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Background: Ovarian cancer (OC) is the most lethal gynecological malignancy. It has been reported that 
cancer stem cells (CSCs) play a crucial role in disseminated metastases in abdominal cavity and chemotherapy 
resistance of high-grade serous OC. However, the overall gene expression features of OC stem cells have not 
been clarified. 
Methods: Expression datasets of 379 OC samples and 88 normal tissues were downloaded from The Cancer 
Genome Atlas (TCGA) and the Genotype Tissue Expression (GTEx) project. Differentially expressed genes 
(DEGs) were screened using the “limma” package in R software. Among the DEGs, modules and hub genes 
that were highly related to messenger RNA expression-based stemness index (mRNAsi) and epigenetically 
regulated mRNAsi indices were identified via weighted gene co-expression network analysis (WGCNA). 
These hub genes were considered to be associated with OC stem cells. The Gene Ontology (GO) project 
and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was used to 
identify the main biological processes that hub genes participated in. Finally, Connectivity Map (CMap) was 
used to predict compounds that disturb the hub genes.
Results: We identified 2,253 DEGs; of these, 31 had a significantly positive correlation to mRNAsi 
indices and were upregulated in OC, while 41 of them had a significantly negative correlation with mRNAsi 
indices and were downregulated in OC. Correlation analysis indicated that hub genes from the same module 
composed a dense interaction network. GO and KEGG enrichment analysis demonstrated that hub genes 
primarily play roles in cell division and proliferation. Moreover, the compounds that may disturb hub genes 
were identified. Of these, 11 compounds, including MS-275, DL-thiorphan, and GW-8510, which have 
never been studied in OC stem cells, were screened as underlying treatments targeting OC stem cells.
Conclusions: Altogether, 72 hub genes that were closely linked to OC stem cell characteristics were found 
to mainly participate in cell division and proliferation. Moreover, compounds that disturb these hub gens 
were identified and can be considered underlying targets for inhibiting OC stem cells.
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Introduction

Globally, there are approximately 239,000 new cases 
of ovarian cancer (OC) each year, accounting for 3.6% 
of all cancer diagnoses, along with 152,000 OC deaths, 
accounting for 4.3% of all annual cancer deaths (1). 
Compared with other female cancers, OC has the worst 
5-year survival rate (47% in the United States and Canada), 
which has improved only slightly over the past three 
decades. This dilemma is largely attributed to its late-
stage diagnosis and recurrent relapse. Serous epithelial 
carcinomas, which account for a substantial proportion of 
OC cases, are often diagnosed at advanced stages (III–IV, 
80%) and lack effective treatments to significantly improve 
survival. Meanwhile, the upfront treatment of OC mainly 
relies on primary debulking surgery to achieve no residual 
disease (R0) and platinum-based chemotherapy. However, 
it is quite difficult to achieve R0 in bulking surgery due to 
common widespread disseminated metastases surrounding 
abdominal organs (2). Furthermore, although the majority 
of patients respond very well to initial chemotherapy, 
chemotherapy resistance followed by recurrent disease 
remains common in OC. 

Cancer stem cells (CSCs), which possess the capacity 
for long-term self-renewal and abnormal differentiation 
residing at the apex, have been postulated to be responsible 
for tumor initiation (3-5). A variety of solid tumors have 
been reported to contain CSCs, including breast (6), 
pancreatic (7), colorectal (8), and ovarian (9) cancers. 
Furthermore, CSCs have been shown to contribute to 
metastases and chemotherapy resistance in OC. Bapat et al. 
reported on the stem- and progenitor-like cells derived from 
multilayered spheroids in the ascites of OC patients for 
the first time in 2005 (10). Using an in vivo OC xenograft 
model, Liao et al. demonstrated that the CSCs from 
ascites spheroids promoted metastasis of the disease to the 
peritoneum and omentum (11). In addition, although the 
initial chemotherapy could efficiently eliminate the bulk of 
the tumor mass, chemoresistant residual tumor cells (which 
include CSCs) would survive. It has been reported that 
ascites cells collected from chemoresistant patients exhibited 
enhanced expression of genes associated with CSCs 
compared to those collected from chemonaive patients (12).  
Moreover, numerous studies have demonstrated that 
residual tumor is enriched in CSC-like cells following 
chemotherapy (12-14). Thus far, several biological pathways 
have been shown to be pivotal for the chemoresistance of 

OC stem cells, including the Wnt (15), Notch (16,17), and 
Hedgehog (18,19) pathways. Given that CSCs contribute 
greatly to OC metastases and chemoresistance, it has 
been acknowledged that anti-CSC therapy increases the 
chemotherapeutic response and improves the prognosis of 
OC (20).

Although there are currently numerous markers that 
can be used to isolate and characterize CSCs in OC, 
including cluster of differentiation (CD)44, CD117, 
aldehyde dehydrogenase (ALDH), CD133, and CD24 
(9,21,22), it remains challenging to identify the overall 
extent of the stemness of a given tumor. Recently, Malta 
et al. evaluated the novel stemness indices of almost 
12,000 samples involving 33 tumor types using a deep 
learning algorithm (23). Briefly, they initially used a one-
class logistic regression (OCLR) deep learning algorithm 
to construct a signature in order to quantify stemness 
based on transcriptomic and epigenomic molecular 
profile sequencing from stem cells that vary in stemness 
degree. Next, the OCLR-based signatures were applied to 
available datasets of The Cancer Genome Atlas (TCGA) to 
compute the messenger RNA expression-based stemness 
index (mRNAsi) and corresponding DNA methylation-
based stemness index (mDNAsi). The former reflected 
gene expression traits, while the latter reflected epigenetic 
traits. The mRNAsi and mDNAsi indices were shown to 
indicate the degree of oncogenic dedifferentiation of the 
samples and the extent of stemness. The authors found that 
high mRNAsi and mDNAsi indices values were correlated 
with biological processes active in CSCs, along with 
deeper cancer cell dedifferentiation. Moreover, metastatic 
tumor cells were found to have higher index values and 
were more dedifferentiated phenotypically. Recently, this 
methodology has been applied to individual tumors in 
order to extract stemness-involved genes, including lung 
carcinoma (24), breast cancer (25), bladder cancer (26), and 
medulloblastoma (27).

Herein, we examined the stemness indices of 379 OC 
samples and 88 normal tissues, as well as the corresponding 
expression profiles to screen hub genes that are linked to 
OC stemness. We also explored the function of these hub 
genes and identified the underlying compounds that disturb 
them, which may be considered inhibitors of OC stem 
cells. We present the following article in accordance with 
the STREGA (Strengthening the Reporting of Genetic 
Association Studies) reporting checklist (available at http://
dx.doi.org/10.21037/atm-20-3621).

http://dx.doi.org/10.21037/atm-20-3621
http://dx.doi.org/10.21037/atm-20-3621
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Methods

The study complies with the ethical standards of the 
institution and/or the National Research Council, as 
well as the 1964 Helsinki Declaration and its subsequent 
amendments, or similar ethical standards. 

Gene expression data collection and identification of 
differentially expressed genes (DEGs)

Messenger ribonucleic acid (mRNA) sequencing (mRNA-
seq) data of 467 human samples, including 379 OC samples 
and 88 normal samples, were derived from TCGA and the 
Genotype Tissue Expression (GTEx) project using the 
University of California, Santa Cruz (UCSC) Xena browser 
(https://xena.ucsc.edu/) (28). Meanwhile, the corresponding 
clinical information of the OC samples was also collected. 
The R package “limma” was then used to identify DEGs 
in the OC and normal samples. The criteria for DEG 
screening were as follows: |log2 (fold change)| >2, and false 
discovery rate (FDR) <0.05. 

Weighted correlation network analysis and the 
identification of hub genes 

The R package “weighted gene co-expression network 
analysis” (WGCNA) was utilized to identify modules of 
highly correlated DEGs as previously described (29,30). 
Firstly, the DEG expression matrix was used to define gene 
co-expression similarity based on the Pearson’s correlation 
coefficient of paired genes, followed by an adjacency 
matrix transformed from co-expression similarity using 
the power function. Here, with a soft threshold β=4 and 
with the R2>0.9, the co-expression network distribution 
exhibited an essentially scale-free topology. The adjacency 
matrix was then transformed into a topological overlap 
matrix (TOM), and TOM-based dissimilarity was 
calculated by 1-TOM. The TOM-based dissimilarity 
subsequently led to distinct modules defined as clusters of 
densely interconnected genes (29).

Malta’s works provided a method to calculate the 
mRNAsi and epigenetically regulated mRNAsi (EREG-
mRNAsi) indices, which reflect the stemness features 
of the samples (23). The R software was then used to 
evaluate the module-trait correlations with mRNAsi 
and EREG-mRNAsi. We selected two modules with the 
highest correlation of mRNAsi. Hub genes were defined 
as those with a gene significance (GS) score of >0.5 and a 

module membership (MM) score of >0.5, where the GS 
score represents the correlation between the gene and the 
mRNAsi index, and the MM score denotes the correlation 
between the gene and its module.

Gene co-expression analysis

The R package “corrplot” was used to calculate the 
Pearson’s correlations between the hub genes within a 
module based on the gene expression levels.

Protein-protein interaction (PPI) network

The online tool, STRING (Search Tool for the Retrieval of 
Interacting Genes/Proteins) version 11.0 (https://string-db.
org/), was used to construct the hub genes’ PPI network (31). 
The minimum required interaction score threshold was 
set as 0.4. Meanwhile, a bar plot was drawn to visualize the 
counts of adjacent nodes of each gene in the PPI network.

Functional analysis of hub genes

The R packages “clusterProfiler” and “enrichplot” were 
used to perform the Gene Ontology (GO) project and 
the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
functional pathway enrichment analyses. The terms with 
adjusted P values of <0.05 were considered statistically 
significant. The top ranked terms were shown as a bubble 
plot drawn by the R package “ggplot2”.

Prediction of anti-stemness compounds and identification 
of its three-dimensional (3D) conformers

The Connect i v i ty  Map  (CMap,  h t tps : / /por ta l s .
broadinstitute.org/CMap/) is a collection of gene expression 
profiles from cultured human cell lineages treated with 
small molecule compounds. It helps scientists to discover 
functional connections between compounds and genes (32). 
Hub genes derived from brown modules (as up-regulated 
genes), and from green and red modules (as down-
regulated genes) were imported into the CMap database. 
Subsequently, the enrichment score, which represents 
the similarities between the expression profiles of cells 
cultured with compounds and hub genes, was computed, 
and compounds listed by enrichment score were revealed. 
Using a P value of <0.01 and an enrichment score of 
<0, we identified the compounds that were significantly 
negatively correlated with hub genes. This indicated that 
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these compounds may downregulate hub genes positively 
correlated to stemness and upregulate hub genes negatively 
correlated to stemness; thus, these compounds were 
considered to have anti-stemness properties. The PubChem 
(https://pubchem.ncbi.nlm.nih.gov/compound) provided 
3D structures for the selected compounds (33). 

Statistical analysis

All analysis was carried out in R version 3.6.2 and 
corresponding packages. For all data, *P<0.05, **P<0.01, 
and ***P<0.001 were considered as significant.

Results

Screening DEGs

In total, we identified 2,253 DEGs in 379 OC samples and 88 
normal samples using the “limma” package in R software. This 
included 1,017 upregulated genes and 1,236 downregulated 
genes in OC tissues. The volcano plot (Figure 1A) and 
heatmap (Figure 1B) of the DEGs were shown.

Identification of gene modules and hub genes correlated to 
mRNAsi and EREG-mRNAsi

We then utilized WGCNA to identify gene modules that 
were correlated to mRNAsi and EREG-mRNAsi based on 
the DEGs. The scale independence and mean connectivity 

[with various soft threshold (β) ranging from 1 to 20] 
are shown in Figure 2A,B, respectively. When β=4, the 
R^2 was >0.9 and the co-expression network distribution 
exhibited approximately scale-free topology. Altogether, five 
cohesive modules of highly correlated DEGs were obtained 
(Figure 2C). Next, we related the modules to sample traits 
(mRNAsi and EREG-mRNAsi indices) that represented 
their stemness levels. The green module was the most 
significantly correlated to mRNAsi (cor =−0.71), followed 
by the brown module (cor =0.64) and the red module (cor 
=−0.46) (Figure 2D). A minor relationship between the 
brown module and EREG-mRNAsi was also observed (cor 
=0.3). We then chose these three modules for the selection 
of highly connected intramodular genes (hub genes).

The threshold for identifying hub genes in modules 
correlated to mRNAsi indices was defined as an MM score 
of >0.5 and a GS score of >0.5. We obtained 31 hub genes 
in the brown modules (Figure 2E), 36 hub genes in the 
green modules (Figure 2F), and five hub genes in the red 
modules (Table 1). However, there were no genes left in the 
brown modules correlated to EREG-mRNAsi that satisfied 
the GS score >0.5 and MM score >0.5.

Hub gene expression in OC 

Since we had screened numerous hub genes that were either 
positively or negatively related to OC mRNAsi indices, 
we compared the expression levels of these genes between 
OC and normal samples. The hub genes derived from the 

Figure 1 Differentially expressed genes (DEGs) in OC and normal samples. (A) A volcano plot depicting the DEGs. The green points 
indicate the significantly downregulated genes and the red points indicate the significantly upregulated genes. (B) A heatmap illustrating the 
expression levels of the top 20 ranked upregulated and top 20 ranked downregulated genes in OC and normal samples. OC, ovarian cancer.
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brown module, which were positively correlated to mRNAsi 
indices, had higher expression levels in OC samples 
compared to normal samples (Figure 3A). In contrast, hub 
genes derived from the green module that were negatively 
correlated to mRNAsi indices were downregulated in OC 
(Figure 3B) and the similar result was found in the hub 
genes derived from the red module (data not shown). This 
result is consistent with the view that tumors originated 
from aberrant dedifferentiation cells and had a higher 
degree of stemness compared to the normal tissue, which 

was fully differentiated and resided at the apex. 

Correlations between intramodular hub genes at the 
transcription level

To identify the mutual correlations between intramodular 
hub genes at the transcription level, we analyzed the 
Pearson’s correlation coefficients between intramodular 
hub genes. As shown in Figure 4, there was a statistically 
significant relationship between 31 hub genes derived from 

Table 1 Hub genes associated with the mRNAsi index from the brown, green, and red modules

Genes Module color GS score P.GS MM score P.MM

CCNB2 Brown 0.627 5.99E-27 0.848 9.59E-66

CDCA8 Brown 0.574 7.18E-22 0.784 7.25E-50

NCAPH Brown 0.569 1.86E-21 0.885 8.92E-79

RAD51AP1 Brown 0.559 1.28E-20 0.761 2.11E-45

AURKB Brown 0.559 1.31E-20 0.851 9.09E-67

CDC20 Brown 0.552 4.26E-20 0.845 6.83E-65

DLGAP5 Brown 0.549 8.49E-20 0.858 3.73E-69

BUB1 Brown 0.547 1.24E-19 0.863 9.85E-71

CCNB1 Brown 0.543 2.39E-19 0.810 1.12E-55

UBE2T Brown 0.540 3.89E-19 0.777 1.31E-48

COL16A1 Green −0.659 1.67E-30 0.796 1.72E-52

ANTXR2 Green −0.647 3.51E-29 0.860 7.64E-70

LRP1 Green −0.638 4.05E-28 0.590 2.58E-23

TIMP2 Green −0.634 9.87E-28 0.683 1.86E-33

CDH11 Green −0.632 1.52E-27 0.829 2.07E-60

PDGFRB Green −0.621 2.40E-26 0.840 2.08E-63

PDGFRA Green −0.619 3.58E-26 0.793 6.31E-52

FBN1 Green −0.619 3.66E-26 0.890 6.37E-81

DCN Green −0.618 5.36E-26 0.801 1.19E-53

PODN Green −0.611 2.59E-25 0.764 5.69E-46

SPARCL1 Red −0.564 4.79E-21 0.586 5.61E-23

LRRN4CL Red −0.551 5.76E-20 0.558 1.39E-20

C1QTNF1 Red −0.532 1.75E-18 0.591 1.80E-23

ABCA8 Red −0.515 3.00E-17 0.838 6.14E-63

NAV3 Red −0.502 2.63E-16 0.578 2.09E-22

GS score, gene significance score representing the correlation between the gene and mRNAsi index; MM score, module membership 
score representing the correlation between the gene and its module; mRNAsi, messenger RNA expression-based stemness index. Only 
the top 10 genes with highest GS score in each module were displayed.
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the brown module, and between 36 hub genes derived from 
the green module. In the brown module, the most robust 
correlation existed between cell division cycle 20 (CDC20) 
and kinesin family member 2C (KIF2C). In the green 
module, the strongest correlation existed between elastin 
microfibril interfacer 1 (EMILIN1) and platelet derived 
growth factor receptor alpha (PDGFRA). 

Correlations between intramodular hub genes at the 
protein level

We subsequently analyzed the correlations between 
intramodular hub genes at the protein level by constructing 
a PPI network (using the STRING online tools). The 
PPI network demonstrated a strong and wide-ranging 
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Figure 3 Box plots depicting the expression levels of hub genes derived from (A) the brown module. and (B) the green module between OC 
and normal samples. The red box indicates the OC tissue and the blue box indicates normal tissues. ***, P<0.001. OC, ovarian cancer.
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Figure 4 Correlation between hub genes derived from (A) the brown module and (B) the green module. The upper part of these two figures 
shows the level of confidence that the two proteins are functionally associated, which is indicated by the intensity of the color while the 
lower part annotates the corresponding correlation value (Pearson’s correlation coefficient).
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relationship between the hub genes. Also, the edge number 
of each node gene in the PPI network in the brown module 
was almost equal (Figure 5A,B), while the edge number in 

the green module was not (Figure 5C,D), which indicated 
that hub genes derived from the brown module composed a 
more dense interaction network. 

Figure 5 PPI networks of hub genes. PPI networks show PPI between hub genes derived from (A) the brown module and (C) the green 
module. The minimum required interaction score threshold was set as 0.4, and disconnected nodes in the network are hidden. Bar plots 
showing the nodes of hub genes derived from (B) the brown module and (D) the green module. PPI, protein-protein interaction.
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Functional analysis of hub genes

The hub genes we found proved to be highly interconnected. 
We examined GO annotation and the KEGG pathway to 
elaborate the functions of these hub genes. The top ranked 
GO terms and KEGG pathways based on the combined hub 
genes derived from modules in the brown, green, and red 
are displayed in Figure 6. The results demonstrated that hub 
genes primarily participated in biological processes associated 
with cell division, including organelle fission, sister chromatid 
segregation, nuclear chromosome segregation, and others. 

Prediction of anti-stemness compounds 

The CMap can be used to predict compounds that may 
induce or reverse a given gene expression signature. We 
employed CMap to predict which compounds could disturb 
hub genes that were correlated to OC mRNAsi indices. 
The top 20 ranked compounds are displayed in Table 2. 
Most of these compounds have been reported to be anti-
stemness or anti-cancer drugs, while 11 compounds (MS-
275, DL-thiorphan, piperlongumine, thioguanosine, 
GW-8510, trifluridine, alsterpaullone, clomipramine, 
phenoxybenzamine, sulconazole, and pyrvinium) have 
never been studied in OC stemness. We used the PubChem 
online tool (33) to draw the 3D construction of these 11 
compounds (Figure 7A,B,C,D,E,F,G,H,I,J,K). 

Discussion

OC is the most lethal gynecological malignancy. The high-
grade serous subtype contributes to the majority of OC 
deaths, mainly as a result of the advanced stage of patients 
upon initial diagnosis and the high likelihood of relapse 
after chemotherapy. Over the past decade, ovarian CSCs 
have been shown to play a critical role in tumor growth, 
metastasis, and chemoresistance. A deep understanding 
of the molecular mechanisms of CSCs in OC will help to 
improve outcomes once CSC targeted therapy is available. 
In this study, we performed a bioinformatics analysis to 
identify OC stem cell-associated genes and discover the 
underlying compounds that kill ovarian OC stem cells.

Compared to other tumors, the CSCs in OC have not 
yet been clearly defined (34). However, certain stem cell 
markers, including CD133, receptor tyrosine kinase like 
orphan receptor 1 (ROR1), enhancer of zeste homolog 2 
(EZH2), and GLI family zinc finger 2 (GLi2), have more 
frequently been found in recurrent/resistant OC and have 

not been identified in primary OC (35,36). As a novel index 
of stemness, the mRNAsi and EREG-mRNAsi indices were 
calculated using an OCLR machine learning algorithm, and 
were shown to reliably stratify tumors of given stemness 
phenotypes. Based on the expression profiles of OC and 
normal samples, along with the corresponding stemness 
indices, we identified five modules in the DEGs and 
screened hub genes in two of the five modules (with the 
most significant relationship with mRNAsi). As anticipated, 
hub genes that were positively and negatively related to 
stemness indices were upregulated and downregulated in 
OC, respectively. Furthermore, the correlation analysis 
showed that strong interactions between these genes 
were established at both the mRNA and protein levels. 
We also retrieved previous literature regarding these hub 
genes and found that most hub genes have been reported 
to be differentially expressed between stem cells and 
differentiated cells. For example, human embryonic stem 
(ES) cells had high expression levels of cell division cycle-
associated 8 (CDCA8); however, differentiated human ES 
cell only had lowered levels of CDCA8 (37). Also, KIF2C 
was significantly more expressed in mouse neural stem cells 
compared to astrocytes (38). Furthermore, hypermethylated 
in cancer 1 (HIC1), which is negatively associated with 
stemness indices, was reported to be a marker of tissue-
resident mesenchymal progenitors in skeletal muscle (39),  
and deletion of HIC1 stimulated the hyperplasia of 
mesenchymal progenitors. The hub genes identified in 
our study primarily participate in biological processes 
associated with cell division, including cell cycle regulation, 
alignment, and segregation of chromosomes (Figure 6). 
This was further verified by our GO annotation and KEGG 
pathway enrichment analysis, and signifies that OC stem 
cells are active in cell division and proliferation, which is 
consistent with previous studies that focused on other types 
of carcinomas (24,26). 

Although the majority of patients with OC respond 
well to initial platinum-based chemotherapy, patients with 
advanced disease eventually experience recurrence and 
acquire resistance to chemotherapy. During the past decade, 
bevacizumab (antiangiogenic agent) has been approved for 
platinum-resistant disease as it helps to significantly improve 
progression-free survival (PFS) (40), with some evidence 
indicating that poly (ADP-ribose) polymerase inhibitors 
(PARPi) may be efficacious in patients with resistant 
disease (41,42). Also, identification of vulnerabilities 
in chemoresistant OC cells will help to develop new 
therapeutics for recurrent/resistant disease. The crucial 
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Figure 6 Functional analysis of the hub genes. (A) A bubble plot showing the top 10 ranked terms in groups of biological process (BP), 
cellular component (CC), and molecular function (MF). (B) A bubble plot showing the significantly enriched KEGG pathways of the hub 
genes. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Table 2 List of the 20 most significant compounds that could reverse the mRNAsi status of OC

CMap name Mean N Enrichment P Specificity

MS-275 −0.819 2 −0.976 0.00115 0.0988

Azacitidine −0.839 3 −0.962 0.00018 0.0481

DL-thiorphan −0.757 2 −0.951 0.00503 0.0171

Piperlongumine −0.745 2 −0.935 0.00875 0.0190

Thioguanosine −0.807 4 −0.915 0.00010 0.0070

Chrysin −0.733 3 −0.908 0.00144 0.0000

Trazodone −0.738 3 −0.906 0.00162 0.0169

GW-8510 −0.770 4 −0.896 0.00022 0.1145

Thiostrepton −0.757 4 −0.885 0.00040 0.0093

Trifluridine −0.743 4 −0.883 0.00046 0.0082

Camptothecin −0.816 3 −0.879 0.00357 0.1364

Alsterpaullone −0.751 3 −0.878 0.00365 0.1143

Clomipramine −0.685 4 −0.876 0.00052 0.0000

MG-262 −0.720 3 −0.875 0.00393 0.1102

Phenoxybenzamine −0.874 4 −0.841 0.00117 0.0273

Apigenin −0.718 4 −0.825 0.00177 0.0272

Sulconazole −0.685 4 −0.820 0.00199 0.0000

Daunorubicin −0.704 4 −0.806 0.00271 0.0439

Luteolin −0.751 4 −0.799 0.00318 0.0171

Pyrvinium −0.751 6 −0.754 0.00044 0.0412

mRNAsi, messenger RNA expression-based stemness index; CMap, connectivity map; OC, ovarian cancer.

role of OC stem cells in metastasis and chemoresistance 
has increased the enthusiasm of researchers to explore the 
targets of CSCs as a potential therapeutic strategy. Anti-
CSCs therapies are generally classified into three main 
strategies: (I) targeting the markers of CSCs, (II) agents that 
induce the differentiation of CSCs, and (III) the targeting 
of vital pathways for CSC survival (43-45). 

In this study we evaluated the overall degree of stemness 
in OC samples using mRNAsi indices and screened genes 
that were associated with mRNAsi. We then predicted 
compounds that could be considered underlying therapeutic 
agents for OC with enriched stem cells. This yielded 
complex components, including two epigenetic modification 
drugs (MS-275 and azacitidine), two cyclin dependent 
kinase (CDK) inhibitors (GW-8510 and alsterpaullone), two 
anti-depressant agents (clomipramine and trazodone), and 
various other types of drugs. Nevertheless, many of the top 

20 ranked compounds have been investigated in stem cells. 
For example, MS-275, an inhibitor of histone deacetylases 
(HDACi), has been reported to induce the differentiation 
of human adipose tissue-extracted mesenchymal stem cells 
into neuronal tissue via the Wnt signaling pathway (46).  
Also, daunorubicin, an anthracycline aminoglycoside 
antineoplastic, has been extensively studied in leukemia and 
other neoplasm CSCs (47,48). Ultimately, we identified 11 
compounds that have never been reported in OC stem cells. 
As the findings of the present study were obtained from the 
analyses of databases, the functions of 11 compounds in OC 
stem cells can be further examined in future studies.

Conclusions

We compared the available expression profiles of OC and 
normal tissues and identified hub genes associated with 
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stemness characteristics. We also explored the functions of 
these hub genes and the underlying compounds that disturb 
them, which may be considered underlying targets for 
inhibiting OC stem cells.
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