contains samples without missing values.

> data.complete <- na.omit(data)

> nrow(data.complete)

831

> colmissing <- apply(data.complete, 2, 

function(x){ sum(is.na(x)) })

> colmissing

x.Age x.Gender Smoke CVD

0 0 0 0

As can be seen, those samples with missing values are 
deleted.

Replacing missing values with mean, median, or 
specified constant
The use of the impute function in the Hmisc package is 
straightforward.

> x.Age.meanimp <- impute(data$x.Age,mean)

> x.Age.medimp <- impute(data$x.Age,median)

> x.Age.consimp <- impute(data$x.Age,2)

The missing indicator method
The missing indicator method is a simple approach,

> x.Age.ind <- as.numeric(is.na(x.Age)==FALSE)

> data.mi <- copy(data)

> data.mi$x.Age <- impute(data$x.Age, 0)

> data.mi <- cbind(data.mi, x.Age.ind)

where x.Age.ind indicates Age (1 = missing, otherwise 0)

The KNN imputation
For every patient with missing values, this algorithm finds 
the top k similar patients as the nearest neighbors, and then 
uses the covariate values of neighbors to impute the missing 
ones. Now, we use the knnImputation function in the DMwR 

package to implement KNN imputation. The argument k is 
the number of neighbors, and the option meth = “weighAvg” 
means that the nearer neighbor will be given a larger weight 
to impute.

> library(DMwR)

> data.knnimp <- knnImputation(data, k=10, meth = 

"weighAvg")

Multiple imputation
The MI approach is more complex than the above-
mentioned methods. The code is hard to understand 
unless the user knows how to match patients based on 
PS. Therefore, we have provided the PSM code with MI 
attached in the appendix for reference.

How is PS estimated? What methods can be 
used?

The PS is the conditional probability of receiving a 
treatment, given a vector of observed covariates, X. In this 
section, we discuss the simplest case, where two treatment 
options (binary) are provided; i.e., treatment vs. control. 

A common method to estimate PS is to build a model 
and predict treatment assignment based on covariates. First, 
appropriate covariates are selected, and a modeling method, 
e.g., logistic regression, is specified. Then, a predictive 
model is trained on the data using the selected covariates to 
predict whether a patient will be treated. Lastly, the model 
makes predictions for each patient, and PS is the probability 
of receiving treatment, as predicted by the model.

In the following paragraphs, we demonstrate covariate 
selection, the methods to estimate PS, and how to estimate 
PS with R.

Selection of covariates

Not all covariates need to be balanced. According to 
the theory of casual inference (32,33), we can analyze 
the different relationships between the covariate (X), 
the treatment assignment (W), and the outcome (Y). As 
demonstrated in Figure 4, the X covariates in the first row (I, 
II) should be included in the estimating model, while those 
in the second row (III, IV) should not. 

This X is the true confounding variable in the data. If 
we suppose that older patients are more likely to be given 
intraoperative blood transfusions (W) but with a higher 
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mortality risk (Y), we observe then that blood transfusions 
caused significantly more deaths in the historical data. Age 
is a true confounder, and should be balanced between the 
transfusion and non-transfusion groups; otherwise, the 
results will be biased.

Although there is no direct causal relationship between 
X and W, several simulation studies suggest that these 
covariates should always be included in a PS model. The 
inclusion of these variables will decrease the variance of the 
outcome estimates, without increasing bias (34,35).

In contrast, including variables related to the treatment 
but not to the outcome, will increase the variance of the 
estimated exposure effect, without decreasing bias (34).

This X is a mediating variable in the causal path from 
W to Y; i.e., W affects Y by X. For example, if we want to 
study the effects of cigarettes on the risk of lung tumors,X  
refers to the nicotine intake of each individual per day, Y 
is the average number of cigarettes smoked per day, and Y 
is the lung tumor indicator. Nicotine is a powerful poison 
in cigarettes. People who inhale high levels of nicotine can 
damage their lungs (W->X->Y). If X is balanced between 
the smoking and non-smoking groups, then the effect of W 
on Y will be underestimated or even eliminated. 

Unfortunately, domain knowledge must be applied to 
ensure all important confounders are included in an analysis, as 
doing so solely by automatic computer script is impossible (36).

Estimating methods

Binary logistic regression is the mainstream PS estimating 

method, but an increasing number of alternative methods 
are being proposed, including bagging or boosting (31,37), 
recursive partitioning algorithms (31), the generalized 
boosting model (GBM) (37,38), random forests (31), and 
artificial neural network (ANN) (39). 

The most significant advantage of logistic regression 
(LR) is its simplicity and interpretability. To illustrate, in 
an observational study, older patients are more likely to 
be assigned to a treatment group, and younger patients 
to control groups. Thus, for outcomes, mortality is 
correlated to age. Accordingly, you can model the treatment 
assignment as a function of age using LR, and estimate PS 
with your prediction model.

Now let us assume the situation is more complicated: 
older patients and children are more likely to be treated 
than middle-age patients. If researchers use LR without 
careful thinking, estimating PS could be biased because 
the relationship between treatment assignment and age is 
no longer linear. In this case, an experienced researcher 
will add polynomial or interaction terms to the model to 
fit more complicated relationships between covariates and 
treatment assignments.

Therefore, after we estimate PS and match based on it, 
a data balance diagnostic is required to guarantee that the 
model is well specified to eliminate confounding factors. 
This step is introduced in section ‘How can patients with 
similar PSs be matched?’. 

The estimation of PS by LR is time-consuming, 
because different polynomial or interaction terms must 
be determined to balance the data. While no method 

X

W Y

X X

X

W

W

WY

Y

Y

A B

C D

Figure 4 Different relationships of covariate, treatment assignment, and outcome. X is a covariate, W is an indicator of treatment 
assignment, and Y is the outcome. The blue arrows point from cause to effect.
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is optimal, machine learning may help. GBM, random 
forests, and ANN automatically fit complex and high-order 
relationships in data, which frees researchers from having 
to find the best model structure (39-42). For example, 
ANN is composed of one or more layers, in which data are 
transformed in linear and nonlinear ways, and so ANN is 
more flexible for data mining than LR. In the literature, 
Westreich et al. (42) and De Vries et al. (43) observed that 
the use of classification and regression trees (CART) is 
promising for PSA application. Simulation experiments by 
Keller et al. (41) indicated that ANN performed similarly to 
LR when the LR model was correctly specified, but when 
the LR was inadequately specified, it was outperformed 
by ANN. Recently, Super Learner, an ensemble machine 
learning algorithm, was shown to be robust for the 
misspecification of the PS estimating model (44).

Although machine learning methods are criticized 
because of their poor interpretability, we argue that 
more attention should be paid to whether the estimated 
PS balances the observational data, rather than what 
the relationship is between the covariates and treatment 
assignment. Therefore, these “black box” methods may be 
promising alternatives to LR. Nonetheless, there is much to 
explore and research concerning PSM and machine learning 
methods (8).

Estimating PS with R

MatchIt package
The MatchIt package offers users practical functions to 
estimate PS. We recommend first installing the package and 
uploading it.

> install.packages("MatchIt")

> library(MatchIt)

matchit is the main function in MatchIt, which can estimate 
PS and match similar patients. It is used as follows:

> matchit(formula, data, method = "nearest", distance = "logit", 

distance.op-tions = list(), discard = "none", reestimate = FALSE, 

...)

The argument formula follows the usual syntax of R 
formula, which specifies the PS estimate model in which 

treat ~ x1 + x2, where treat is a binary treatment indicator, 
and x1 and x2 are pretreatment covariates; i.e., Smoke ~ 
x.Age + x.Gender. 

Distance is the key argument that decides what model 
you will use to estimate PS, and can include “logit” (logistic 
regression), “GAMlogit” (generalized additive models), 
“rpart” (CART), and “nnet” (single-hidden-layer neural 
network model). Also, Distance may be PS estimated by 
the researcher. This means that PS can be estimated with 
other models in other packages, and the function, matchit, 
can be used to match patients based on your estimated PS. 
It is worth noting the option “mahalanobis” (Mahalanobis 
metric distance), which is not a method based on PS. In 
fact, Mahalanobis metric distances were developed and 
studied prior to PSM (45,46). They play a similar role as PS 
in assessing the similarities of different patients.

An optional argument, distance .options ,  specifies 
parameters for estimating models. The input of this 
argument must be a list. Table 3 lists those parameters that 
can be set. Some are optional, while others must be set if 
you want to use this model. The matchit function completes 
both PSM estimations and matching steps. However, here 
we refer to the estimation only. How to match and set other 
arguments such as method and discard will be covered in the 
next section.

Running matchit with logistic regression
We then use the following code to run matchit. As 
mentioned previously, we do not set other arguments, 
except distance. We use complete cases in our dataset for 
the following steps, because x.age is missing completely at 
random and our data of just two columns is so simple that it 
leads to the poor performance of other imputation methods.

> m.out <- matchit(Smoke~x.Age+x.Gender, 

data=data.complete,

distance='logit')

The value model of m.out can be checked to get the 
summary of the estimating model. This is the summary of 
our logistic regression.

> m.out$model

Call: glm(formula = formula, family = binomial(logit), data = 

data)
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Table 3 Parameters of different propensity score estimate models

Model Paramters Description Can it be missing? Examples

Logistic regression maxit The maximum number of iterations to optimize the model Yes 500

GAM intercept Should an intercept be included in the model? Yes TRUE

Neural network size Number of units in the hidden layer.  No 16

GAM, generalized additive model.

Coefficients:

(Intercept) x.Age x.Gender

-2.05065 0.01953 1.51120

Degrees of freedom: 830 Total (i.e. Null); 828 Residual

Null deviance: 1142

Residual deviance: 1027 AIC: 1033

The value distance will return the estimated PS for each 
sample, which is a vector of length n (PS is considered as 
the distance of patients to match here).

Now, we compare the estimated PSs with the true values.

> eps <- m.out$distance # Estimated PS

> tps.comp <- tps[complete.cases(data)] 

# Because we only use complete cases

> Smoke.comp <- as.factor(Smoke[complete.cases(data)])

> df <- data.frame(True=tps.comp, Estimated=eps, 

Smoke=Smoke.comp)

> ggplot(df, aes(x=True, y=Estimated, colour=Smoke)) +

geom_point() +

geom_abline(intercept=0,slope=1, colour="#990000", 

linetype="dashed") +

expand_limits(x=c(0,1),y=c(0,1))

In the scatter plot in Figure 5A, the x-axis is the true PS 
value, while the y-axis is the estimated value. The small 
circles represent samples. If PSs were estimated accurately, 
these circles would be distributed around the line y = x. The 
reason why the estimation is so poor (like a sin function), 
is because we generated PS by quadratic equation, but 
estimated it by linear equation. We can change our model 
to fit the nonlinear relationship, so it can be operated by 

the following code. Note that when we use PSM with real 
datasets, we do not know how the true PS is distributed, so 
this adjusting of the model by logistic regression may take 
more time. 

> m.out <- matchit(Smoke~I(x.Age^2)+x.Age +x.Gender, 

data=data.complete) # Add a quadratic term

> m.out$model

Call: glm(formula = formula, family = binomial(logit), data = 

data)

Coefficients:

(Intercept) I(x.Age^2) x.Age x.Gender

-24.89833 -0.01056 1.02879 2.03851

Degrees of freedom: 830 Total (i.e. Null); 827 Residual

Null deviance: 1142 

Residual deviance: 673.4  AIC: 681.4

As seen in Figure 5B, when the correct model is specified, 
PS is accurately estimated. 

Running matchit with CART and a neural network
Now, we will show you the estimating results of CART 
and a single-hidden-layer neural network (Figure 5C,D, 
respectively). Only the call of the matchit function is shown 
here, as the remaining codes are all the same.

> m.out <- matchit(Smoke~x.Age+x.Gender, 

data=data.complete,

distance='rpart')

Then, we change the distance argument to “nnet”, and 
set the number of hidden-layer units as 16.
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Figure 5 The true vs. estimated propensity scores. The true propensity scores (x-axis) and estimated ones by different models (y-axis). (A) 
Poorly-specified logistic regression. (B) Well-specified logistic regression. (C) CART. (D) Single-hidden-layer neural network. (E) Random 
forests, (F) MAE of different models. LR, logistic regression; CART, classification and regression tree; SHLNN, single-hidden-layer neural 
network; MAE, mean absolute error.
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> m.out <- matchit(Smoke~x.Age+x.Gender, 

data=data.complete,

distance='nnet',

distance.options=list(size=16))

Although the true PS is generated in a complex manner, 
the CART and neural network can also estimate the score 
based on x.Age and x.Gender. In practice, when we do not 
know how the true PS was generated, logistic regression 
is not always perfect, while neural networks can estimate 
better scores based on baseline covariates.

Estimating PS by other functions
Apart from calling the built-in function of MatchIt, PS 
can also be estimated using the model you specify, like any 
other dichotomous problem. In this section, we use random 
forests, a popular ensemble algorithm based on decision 
trees. Several R packages support random forests; here, we 
chose the package randomForest.

> library(randomForest)

> data.complete$Smoke <- factor(data.complete$Smoke) 

# to call classifier

> rf.out <- randomForest(Smoke~x.Age+x.Gender, data=data.

complete)

> rf.out 

Call: randomForest(formula = Smoke ~ x.Age + x.Gender, 

data = data.complete)

Type of random forests: classification

Number of trees: 500

No. of variables tried at each split: 1

OOB estimate of error rate: 22.86%

Confusion matrix:

0 1 class.error

0 360 102 0.2207792

1 88 281 0.2384824

We use the fraction of votes as treatment probabilities, 
namely, PSs. 

> eps <- rf.out$votes[,2] # Estimated PS 

As shown in Figure 5E, the random forests performances 
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Figure 6 An idea map for choosing matching methods. PS, propensity score.

are unsatisfactory. After we calculate PS with our model, the 
matchit function may still be used to match data, based on 
the estimated PS:

> matchit(formula=Smoke~x.Age+x.Gender,

data=data, 

distance=eps, # our own estimated PS

method='nearest',

replace=TRUE,

discard='both',

ratio=2)

Different models in terms of estimating accuracy are 
summarized in Figure 5F, but one example cannot show 
their performances in all situations.

How can patients with similar PSs be matched?

Matching methods

After we calculate PS, we form pairs between treated and 
untreated subjects, according to their PSs. There are several 
ways to do this, but several choices must first be considered, 
as outlined below. We have summarized an idea map for 
choosing matching methods (Figure 6), and compared 
matching results of different algorithms (Figure 7). 
A separate flowchart (Figure 8) illustrates how genetic 
matching works because it is more complex.

PS or logit of PS
Early in 1985, Rosenbaum and Rubin (47) suggested 

using the logit of PS (i.e., 
PSlog

1 PS
 
 − 

) to match samples, 

because the distribution of logit PS approximates to normal, 
although matching based on PS is still feasible.

Major matching algorithms
Nearest neighbor matching (NNM) is a widely used 
method, and is composed of two steps. First, the algorithm 
picks patients, one by one from treatment groups, in a 
specified order. Then, for each treated patient, the program 
finds a patient in the control group with the nearest PS. 
These steps are repeated until no patients are left in the 
treatment or control group. As shown in Figure 7A, “1” is 
selected first, and matched to an untreated subject. The 
distance between their PSs is the smallest (0.1). Then “2” is 
selected and matched. 

The essence of this method is that it divides the whole, 
complex, matching problem into small parts, matching 
one treated subject at one time, and determining the best 
counterpart every time. The method is considered “greedy” 
because it is greedy in every subproblem (i.e., it finds the 
best one), yet overall optimal output is not guaranteed. As 
shown in Figure 7B, the algorithm picks “1” first and “2” 
next. For “1”, the algorithm finds the best untreated patient 
to match, their PS difference is 0.1. However, for “2”, the 
distance is much worse. An observer may conclude that if 
we deal with “2” first and then “1”, an optimal matching 
situation will result (Figure 7C). Indeed, different orders 
for patient selection have been proposed, such as from 
the highest to lowest PS, from the lowest to highest PS, 
or random order. However, simulation experiments have 
demonstrated that the order in which treated subjects 
are selected for matching exerts only modest effects 
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Figure 7 Illustration and comparison of different matching methods. In every subfigure, blue circles represent the treated patients, while 
hollow circles represent controlled ones. The one-way horizontal arrows indicate the distribution of propensity score from smallest to 
greatest. White numbers in circles represent the order in which the samples are selected. Double-headed arrows and dark blue dotted boxes 
indicate matching relationships, while the orange boxes show the width of calipers. Distance is the difference of propensity scores between 
a matched pair. Red color is used for emphasis, and the red cross on the arrow means that matching will not be made as a result of the 
specified caliper. 

on estimations (48). Equally, other methods have been 
proposed to alleviate this problem, such as specifying 
a caliper width (discussed later). Despite suboptimal 
performances, NNM is used extensively by researchers for 
PSM. It is a simple algorithm to understand and implement, 
and when there are sufficient untreated patient numbers, 
these poor matching issues are unlikely to happen.

In contrast to NNM, optimal matching (OM) was 
proposed by Rosenbaum (49) to optimize total distances 
between treatment and control groups. This means 
that algorithms determine matched samples with the 
smallest average within-pair absolute difference in PS  
(Figure 7C). Determining optimal matches is implemented 
using network flow theory (50,51), but this is beyond the 
scope of this tutorial. Gu and Rosenbaum (52) observed 
that OM was sometimes better than NNM as it produced 
closely matched pairs, but was no better than NNM 
in terms of balancing covariates. In a comparison of  
12 matching algorithms (48), OM induced the same balance 

in baseline covariates as NNM, suggesting both NNM and 
OM are potential candidates for matching.

Strictly speaking, genetic matching (GM) is the extension 
of PSM (Figure 8). The algorithm considers not only PS, 
but also specifies covariates and determines a set of weights 
(i.e., variable importance) for PS and each covariate (53). 
In our data, for each patient, we recorded age, gender, 
and estimated the PS. If the weight of age was set to 2.5, 
while the weights of gender and PS were both 0.5, then 
the differences of age within the matched pairs will be paid  
5 times more attention to than those of gender and PS. The 
PSM may be considered a limiting case of this method, 
in the sense that when all the weights of other covariates 
excepting PS are set to 0, GM will be equivalent to PSM.

It is obvious that weights must be meticulously designed 
to balance covariates. The GM uses an evolutionary 
search algorithm to determine sets of weights for each  
covariate, and achieves data balancing based on weighted 
covariates (53), which is why it is called “genetic”. As shown 
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in Figure 8, GM starts from the initial sets of weights (the 
parents’ genes). Second, GM randomly modifies some 
weights in these sets (mutation), and randomly recombines 
them with each other (genetic recombination) to generate the 
next generation of weights. Third, samples are matched with 
each set of weights to generate the same number of matching 
plans as individuals in the generation. Then, one solution 
which optimizes the data balance can be selected (natural 
selection). These steps are repeated until covariate balancing 
is achieved, or the maximum number of iterations is reached. 
Every candidate generation evolves, and the algorithm 
asymptotically converges towards an optimal solution.

In addition, several methods have an ambiguous 
relationship with PSM. For example, exact matching (EM) 
is a method that matches treated with controlled patients, 
using the same values of specified covariates. The method is 
used when only a few covariates may influence the treatment 
assignment. When the number of covariates increases, even 
though covariates are all binary, the number of possible 
matches grows exponentially, resulting in a poor matching 
result. Technically, EM is not a kind of PSM, but in Section 
‘What should be done if covariates are still unbalanced 
after matching?’, we will explain how to use PSM and EM 
together.

Note that subclassification and full matching (FM) are 
often classified as matching methods (9,10). In fact, these 
methods are also regarded as stratifications based on PS, 
and are another series of methods that reduce selection 
bias in observational studies (1,3). Subclassification 
methods stratify patients into several groups, based on their 
estimated PS. Patients in one group will have similar PSs, 
and therefore differences in covariates can be ignored.

FM is a subclassification approach that optimally forms 
subclasses, which is the reason why it is also called optimal 
full matching (51,54,55). Each subclass contains 1 treated 
subject and 1 or more control subjects, or 1 control subject 
and 1 or more treated subjects. The subclass may be viewed 
as a matched set where 1 subject is matched to 1 or more 
counterparts, and thus can be construed as a matching 
method. 

NNM with or without replacement
Matching with replacement means that after a patient from 
the treatment group is matched to another from the control 
group, the controlled patient is reintroduced to the control 
group for next-round matching; therefore, a patient in the 
control group may be used more than once (Figure 7D; red 
arrow). In contrast, matching without replacement means 

Figure 8 Process of genetic matching. PS, propensity score.
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that after matching, the matched pair from the candidate 
pool will be removed such that a participant in the control 
group will be used only once. 

NNM with or without a caliper
Matching with or without a caliper determines whether the 
upper limit of the distance of PSs in a matched pair will 
be set or not. When the PS distributions are considerably 
different between the treatment and control groups, the 
distance of PSs in a matched pair may be large, as is the 
case in Figure 7B. Then, a caliper must be added into 
the matching step. Thus, for every patient, they can only 
be matched to patients of a PS within a limited range  
(Figure 7E). If eligible patients cannot be matched, the 
patient should be discarded.

While there is no gold-standard for maximal acceptable 
differences, a simulation study by Austin suggested that a 
caliper width of 0.2 of the standard deviation (SD) of the logit 
of PS be used, as this minimized the MSE of the estimated 
treatment effect, in a variety of settings (56). We suggest that 
(I) if the matching performance is poor (e.g., a few covariates 
are not balanced) matching can be conducted with a tighter 
caliper and (II) if matching is successful but the number of 
matched pairs is small, the caliper width can be broadened.

Pair matching, or other matching ratios
In pair matching, each treated patient matches to a single 
control in 1:1 ratio. Moreover, the ratio of controls to 
treated patients can be n:m (n and m are integers). For 
matching using variable ratios, each treated patient matches 
to, for example, at least one and at most four single controls 
(e.g., full matching). Figure 7F shows a 1:3 matching.

Matching with R

The function matchit of the MatchIt package implements 
both the estimation and matching steps of PSM. In Section 
‘How do I start my PSM analysis when there are missing 
values in my dataset?’, we introduced PS estimations; here, 
we discuss matching. 

Arguments
The use of matchit is as follows: 

> matchit(formula, data, method = "nearest", distance = "logit",

distance.options = list(), discard = "none", reestimate = FALSE, 

...)

The argument method specifies the method used to match 
patients, passing string values including “nearest” (nearest 
neighbor matching, the default option), “optimal” (optimal 
matching), “genetic” (genetic matching), “exact” (exact 
matching), “subclass” (subclassification), and “full” (full 
matching). 

The reestimate is a logical argument. If TRUE, after we 
discard unmatched samples, and PS is re-estimated with 
the remaining samples. This will not occur if this argument 
is FALSE or missing. In addition, we tabulate additional 
arguments for each matching method (Table 4).

Examples
Next, we perform a simple match to see the outcome of 
matchit. It is worth noting that if you use optimal matching, 
the optmatch package must be installed, while genetic 
matching requires the rgenound package.

> m.out <- matchit(Smoke~x.Age+x.Gender, 

data=data.complete, 

distance='logit',

method='nearest',

replace=TRUE,

ratio=2)

This is an example of NNM. Matched pairs can be 
checked as follows. 

> m.out$match.matrix

1 2

1 "204" "2"

6 "163" "283"

10 "349" "56"

12 "28" "67"

20 "337" "38"

Each row represents matched pairs of a patient in the 
treatment group. In each row, the first number indicates the 
serial number of the treated patient; numbers on the right 
are the controlled patients matched to this patient. 

The value discarded records whether this patient was 
discarded. 
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> m.out$discarded

1 2 3 4 5 6 7 8 9 10 11 12

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

What is a good match? Is my data balanced?

Balance diagnostics

After PS-based matching, a new dataset is generated; 
however, there is no guarantee of data balance. In this 
section, we investigate how to check balance in covariate 
distributions between treatment and control groups. Herein, 
we introduce and compare various balance diagnostic 
methods, followed by practice using R software. Note that 
we have not modified our PS model, and therefore some 
covariates remain unbalanced. In the next section, we 
discuss practical methods to cope with poor balance.

A direct and preferable method is to compare standardized 
mean differences (SMD) and variance ratios (VR) of covariates 
in the treatment and control groups (11). In the preceding 
context, we introduced SMD, which is an important metric 
that measures covariate differences between different groups, 
because it is not influenced by units of measure. Stuart (27) 
recommended that a covariate is balanced only when the 
absolute SMD value is <0.25, while Austin (3) proposed a more 
stricter criterion that it should be <0.1. The VR is the ratio of 
variance in the treatment and control groups. A VR close to 1.0 
indicates a balance in the covariate, whereas a VR <0.5 or >2.0 
are considered “too extreme” (57).

Significance testing is another widely used method, and 
the test results after matching are shown in many studies 
with PSM (58-60). However, it has been criticized that the 
increase of P value may be due to the decreasing sample 
size of the study population after PSM (11,61-63). Several 
studies have argued that we should use statistics that 

Table 4 Additional arguments for each matching method in MatchIt

Method Argument Description Default value

Subclassification sub.by The criteria for subclassification, including “treat” (the number of treatment units), 
“control” (the number of control units), “all” (the total number of units)

“treat”

subclass The number of subclass or a vector which create the quantiles of PS 6

Nearest m.order The order in which to pick treated patients, which can be “largest” (from the largest 
PS to the smallest), “smallest” (from the smallest to the largest), “random”

“largest”

replace Logical value indicating whether matching is doing with or without replacement, i.e. 
whether control patients can be matched more than once

FALSE

ratio The number of controlled patients to match to each treated one 1

exact A vector of variable names which will be exact matched. If exact is specified, only 
the patients with exactly the same value of covariates in exact will be considered 
and from them the one with closest propensity score will be matched.

NULL

caliper The number of standard deviations of difference which can be tolerated between PS 
of the matched pair.

0 (means no caliper)

Optimal ratio The number of controlled patients to match to each treated one 1

Full min.controls The minimum ratio of controlled patients to treatments that is to be permitted within 
a matched set, which is usually a whole number, or the reciprocal of a whole number

max.controls The maximum number of controlled patients to treatments that is to be permitted 
within a matched set, which is usually a whole number, or the reciprocal of a whole 
number

Genetic ratio The number of controlled patients to match to each treated one 1

pop.size The population size of each generation. It’s the key tuning parameters to determine 
the matching effect. Generally, genetic matching with larger population size brings 
better results but takes more time.

100

PS, Propensity Score.
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account for a matched design, such as a paired t-test for 
continuous outcomes and McNemar’s test for dichotomous 
outcomes in 1:1 matching design (14,64). This practice is 
rarely implemented or explicitly stated in the literature. 
Herein, rather than settling this dispute, we provide ways 
for researchers to conduct more in-depth research.

Graphical methods such as histograms, quantile–
quantile plots, cumulative distribution functions, and love 
plots have also been proposed to show and check covariate 
distributions in a visual way.

It is worth nothing that goodness-of-fit measures, 
such as c-statistics, or area under the receiver operating 
characteristic curve (AUROC), indicate only the degree to 
which PS models discriminate between treated and untreated 
patients. However, these statistics provide no information as 
to whether PS models are correctly specified (3).

Balance diagnostics with R

SMD and VR
The summary command
The easiest way to calculate SMD and check covariate 
balance is to use the summary command on the output 
of matchit. This command provides an overall measure 
of the balance between treatment and control groups in 
the original and matched data set. Three options in the 
summary command may be used to check balance and 
respecify the PS model: (I) With the option interactions = 
TRUE, the output summarizes the balance of all squares 
and interactions of covariates in the matching procedure. 
Large differences between the treatment and original groups 
usually indicate that these items should be added into the 
PS model in order to achieve data balance. (II) The option 
addlvariables = TRUE shows the balance of covariates not 
used in the PS model. Similarly, these covariates should be 
included in the model if large differences are observed. (III) 
The option standardize = TRUE prints out standardized 
versions of the balance measures; i.e., the SMD where 
the mean difference is divided by the SD in the originally 
treated group. We suggest that standardize = TRUE should 
be set to compare the covariate balance in a scale-free way. 

> m.out <- matchit(Smoke~x.Age+x.Gender, 

data=data.complete, 

distance='logit',

method='nearest',

replace=FALSE,

ratio=1)

> summary(m.out, standardize=TRUE)

Call:

matchit(formula = Smoke ~ x.Age + x.Gender, data = data.complete, 

method = "nearest", distance = "logit", replace = FALSE, ratio = 1)

Summary of balance for all data:

Means 

Treated

Means 

Control

SD Con-

trol

Std. Mean 

Diff.

eCDF 

Med

eCDF 

Mean

eCDF 

Max

Distance 0.5170 0.3858 0.1842 0.9050 0.2258 0.2069 0.4833

x.Age 47.0352 42.7619 19.6881 0.5247 0.1104 0.1306 0.3629

x.Gender 0.7832 0.4502 0.4981 0.8070 0.1665 0.1665 0.3330

Summary of balance for matched data:

Means 

Treated

Means 

Control

SD Con-

trol

Std. Mean 

Diff.

eCDF 

Med

eCDF 

Mean

eCDF 

Max

Distance 0.5170 0.4380 0.1663 0.5448 0.1165 0.1617 0.4255

x.Age 47.0352 47.3035 18.6481 -0.0329 0.1206 0.1193 0.2439

x.Gender 0.7832 0.5610 0.4969 0.5386 0.1111 0.1111 0.2222

Percent balance improvement:

Std. Mean 

Diff.

eCDF Med eCDF Mean eCDF Max

Distance 39.8006 48.3806 21.8287 11.9680

x.Age 93.7217 -9.2460 8.6436 32.7902

x.Gender 33.2629 33.2629 33.2629 33.2629

Sample sizes:

Control Treated

All 462 369

Matched 369 369

Unmatched 93 0

Discarded 0 0

The output from the summary command includes five 
parts: (I) the original assignment model call; (II) a data 
frame which shows the mean of the distance (PS) and 
covariates in the original treatment and control group, the 
SD in the control group, the (standardized) mean difference 
between the two groups, and the median, mean, and 
maximum differences in cumulative distribution functions 
(CDFs) for each covariate; (III) a data frame which contains 
the same statistical items as above, but for the matched data 
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Table 5 Baseline covariates of matched data summarized by CreateTableOne function.

Variables Level 0 1 P SMD

n  369 369   

x.Age, mean (SD) 47.30 (18.65) 47.04 (8.14) 0.8 0.019

x.Gender, n (%) 0 162 (43.9) 80 (21.7) <0.001 0.487

 1 207 (56.1) 289 (78.3)   

CVD, n (%) 0 287 (77.8) 190 (51.5) <0.001 0.572

 1 82 (22.2) 179 (48.5)  

The numbers 0 and 1 in the first row indicates whether to smoke, 0 means not while 1 means yes. The variable n is the number of 
patients, x.Age and x.Gender are the independent variables and CVD is the indicator of cardiovascular disease.  SMD, standardized mean 
difference. SD, standard deviation.

set; (IV) percent balance improvement before and after 
matching; and (V) a data frame which counts samples, in 
all (original) data sets, which are matched, unmatched, or 
discarded.

As observed, after matching, age is balanced (0.0329<0.1) 
while gender is not (0.5386>0.1). Although discrete 
variables are allowed in the Matchit function to estimate PS, 
they are considered as continuous to examine balance in 
the summary (e.g., to calculate SMD). That means that the 
summary command indiscriminately calculates the SMDs 
of discrete and continuous variables, leading to bias for 
discrete ones.
CreateTableOne
When generating simulation data, we used the CreateTableOne 
function to calculate SMD. However, we do not recommend 
using it for matched data, because this function only takes 
matched data into account, and the mean difference is 
standardized (divided) by the SD in the matched data. After 
matching, it is probable that the standard deviation will 
be smaller in the matched data, so that the SMD may be 
larger than before matching, although the mean difference 
decreases (11). This means SMD is overestimated by 
CreateTableOne. A better way is to use the original SD, which 
is implemented by the bal.tab function in cobalt package. This 
will be introduced later.

Nonetheless, we created Table 5 to summarize baseline 
covariates of matched data, using the CreateTableOne function. 
Firstly, we exported our matched data from Matchit.

> mdata <- match.data(m.out)

We then created a summary table.

> table5 <- CreateTableOne(vars = c('x.Age', 'x.Gender', 

'CVD'), 

data = mdata,  

factorVars = c('x.Gender', 'CVD'),

strata = 'Smoke',

smd=TRUE)

> table5 <- print(table5, 

smd=TRUE,

showAllLevels = TRUE,

noSpaces = TRUE, 

printToggle = FALSE)

> table5

> write.csv(table5, file = "Table5_after_matching.csv")

Here, the SMD of gender is 0.487, which indicates this 
covariate has not been balanced. 
The cobalt package
The function bal.tab in cobalt package provides a useful 
way to calculate SMD. After the package is installed, the 
following code can be used.

> library(cobalt)

> bal.tab(m.out, m.threshold = 0.1, un = TRUE)

Call

matchit(formula = Smoke ~ x.Age + x.Gender, data = data.com-

plete, 

method = "nearest", distance = "logit", replace = FALSE, ratio = 1)
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Balance measures

Type Diff.Adj M.Threshold

Distance Distance 0.5448

x.Age Contin. -0.0329 Balanced, <0.1

x.Gender Binary 0.2222 Not Balanced, 

>0.1

Balance tally for mean differences

count

Balanced, <0.1 1

Not balanced, >0.1     1

Variable with the greatest mean difference

Variable Diff.Adj M.Threshold

x.Gender 0.2222 Not Balanced, >0.1

Sample sizes

Control Treated

All 462 369

Matched 369 369

Unmatched 93 0

Here, the argument m.threshold is a numeric value for 
the SMD threshold. This function shows which covariates 
are balanced (SMDs are under the threshold), which 
covariates are unbalanced, which covariate has the greatest 
mean difference, and the sample size of the matched data. 
The SMD of age is the same as that calculated by summary 
(m.out), while the SMD of gender is calculated as appropriate 
for binary variables. When comparing SMDs of gender 
from Table 5 with those here, we observed that the former 
SMD (0.487) was twice as much as the latter (0.2222). As 
previously mentioned, the mean difference was standardized 
by the SD in the different datasets, and thus the result from 
the function bal.tab was more credible. 

The VR can be calculated and checked by setting the 
argument v.threshold, which is a numeric value for the VR 
threshold. As previously mentioned, a good VR is 0.5–2. In 
this function however, if VR is < 1, it will be converted to the 
inverse (1/VR). Therefore, we just need to set v.threshold = 2.

> bal.tab(m.out, v.threshold = 2)

Call

matchit(formula = Smoke ~ x.Age + x.Gender, data = data.

complete, 

method = "nearest", distance = "logit", replace = FALSE, ratio = 1)

Balance measures

Type Diff.Adj V.Ratio.Adj V.Threshold

Distance Distance 0.5448 0.7605

x.Age Contin. -0.0329 0.1908 Not 

Balanced, 

>2

x.Gender Binary 0.2222

Balance tally for variance ratios

count

Balanced, <2 0

Not balanced, >2 1

Variable with the greatest variance ratio

Variable V.Ratio.Adj V.Threshold

x.Age 0.1908 Not Balanced, >2

Sample sizes

Control Treated

All 462 369

Matched 369 369

Unmatched 93 0

The VR is not calculated for the binary covariate gender, 
and age is not balanced according to the VR criterion. 

Statistical significance
CreateTableOne
Now, we need to export out matched data, using the match.
data command. 

> mdata <- match.data(m.out)

> head(mdata)

x.Age x.Gender Smoke CVD Distance Weights

1 51 0 1 0 0.2583040 1
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2 50 0 0 0 0.2545807 1

6 56 0 1 1 0.2774451 1

9 71 0 0 1 0.3397803 1

10 47 0 1 1 0.2436248 1

12 59 0 1 1 0.2893402 1

Here, the first 6 columns are the original columns from 
our data frame. The Distance column is the estimated PS, 
while the Weights columns is the weight each sample was 
given. These weights were calculated by well-designed 
rules, to ensure that the matched treated and control 
groups were similarly weighted. Because we chose 1:1 
matching without replacement, all weights were assigned 
as 1. Otherwise, these weights were calculated according 
to how many times a unit was used to match. There will be 
problems if matching ratios are not 1:1, or we match with 
replacements. An example of this is as follows: 

> m.out <- matchit(Smoke~x.Age+x.Gender, 

data=data.complete, 

distance='logit',

method='nearest',

replace=TRUE,

ratio=2)

> mdata <- match.data(m.out)

> mdata[135,]

x.Age x.Gender Smoke CVD distance weights

348 43 0 0 0 0.2295217 0.9268293

As can be seen, 1 participant (no. 348) was matched 
several times and had a weight of 0.927 in the exported data. 
Statistical tests with weights can be performed to check 
balance in this case by using weighted t-tests with the wtd.
t.test function in the weights package, for instance.

> library(weights)

> age.treat <- mdata[mdata$Smoke==1, 'x.Age']

> weight.treat <- mdata[mdata$Smoke==1, 'weights']

> age.control <- mdata[mdata$Smoke==0, 'x.Age']

> weight.control <- mdata[mdata$Smoke==0, 'weights']

> wtd.t.test(x=age.control, y=age.treat, 

weight=weight.control, weighty=weight.treat)

"Two-sample weighted t-test (Welch)"

$coefficients

t-value df p-value

0.1582711 324.6168812 0.8743416

$additional

Difference Mean.x Mean.y Std. Err

0.1205962 47.1558266 47.0352304 0.7619600

Paired t-tests
If paired t-tests are to be used, the order of covariate values 
should be sorted, and the t.test function used with paired = 
TRUE. Here we provide a simple example:

> m.out <- matchit(Smoke~x.Age+x.Gender, 

data=data.complete, 

distance='logit',

method='nearest',

replace=FALSE,

ratio=1)

> match.treat <- data.complete[row.names(m.out$match. 

matrix),]

> matx <- m.out$match.matrix

> dim(matx) <- c(dim(matx)[1]*dim(matx)[2],1) # flatten  

matrix

> match.control <- data.complete[matx,]

> age.treat <- match.treat$x.Age

> age.control <- match.control$x.Age

> t.test(age.treat, age.control, paired=TRUE)

Paired t-test

data:  age.treat and age.control

t = -0.24334, df = 368, p-value = 0.8079

alternative hypothesis: true difference in means ≠ 0

95 % interval (CI): [-2.436365, 1.899779]

sample estimates:

mean of the differences: -0.2682927 

Kolmogorov-Smirnov (KS) statistics
The function bal.tab in the cobalt package also provides KS 
tests, which compare the distribution of covariates between 
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treatment and control groups. The only requirement is to 
set the ks.threshold parameter.

Distribution visualization
The plot command
The plot command has three different options; the Q–Q plot 
(default), the jitter plot (set type = ‘jitter’), and the histogram (set 
type = ‘hist’). The Q–Q plots demonstrate deviations between 
empirical distributions of treated and control groups. The 
points in Q–Q plots lie on the y = x line. Larger deviations 
indicate greater differences between the distributions. Jitter 
plots show the PS distributions of unmatched treatment 
units, matched treatment units, matched control units, 
and unmatched control units. Every circle in the jitter plot 
represents a patient, and its size is proportional to its weight 
given by the matchit function. The distributional density of PS 
before and after matching is shown in histograms. The results 
are not shown in this tutorial.

> plot(m.out)

> plot(m.out, type = 'jitter')

> plot(m.out, type = 'hist')

The cobalt package
Variable distributions are visualized using the bar.plot 
function. 

> bal.plot(m.out, var.name = 'x.Age', which = 'both', 

grid=TRUE)

> bal.plot(m.out, var.name = 'x.Gender', which = 'both', 

grid=TRUE)

> bal.plot(m.out, var.name = 'x.Age', which = 'both', 

grid=TRUE, type="ecdf")

The density plot is displayed for continuous variables 
(Figure 9A), while for categorical variables, a distribution 
histogram is displayed (Figure 9B). Empirical cumulative 
density function plots are drawn by selecting type =“ecdf” 
(Figure 9C). 

Love plots compare SMDs of covariates before and after 
matching, where two vertical dotted lines are drawn as the 
0.1 threshold of SMD, and every point represents the SMD 
of a covariate before or after PSM adjustment. If a point 
lies between two lines, then the corresponding covariate 
has been balanced. Herein, we used the love.plot command 
of the cobalt package to draw Figure 9D. This subfigure 
represents the visualization of SMD results calculated by the 

bal.tab function in Section ‘SMD and VR’, where the SMDs 
of age and gender are –0.0329, and 0.2222, respectively.

> love.plot(bal.tab(m.out, m.threshold=0.1),

stat = "mean.diffs", 

grid=TRUE,

stars="raw",

abs = F)

As shown in Figure 9D, the variable x.Age is balanced, 
while x.Gender is not. It is common to encounter unbalanced 
covariates when using PSM. In Section ‘What should be 
done if covariates are still unbalanced after matching?’, we 
provide several practical methods to deal with unsuccessful 
matching.

What should be done if covariates are still 
unbalanced after matching?

There are at least five methods to help PSM balance data.
(I) The first method is the most commonly used. It 

respecifies the model to estimate PS; e.g., it adds 
high-order or interaction terms, or changes to 
another modeling method. For example, in the 
preceding code, we used Smoke~x.Age+x.Gender to 
estimate PS, but it was not precise. Then, we added 
a quadratic term to our model, but unfortunately, 
the result was still poor.

> m.out <- matchit(Smoke~I(x.Age^2)+x.Age+x.Gender, 

data=data.complete, 

distance='logit',

method='nearest',

replace=FALSE,

ratio=1)

In real data, with many more variables, it 
may be difficult to find the correct formula to 
estimate PS. Researchers have to try different 
covariate combinations. The command summary 
(m.out, interactions = TRUE, addlvariables = TRUE, 
standardize = TRUE) provides balanced interaction 
information and high-order terms of all covariates, 
but as covariate numbers increase, the result table 
will be harder to comprehend. Also, a few methods 
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serve as indicators for high-order relationships, 
such as car and gvlma package in R. In addition, 
most machine learning methods can automatically 
learn rules of data and fit complex relationships 
between variables, which is their major advantage. 

(II) The second method is to change the matching 
method. For example, it is worth trying NNM with 
a tighter caliper, but this may shrink sample size. 

> m.out <- matchit(Smoke~I(x.Age^2)+x.Age+x.Gender, 

data=data.complete, 

distance='logit',

method='nearest',

replace=FALSE,

caliper=0.1,

ratio=1)

> bal.tab(m.out, m.threshold=0.1)

Call

matchit(formula = Smoke ~ I(x.Age^2) + x.Age + x.Gender, 

data = data.complete, method = "nearest",

distance = "logit", replace = FALSE, 

caliper = 0.1, ratio = 1)

Balance measures

Type Diff.Adj M.Threshold

Distance Distance 0.0736

I.x.Age.2. Contin. 0.0572 Balanced, <0.1

x.Age Contin. 0.0575 Balanced, <0.1

x.Gender Binary 0.0349

Balance tally for mean differences

count

Balanced, <0.1 3

Not balanced, >0.1     0

Variable with the greatest mean difference

Variable Diff.Adj M.Threshold

x.Age 0.0575 Balanced, <0.1

Sample sizes

A

C

B

D

Distributional Balance for "x.Age" Distributional Balance for "x.Gender"

Distributional Balance for "x.Age" Covariate Balance

0.04

0.03

0.02

0.01

0.00
0 25 50 75 100 0 25 50 75 100

Unadjusted Sample Adiusted Sample Unadjusted Sample

Unadjusted Sample

Adiusted Sample

Adiusted Sample

Treatment

0

1

Treatment

0
1

Treatment

0
1

Sample

Unadjusted

Adjusted

Distance

x.Age

x.Gender

0.8

0.6

0.4

0.2

0.0
0 1 0 1

D
en

si
ty

P
ro

po
rt

io
n

C
um

ul
at

iv
e 

P
ro

po
rt

io
n

1.00

0.75

0.50

0.25

0.00
0 25 50 75 100 0 25 50 75 100 0.00 0.25 0.50 0.75

Mean Differencesx.Age

x.Age x.Gender

Figure 9 Visualization of distribution of covariates before and after propensity score matching.
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Control Treated

All 462 369

Matched 172 172

Unmatched 290 197

As can be seen, covariates are all balanced, but 

we lost almost half of the treated samples [197].

After adjustment, we can observe that using GM 

with pop.size =100 balanced our data with all treated 

samples matched.

> m.out <- matchit(Smoke~I(x.Age^2)+x.Age+x.Gender, 

data=data.complete, 

distance='logit',

method='genetic',

pop.size=100)

> bal.tab(m.out, m.threshold=0.1)

Balance measures Balanced, <0.1

Type Diff.Adj

Distance Distance -0.0032

I.x.Age.2. Contin. 0.0672 Balanced, <0.1

x.Age Contin. 0.0642 Balanced, <0.1

x.Gender Binary 0.0000 Balanced, <0.1

A love plot of SMD is shown in Figure 10. As can 
be seen, the PSM performance was much improved 
when compared with the one before. There are three 
reasons for this: (i) the former model to estimate PS 
was incorrect (the model was linear, while the correct 
one was quadratic). Herein, we used the correct 
model to estimate PS. (ii) The matching algorithm 
of the latter was GM, which outperformed the 
ordinary matching algorithm in this case. (iii) Here, 
each treated patient was matched to fewer than 10 
controlled individuals, while in Figure 9, only 1:1 
matching was implemented.

(III) The third method combines PSM with an exact 
matching method, by setting exact=c('x.Gender') 
in matchit. That is to say, when matching patients 
with similar PSs, some covariates (gender) must 
be equal. The effect of this method is not ideal; 
therefore, we do not use it.

(IV) The fourth method is to increase sample size, 
usually by collecting more data. In a scenario 
where there is 1 male and 1 female, regardless of 
the method used, they cannot be matched with 
a balanced gender. Therefore, with more data, 
matching should become easier. 

(V) Lastly, residual differences in baseline covariates 
after PSM can be handled by conventional 
methods such as matching, stratification, regression 
adjustment, and so on (3,8,38). In other words, 
we balance our data successively by PSM and 
conventional methods (59). 

How can the effects of treatment after matching 
be estimated?

What is the meaning of treatment effects in non-
randomized experiments?

Under the counterfactual framework proposed by Rubin (65), 

0.0 0.5 1.0 1.5 2.0

Distance

I.x.Age.2.

x.Age

x.Gender*

Sample
Unadjusted

Adjusted

Covariate Balance

Standardized Mean Differences

Figure 10 Love plot of propensity score matching using genetic 
matching based on the correct PS-estimate model. As can be seen, 
the PSM performance was much improved, when compared with 
before. We provide three reasons for this: (I) the former model 
to estimate PS was incorrect (the model was linear, while the 
correct one was quadratic). Herein, we used the correct model to 
estimate PS. (II) The matching algorithm of the latter was GM, 
which outperformed the ordinary matching algorithm in this case. 
(III) Here, fewer than 10 controlled individuals were matched to 
each treated patient, while before the situation in Figure 9, only 
1:1 matching was implemented. GM, genetic matching; PSM, 
propensity score matching.
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for every individual, there are two kinds of potential outcomes 
(under treatment or control conditions) before treatment 
assignment. Once the patient receives a treatment or control, 
researchers observe one of two outcomes, but the other is 
missing. To some extent, data analysis in observational studies 
is like the interpolation of missing outcomes. 

Abadie and Imbens proposed an estimator of treatment 
effects appropriate for matching (66,67). In the matched 
data, all covariates have similar distributions between 
treatment and control groups. That means the matched 
patients are considered similar. Missing outcomes of the 
treatment group are interpolated using the mean outcomes 
of the matched controlled group, and vice versa. Suppose 
patients who received treatment have a mean outcome (A). 
After PSs are estimated and matching is performed, we 
interpolate outcomes of the treated patients under control 
conditions with matched patients’ outcomes. If they had not 
received treatment, the expectation of their outcome should 
have been B. Thus, we compare the two mean outcomes (A 
vs. B) on matched data to estimate the average treatment 
effects on the treated. 

How can treatment effects be estimated with PSM?

Generally speaking, two kinds of treatment effects are of 
concern: the average treatment effect (ATE) and the average 
treatment effect on the treated (ATT). Whether ATT or 
ATE is estimated depends on which is of interest and what 
matching method is used. Some believe that PSM only 
estimates ATT (27,68,69). For instance, if NNM is used, 
for each treated patient, the most suitable untreated patients 
are matched. By averaging the outcomes of the controlled 
which are matched, the missing potential outcomes for 
treated patients is actually estimated, and therefore ATT is 
estimated. However, in the official document of the MatchIt 
package (70), authors have provided an example where 
they estimated ATE using NNM and the Zelig package, 
which estimates causal effects by Monte Carlo simulation. 
A detailed explanation of this is beyond the scope of this 
tutorial. Also, if subclassification or FM with matchit 
function is used, patients are grouped into several subclasses 
based on their PSs, and thus ATE can be estimated.

When estimating effects, some of the literature suggests 
that outcomes be regressed on baseline covariates, instead of 
being calculated directly by comparing outcomes between 
treatment and control groups. This method is considered 
“double robustness” because the regression further cleans 
up the remaining small residual differences in covariates 

between the different groups after PSM (27) and has been 
shown to yield more accurate treatment effect estimates (71). 
McCaffrey et al. (38) note that it may be better to select just 
some of the covariates instead of all of them for inclusion in 
the regression model. However, this method may increase 
the chance of outcome model misspecification, since there 
are no universal guidelines on how many covariates should 
be included in the regression model.

There is also disagreement on whether matched data 
should be considered as matched or as independent samples. 
Although the samples are matched, some researchers argue 
that matching based on PS does not lead to correlations of 
matched participant outcomes, or indeed guarantee that 
covariate values are the same for matched pairs (27,72). 
It is believed that PS methods can separate the design 
element of an analysis from the analysis of outcome (73-75). 
From this separation, outcomes between treated and 
untreated participants can be directly compared. However, 
Austin (76) argues that using this method leads to patients 
with similar PSs being matched, resulting in similar 
distributions of covariates between treatment and control 
groups. Thus, Austin argues that methods which account 
for paired structure should be used to estimate the effects of 
treatment. This controversy requires further attention and 
research.

How to estimate treatment effects using R

The Zelig package
MatchIt does not provide functions for estimating treatment 
effects; however, Ho et al. (70) noted that any software 
for parametric statistical analyses may be used to analyze 
data previously preprocessed by MatchIt. They provided 
an example where they used the Zelig package to estimate 
treatment effects. Keller and Tipton (77) observed errors 
when they ran certain versions (4.2-1) of the Zelig package; 
thus, researchers should check the versions of their R 
packages before performing the PSM analysis. 

The Zelig package estimates causal effects from Monte 
Carlo simulations, which is beyond the scope of this 
tutorial. Herein, we provide an analogous example; readers 
are directed to the Zelig official document. 

> library(Zelig)

> z.out <- zelig(CVD~Smoke+x.Age+x.Gender, data = match.

data(m.out),

model = "ls")
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> x.out <- setx(z.out, data = match.data(m.out, "treat"), cond = 

TRUE)

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

Other packages
Other models may also be used to estimate treatment effects. 
If 1:1 matching without replacement is implemented, the 
weights of each sample =1, and thus, the model does not 
require adjustment. However, the weighted versions of a 
specified model should be used, if the sample weights are 
≠1. This is an example of weighted logistic regression.

> mdata <- match.data(m.out)

> lr.att <- glm(CVD~Smoke+I(x.Age^2)+x.Age+x.Gender, 

family=binomial,

data=mdata,

weights=mdata$weights)

> print(summary(lr.att)) 

Call:

glm(formula = CVD ~ Smoke + I(x.Age^2) + x.Age + x.Gender, 

family = binomial,

data = mdata, 

weights = mdata$weights)

Deviance residuals:

Min 1Q Median 3Q Max

-2.42201  -0.35121  -0.00846   0.38576    2.21623

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -29.550323   5.518891 -5.354 8.58e-08 ***

Smoke 1 5.114775 0.622067 8.222 < 2e-16 ***

I(x.Age^2) -0.002964 0.001826 -1.624 0.10446    

x.Age 0.640712 0.199404 3.213 0.00131 **

x.Gender 1.042130 0.340034 3.065 0.00218 **

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 742.59 on 575 degrees of freedom

Residual deviance: 311.89 on 571 degrees of freedom

AIC: 321.89

Number of Fisher scoring iterations: 7

Here the coefficient for smoking was 5.11, which means 
that for a patient in the treatment group, smoking behavior 
increased the risk for CVD (before the logistic transform) 
by 5.11 points.

What about unmeasured covariates related to 
treatment allocation and outcomes?

Sensitivity analysis

Although PSM balances data based on covariates, there 
may still be some confounding factors that have not been 
collected in the dataset, which may introduce hidden bias 
to the study (8). A core advantage of a well-implemented 
RCT is that it reduces as much as possible both obvious 
and hidden biases, while in observational studies, PSM and 
other analogous methods can only balance data based on 
recorded covariates. 

Sensitivity analyses of observational studies help analyze 
the influence of unobserved confounders on the results (78). 
The origins of the approach can be traced back to a dispute 
on the relationship between smoking and lung cancer (79). 
It appears that no matter how many more smokers get lung 
cancer when compared to those who do not, champions 
of smoking argue for certain unobserved confounders, for 
example, genetic make-up related to both smoking behavior 
and risk of cancer. Therefore, it is necessary to measure 
the influence of hidden covariates on research in order to 
obtain even more convincing conclusions. In this section, 
we introduce three representative methods to deal with 
hidden biases.

From the perspective of statistical testing, Rosenbaum’s 
sensitivity analysis (55) finds a influence threshold in a 
study. When the influence of unobserved confounders on 
the study exceeds the threshold, our conclusion, based only 
on observed covariates, is insignificant. In other words, 
when the hidden bias is small, our conclusions are still 
valid, but when the hidden bias is much larger, they can 
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be questioned. Actually, Rosenbaum’s sensitivity analysis 
evaluates how sensitive a study is to hidden bias, and is 
frequently used after PSM (78). This method has now been 
developed into primal, dual, and simultaneous analyses. 
Their differences are based on what associations between 
unobserved confounders and the study are analyzed (80). 
In short, primal analysis focuses on associations between 
unobserved confounders and treatment assignments, 
dual analysis centers on associations between unobserved 
confounders and outcome, and simultaneous analysis 
accounts for both. 

Here, we introduce what primal analysis is and how to 
implement it with an R package called rbounds. Suppose 
there are two patients, Bob and Bill. In a perfect study 
free of hidden bias, as long as Bob and Bill have the same 
observed covariates X, then they have the same probability 
of receiving treatment. Yet, if there is a hidden bias, even 
though Bob and Bill have the same X, their probabilities 
of receiving treatment are different, due to these different 
unobserved covariates. Thus, the boundary of the odds 
ratio (OR) of their probabilities of receiving treatment 
measures the degree of departure from a study that is free 
of hidden bias. That is to say, when the hidden bias in a 
study is greater, the treatment probabilities of patients with 
the same observed covariates are more different, and the 
deviation of the OR from 1 will be greater.

Primal sensitivity analysis sets Ã as the boundary of OR 
and tests the validity of the conclusions with various Ã 
levels. When Ã becomes larger, the relationship between 
hidden bias and treatment assignment grows stronger. The 
analysis provides the confidence intervals of P values with 
each Ã. The larger Ã with upper bound of P value <0.05 
is observed, the more robust the study conclusion is with 
hidden bias. The readers are referred to Guo and Fraser’s 
work (1) for further theoretical analysis.

However, the main disadvantage of Rosenbaum’s 
sensitivity analysis is that these methods are designed only 
for 1:1 matching (78,81), thereby substantially limiting the 
methodology.

Vanderweele and Arah (81) proposed a general method 
for sensitivity analysis, which allowed for binary, ordinal, or 
continuous outcomes; categorical or continuous treatment; 
and categorical or continuous observed and unobserved 
variables. They proved a set of bias formulas which can be 
used to estimate the bias factor and obtain the true OR of 
the relationship between treatment and outcomes. However, 
if these formulas are applied, simplifying assumptions must 
be made based on knowledge or external data, and the 

specification of sensitivity parameters in the formulas. Liu 
et al. (78) introduced and summarized Rosenbaum’s and 
Vanderweele and Arah’s methods. Interested readers are 
directed to their article (78). 

After this, Vanderweele further explored sensitivity 
analysis without assumptions, and introduced the E value 
(82,83). E value is defined as the minimum strength of 
association, on the risk ratio scale, that an unmeasured 
confounder must have with both the treatment and the 
outcome, conditional on the measured covariates, to fully 
explain away a specific treatment–outcome association. 
Although it is similar to Rosenbaum’s methods, the E value 
makes no assumptions on whether unmeasured confounders 
are binary, continuous, or categorical. It makes no 
assumptions on how they are distributed, or on the number 
of confounders, and it can be applied to several common 
outcome types in observational research studies. To 
facilitate these sensitivity analyses, Mathur et al. provided 
an R package (“EValue”) and an online E value calculator 
(https://mmathur.shinyapps.io/evalue/) (84).

Propensity score calibration (PSC) is another method 
that deals with hidden bias, and is similar to regression 
calibration (85). For example, if you study the effects of 
norepinephrine on mortality using PSM, you may already 
have a large dataset to support your research; however, 
you may speculate that central venous pressure (CVP) is a 
potential confounding variable, but it is not measured in 
your dataset. In this case, another small dataset, containing 
CVP and all covariates in the large dataset, can be collected. 
The steps of PSC are as follows: (I) estimate raw PS in your 
main dataset; (II) estimate PS in your validation dataset with 
the same set of covariates as the main one (denoted as PS1), 
and with an extended covariate set including CVP as PS2; 
(III) model the extended PS2 as a function of PS1; and (IV) 
calibrate your raw PS on the main dataset, with the function 
mentioned above (III).

How to implement sensitivity analysis with R

In this section, we show how to implement sensitivity 
analysis using R. Our treatment assignment and outcomes 
were related to gender and patient age, while here we use 
only age to estimate PS, and gender is the unobserved 
confounding variable. There are no missing values in 
our data. We divided our data into two datasets, using an  
8:2 ratio to implement the PSC. Note that to simplify our 
tutorial, we did not balance the covariates, which is not 
permitted in actual research.

https://mmathur.shinyapps.io/evalue/
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> set.seed(2020)

> x.Gender <- rep(0:1, c(400,600)) # 400 females and 600 

males

> x.Age <- round(abs(rnorm(1000, mean=45, sd=15))) 

> z <- (x.Age - 45) / 15 - (x.Age-45) ^ 2 / 100 + 2 * x.Gender

> tps <- exp(z) / (1+exp(z)) # The true PS

> Smoke <- as.numeric(runif(1000) < tps)

> z.y <- x.Gender + 0.3*x.Age + 5*Smoke - 20

> y <- exp(z.y) / (1+exp(z.y))

> CVD <- as.numeric(runif(1000) < y)

> data.raw <- data.frame(x.Age, x.Gender, Smoke, CVD)

> sub <- sample(1:nrow(data.raw),round(nrow(data.

raw)*8/10)) # 8:2

# without gender information

> data.main <- data.raw[sub, c("x.Age","Smoke","CVD")] 

# with gender information

> data.val <- data.raw[-sub, c("x.Age","x.

Gender","Smoke","CVD")] 

> head(data.main)

x.Age Smoke CVD

144 15 0 0

415 42 1 1

444 68 0 0

534 53 1 1

612 50 1 1

599 59 1 1

Rosenbaum’s primal sensitivity analysis
The R package rbounds provides functions to implement 
Rosenbaum’s sensitivity analysis for binary, continuous, or 
ordinal outcomes. First, this package must be installed and 
uploaded. The package directly analyzes the match object 
from the Matching package. Because we used MatchIt to 
implement PSM, we must obtain matched outcomes prior to 
running the functions of rbounds, using the following code:

> m.pairs <- cbind(data.main[row.names(m.out$match.ma-

trix), 'CVD'], 

data.main[m.out$match.matrix, 'CVD']) 

match.matrix records the matching relationship between 
the treatment and control groups. The cbind function 
generates a matrix where the first column is the treated 
outcomes, and the second column is the controlled outcomes.

In the rbounds package, the functions, binarysens and 
psens are commonly used. The former is used for binary 
outcomes, and the latter for continuous or ordinal 
outcomes. Here, we used binarysens. This function has four 
arguments: x, y, Gamma, and GammaInc. The argument x 
is the number of pairs where the controlled patients have 
outcomes, but the treated patients do not. The argument 
y is the number of pairs where the treated patients 
have outcomes, but the controlled patients do not. The 
argument Gamma is the maximum Ã tested in our study. 
The argument GammaInc is the step size of Ã , when it 
changes from small to large. We must count the number of 
discordant pairs, followed by the function, binarysens.

> library(rbounds)

> library(MatchIt)

> m.out <- matchit(Smoke~x.Age, 

data=data.main, 

distance='logit',

method='optimal',

replace=FALSE,

ratio=1)

> m.pairs <- cbind(data.main[row.names(m.out$match.matrix), 

'CVD'], 

data.main[m.out$match.matrix, 'CVD'])

> x <- sum((m.pairs[,1]==FALSE) & (m.pairs[,2]==TRUE))

> y <- sum((m.pairs[,1]==TRUE) & (m.pairs[,2]==FALSE))

> binarysens(x=x, y=y, Gamma = 15, GammaInc = 2)

Rosenbaum‘s sensitivity test 

 

Unconfounded estimate ....  0 

Gamma Lower Bound Upper Bound

1 0 0.00000
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2 0 0.00000

3 0 0.00000

4 0 0.00000

5 0 0.00000

6 0 0.00002

7 0 0.00017

8 0 0.00081

9 0 0.00264

10 0 0.00662

11 0 0.01378

12 0 0.02496

13 0 0.04066

14 0 0.06099

15 0 0.08570

Here, the value of x is 4 while that of y is 126. The first 
column represents the different values of Gamma Ã, while 
the second and third are the lower and upper bound of the 
P value, respectively. This P value is calculated by testing 
whether or not our result is significant. Lower bounds are 
recorded as 0, because they are extremely small (<0.00001). 
As observed, the upper bound <0.05, when Gamma <14. 
This means that even if one patient may be 13 times as 
likely to be treated as another with the same recorded 
covariates, due to the hidden bias, the treatment still 
contributes significantly to the outcome.

If you need to manage continuous or ordinal outcomes, 
the following code can be run:

> psens(x=m.pairs[,1], y=m.pairs[,2], Gamma = 6, GammaInc 

= 1)

Here, x is the treatment group outcomes, while y is the 
control group outcomes.

E value
Firstly, the corresponding package must be installed and 
uploaded.

> install.packages('EValue')

> library('EValue')

The evalue function is the core element of this package, 

which computes E values for unmeasured confounding 
factors. The argument est is the effect estimate that is 
observed but is suspected to be biased. The estimate can 
be a particular type of effect measure, e.g., risk ratio (RR), 
odds ratio (OR), hazard ratio (HR), risk difference (RD), 
linear regression coefficient (OLS), or mean standardized 
difference (MD). For example, if the RR estimate was 
0.80 and the lower and upper bound were 0.70 and 0.90, 
respectively, then the E value would be calculated as follows:

> evalue(RR(0.80), lo=0.70, hi=0.90)

Point Lower Upper

RR 0.800000   0.7 0.900000

E-values 1.809017    NA 1.462475

This package is relatively simple, except for the 
explanation for E value. Interested readers are directed 
to the following website: https://cran.r-project.org/web/
packages/EValue/EValue.pdf.

PSC
First, raw PS is estimated with our main data. 

> model1 <- glm(Smoke~x.Age, data=data.main, 

family="binomial")

> PS.raw <- predict(model1, newdata=data.main, 

type="response")

Second, PS1 is estimated with the same set of covariates 
on the validation data, and PS2 is estimated with gender 
being added. 

> model2 <- glm(Smoke~x.Age, data=data.val, 

family="binomial")

> PS1 <- predict(model2, newdata=data.val, type="response")

> model3 <- glm(Smoke~x.Age+x.Gender, data=data.val, 

family="binomial")

> PS2 <- predict(model3, newdata=data.val, type="response")

Then, PS2 is regressed on PS1. 

> data.reg <- data.frame(PS1, PS2)

> model.cal <- lm(PS2~PS1, data=data.reg)

https://cran.r-project.org/web/packages/EValue/EValue.pdf
https://cran.r-project.org/web/packages/EValue/EValue.pdf
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Finally, our raw PS is calibrated.

> PS.cal <- predict(model.cal, x=PS.raw)

How does PSM handle multiple or continuous 
treatments?

The PS is the conditional probability of receiving treatment, 
given that covariates are observed. It effectively balances 
covariates between treatment and control groups, when 
the treatment assignment is dichotomous. However, on 
account of the complexity of medical research, researchers 
sometimes have to face comparisons of multiple treatments, 
or analyze the effects of different treatment doses (60,86,87). 
The original PS definition and related analytical methods 
are no longer applicable, and thus we must extend the 
concept of PS for more complex settings.

GPS for multiple treatments

Definitions
Now, we try to estimate and compare the effects of three 

different treatments: treatment A, B, and C (or control). 
Paired comparisons with PSM, which include separately 
applying PSM to A–B, A–C, and B–C, is a direct analytical 
method (60). However, because some patients are discarded 
during matching, the paired comparisons are actually based 
on different patient groups. Therefore, it is possible that 
a researcher using pairwise PSM observes that A is better 
than B, B is better than C, and C is better than A (86). 
Furthermore, when treatment numbers increase, there are 
squared-level number of pairs to analyze. Another way is to 
determine a reference treatment, e.g., C, then match A vs. 
C, and B vs. C (88,89). This is an ingenious method when 
the influence of treatment C is focused on in the study. 
However, the comparison of A and B is challenging in this 
study design. 

Rassen et al. (90) proposed a three-way matching 
algorithm which can simultaneously match participants 
from 3 groups. This was based on GPS and online codes. 
Herein, we introduce GPS and show how to estimate GPS 
using multinomial logistic regression with R.

Conceptually, GPS is the probability that a patient 
receives 1 of several possible treatments, conditional on 
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Figure 11 Density plot of the distributions of probability of never smoking estimated with multinomial logistic regression on different 
groups. 
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his or her covariates. It is usually estimated by multinomial 
logistic regression. This prediction model chooses  
1 treatment (for example, C) as the baseline treatment 
(reference). Next, the logarithm of ratio of the probabilities 
of receiving treatment A (or B) and reference treatment is 
assessed for every patient. Lastly, the model provides a matrix 
of probabilities for each patient to receive each treatment. 
Equally, CART, random forests, and other machine learning 
methods can also predict the probability of receiving one 
treatment rather than the others (8,38). Currently, machine 
learning–augmented PS is a promising research area.

The estimation of GPS for multiple treatments with R
First, we must modify our dataset for multiple treatments. 
We group patients into three categories according to their 
smoking behavior—severe, slight, and never—and assume 
that older men are more prone to excessive smoking, and 
that increased smoking leads to a higher risk of CVD. The 
simulation data are generated with the following code:

> set.seed(2020)

> x.Gender <- rep(0:1,c(400,600))

> x.Age <- round(abs(rnorm(1000, mean=45, sd=15)))

> z <- (x.Age - 45) / 15 - (x.Age-45) ^ 2 / 100 + 2 * x.Gender

> h <- exp(z) / (1+exp(z))

> Smoke <- ifelse(runif(1000) < h, 

ifelse(runif(1000) < h, 'Severe', 'Slight'),

'Never')

> Smoke_effect <- c('Severe'=5, 'Slight'=3, 'Never'=0)

> z.y <- x.Gender + 0.3*x.Age + Smoke_effect[Smoke] - 20

> y <- exp(z.y) / (1+exp(z.y))

> CVD <- (runif(1000) < y)

> data <- data.frame(x.Age, x.Gender, Smoke, CVD)

> head(data)

x.Age x.Gender Smoke CVD

1 51 0 Slight TRUE

2 50 0 Never FALSE

3 29 0 Never FALSE

4 28 0 Never FALSE

5 3 0 Never FALSE

6 56 0 Slight FALSE

Next, we choose the never-smoking group as a reference, 
and use the multinom function in the nnet package to 
estimate GPS.

> library(nnet)

> data$Smoke_with_ref <- relevel(data$Smoke, ref = "Never")

> mnl <- multinom(Smoke_with_ref ~ x.Age + x.Gender, data = 

data)

> summary(mnl)

Call:

multinom(formula = Smoke_with_ref ~ x.Age + x.Gender, data = 

data)

Coefficients

(Intercept) x.Age x.Gender

Severe -2.940667 0.02591537 1.8725196

Slight -2.337776 0.01136380 0.6705426

Std. Errors:

(Intercept) x.Age x.Gender

Severe 0.2918849 0.005114330 0.1762513

Slight 0.3381404 0.006548734 0.2037042

Residual Deviance: 1748.791 

AIC: 1760.791 

This function does not calculate P values for coefficients, 
but we can complete this ourselves. 

> z <- summary(mnl)$coefficients / summary(mnl)$standard. 

errors

> z

(Intercept) x.Age x.Gender

Severe -10.074749 5.067208 10.624144

Slight -6.913624 1.735266 3.291746
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> p <- (1 - pnorm(abs(z), 0, 1))*2

> p

(Intercept) x.Age x.Gender

Severe 0.000000e+00 4.036940e-07 0.0000000000

Slight 4.724221e-12 8.269366e-02 0.0009956749

Then, we use the predict function to derive the probability 
of receiving one certain treatment. The mnl argument is 
the multinomial logistic regression model. The “probs” 
argument means the function returns a probability value 
(0–1) instead of the predicted class. 

> prob <- data.frame(predict(mnl, data, 'probs'))

> head(prob)

Never Severe Slight

1 0.7296867 0.14455104 0.12576226

2 0.7334412 0.14157781 0.12498099

3 0.8024125 0.08988239 0.10770513

4 0.8052441 0.08789204 0.10686390

5 0.8643103 0.04935363 0.08633608

6 0.7102605 0.16016847 0.12957099

After this, we visualize the GPS distribution for different 
groups using the ggplot2 package. The following example is 
a density plot, which shows the GPS distribution of never 
smoking for different groups (Figure 11).

> ggplot(data=data, aes(x=prob$Never, colour=data$Smoke)) 

+ 

geom_density() +

xlab("GPS of Never Smoking")

GPS for continuous treatments

Definitions
When we study the effects of various patient treatment 
dosages, the treatment assignment indicator is a continuous 
variable, e.g., the dosage of a new drug A. In a continuous 
setting, it is unlikely that two units will have exactly the 
same level of treatment, so it is unfeasible to match pairs 
with the same exposure level (91). Hirano and Imbens (92) 
proposed an extension to the counterfactual framework. 
In their approach, a set of potential outcomes for each 
patient is considered; however, only 1 value of the set 
is observed. Their method of estimating the effects of 
continuous treatments consists of three stages: (I) the 
treatment dose is regressed on a function of covariates with 
a linear regression model, assuming the residual is normally 
distributed, and the estimated GPS is the probability of 
the observed residual (such a description is not precise, 
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Figure 12 Sequential matching process with time-dependent PS.
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but easy to understand); (II) the outcomes are modeled as 
a function of the treatment dose and GPS; and (III), for 
each level of treatment of interest, the GPS is estimated 
using the model in stage 1, and subsequently the average 
potential outcome is obtained using the model in stage 2. 
After the potential outcome for multiple different treatment 
doses is estimated, the dose-response function is obtained. 
In addition to this approach, a variety of methods have 
been proposed to estimate the dose-response function, 
based on GPS (68,92-95), but to the best of our knowledge, 
these methods are not based on matching. Wu et al. (91) 
proposed a one-to-M nearest neighbor caliper matching 
procedure with replacement. For each unit, the algorithm 
finds the m observed unit that is both close to its exposure 
level and the corresponding estimated GPS. They kindly 
provided an R package for implementing matching on GPS 
with continuous exposures. Readers can visit the website at 
https://github.com/wxwx1993/GPSmatching. Herein, we 
introduce GPS estimation with R.

Estimating GPS for continuous treatments with R
We extended our simulation data to study the effects of 
different durations of smoking on the cardiovascular system. 
Years of smoking for each patient were generated by the 
following code, with the risk of CVD being assumed to be 
proportional to the years of smoking (YOS).

> Set.seed(2020)

> x.Gender <- rep(0:1,c(400,600))

> x.Age <- round(abs(rnorm(1000, mean=45, sd=10)))

> YOS <- x.Gender * 5 + x.Age / 5 + round(rnorm(1000, 

mean=0, sd=2)) # Years of smoking

> z.y <- x.Gender + 0.3 * x.Age + 0.01 * YOS^2  - 15

> y <- exp(z.y) / (1+exp(z.y))

> CVD <- (runif(1000) < y)

> data <- data.frame(x.Age, x.Gender, YOS, CVD)

> head(data)

x.Age x.Gender YOS CVD

1 49 0 9.8 TRUE

2 48 0 7.6 TRUE

3 34 0 6.8 FALSE

4 34 0 6.8 FALSE

5 17 0 1.4 FALSE

6 52 0 11.4 TRUE

Here, YOS is generated as the linear combination of age 
and gender, with a normally distributed residual. 

First, the YOS linear regression model and covariates are 
fitted. 

> Lm.dose <- lm(formula = YOS~x.Age+x.Gender, data=data)

> summary(lm.dose)

Call:

lm(formula = YOS ~ x.Age + x.Gender, data = data)

Residuals:

Min 1Q Median 3Q Max

-7.0811 -1.0850 -0.0071  1.0581  7.0772

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.309749 0.294175 -1.053 0.293

x.Age 0.207663 0.006184 33.579 <2e-16 ***

x.Gender 4.956670 0.130745 37.911 <2e-16 **

Signif. Codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.025 on 997 degrees of freedom

Multiple R-squared: 0.7211, Adjusted R-squared: 0.7206 

F-statistic: 1289 on 2 and 997 DF, p-value: < 2.2e-16

Then, the GPS is estimated by the normal distribution.

> Data$GPS = dnorm(data$YOS, mean=lm.dose$fitted,

sd=sd(data$YOS))

How to apply PSM with time-dependent covariates 
and treatments

In clinical settings, especially where variables are 
continuously monitored, the probability of receiving a 
treatment is based on the real-time value of variables. 
Treatment effects are usually dependent on when a patient 

https://github.com/wxwx1993/GPSmatching
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receives a treatment. Although a binary indicator can be 
generated to indicate whether a patient is treated or not 
throughout their admission, this conventional method leads 
to biased estimated treatment effects (96), because it does 
not account for the time factor of treatment. 

Time-dependent PSM helps analyze the true effects of 
treatment (97). First, time-dependent PS is estimated for 
each patient at every time point, using a Cox proportional 
hazards regression model on time-fixed and time-varying 
covariates. Then, simultaneous matching or sequential 
matching is applied to match patients based on time-
dependent PSs. Lastly, Cox regression or other models for 
time-to-event analysis are applied to the matched data. 

As implied by the name, simultaneous matching 
compares all possible combinations of matched pairs at 
once, and performs one matching for all patients. However, 
this method assumes little association between future 
covariates and current treatment decisions, because future 
covariate information may be disclosed during the matching 
process. In contrast, no information leaks are allowed in 
sequential matching. As shown in Figure 12, the entire 
time is divided into multiple, equally spaced intervals  
(e.g., 5). At each interval, patients treated at that time form 
the treatment group, while patients untreated until that 
time form the control group (even though they may receive 
treatment after that). From the first interval to the last, 
treated patients are matched to untreated patients, using 
optimal matching. Once matched, patients are removed 
from groups, and they do not participate in subsequent 
matching processes. Zhang et al. (96) developed the function 
TDPSM for time-dependent PSM, and they have shared 
their R code. 

Discussion

As previously discussed, the two main advantages of PSM 
are dimension reduction and study design separation. 
Some conventional methods, for example, matching or 
stratification, group units with the same or similar covariate 
values to eliminate confounding. However, when covariate 
numbers increase, matching or stratification becomes much 
more difficult. Take research data on 1,000 patients as an 
example. To eliminate bias due to gender, each patient may 
be matched to 500 patients of the opposite gender. Also, 
if we consider age as a confounding factor, the data can 
be divided into 10 equal groups by age, after which each 
patient can be matched to about 50 others. Furthermore, 
race is accounted for, and thus for each patient only 10 

are matched. If we keep adding balancing covariates, 
many patients will not be matched. When compared with 
matching or stratification, all covariates requiring balancing 
are integrated into 1 score in PSM. This integration greatly 
reduces matching difficulties due to covariate dimensions. 

In addition, covariate balancing and effect estimating 
are separated in PSM. As Figure 2 illustrates, it is possible 
to check whether or not covariates are balanced between 
treatment and control groups in the fourth step, and 
estimate treatment effects later. In the regression adjustment 
method, which models outcomes as functions of both 
treatment assignments and covariates, it is difficult to assess 
whether the model has been correctly specified. Goodness-
of-fit measures, such as R2 and MSE do not test whether the 
model has balanced the data or not (3).

While these advantages make PS methods popular, there 
are several limitations. Firstly, the greatest drawback to PS 
methods is that they cannot account for hidden bias, which 
is similar to other methods which derive causal inference 
from observational research. Most balancing methods can 
only adjust data based on recorded covariates. However, 
it is inevitable that there is unobservable, immeasurable, 
or unrecorded bias. Although sensitivity analyses evaluate 
study robustness or calibrate PS with validation datasets, 
there is still room for improvement. In contrast, in a well-
structured RCT, obvious or hidden bias is reduced as much 
as possible, and therefore, PSM and analogous methods 
are no replacement for randomization. However, PSM 
can be used to scrutinize relationships between treatments 
and outcomes prior to the commencement of an RCT. On 
account of the limited medical resources, PSM and other 
balancing methods are still of great value.

Secondly, sample size is often diminished in PSM, as 
patients with no matches are often discarded. This may 
negatively affect final study conclusions, especially when 
small sample sizes are used. When several thousand samples 
are included, the data loss is negligible.

Thirdly, PSM estimates average treatment effects, but 
treatment heterogeneity is not considered. As we enter 
the era of precision medicine, personalized therapeutic 
strategies are being increasingly emphasized. However, 
personalized medicine is still a long way from being fully 
realized.

In this tutorial, we introduced the concept and framework of 
PSM, showed how to implement PSM with R, demonstrated 
GPS for multiple and continuous treatments, and illustrated 
time-dependent PSM. However, the statistical basics of PSM 
were not covered in this tutorial. Besides, there are many other 
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R packages related to PS, and other methods based on PS, 
such as weighting or subclassification, which were not included 
in this tutorial. In light of the rapid growth of causal inference 
analysis in observational studies, more comprehensive tutorials 
on PS methods should be developed.
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