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Abstract: Immune checkpoint inhibitors (ICPIs) have revolutionized the treatment paradigm of a wide 
range of malignancies with durable responses seen in even advanced, refractory cancers. Unfortunately, 
only a small proportion of patients with cancer derive meaningful benefit to ICPI therapy, and its use is also 
limited by significant immune and financial toxicities. Thus, there is a critical need for the development of 
biomarkers to reliably predict response to ICPI therapy. Only a few biomarkers are validated and approved 
for use with currently Food and Drug administration (FDA)-approved ICPIs. The development and broad 
application of biomarkers is limited by the lack of complete understanding of the complex interactions of 
tumor-host environment, the effect of immunotherapies on these already complex interactions, a lack of 
standardization and interpretation of biomarker assays across tumor types. Despite these challenges, the field 
of identifying predictive biomarkers is evolving at an unprecedented pace leaving the clinician responsible for 
identifying the patients that may derive optimal benefit from ICPIs. In this review, we provide clinicians with 
a current and practical update on the key, clinically relevant biomarkers of response to ICPIs. We categorize 
the current and emerging biomarkers of response to ICPIs in four major categories that govern anticancer 
response—the inflamed tumor, tumor antigens, immune suppression, and overall host environment. 
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Introduction

The past two decades have seen significant advances in the 
therapeutic utilization of immune checkpoint inhibitors 
(ICPIs) for a wide range of malignancies. Currently 
available immunotherapeutic drugs include monoclonal 
antibodies directed against programmed cell death protein 
(PD-1), programmed cell death protein ligand (PD-L1) 
and cytotoxic T-lymphocyte antigen 4 (CTLA-4) (1,2). 

Since the approval of ipilimumab in 2011 for management 
of advanced, unresectable melanoma (3), ICPIs continue 
to revolutionize the therapeutic landscape of cancer and 

were named the top cancer advance of the year by American 
Society of Clinical Oncology in 2016 (4). The Food and 
Drug administration (FDA) has approved several agents for 
a number of unresectable, advanced and refractory cancers 
including lung cancer, melanoma, renal cell cancer (RCC), 
head and neck cancers, Hodgkin lymphoma and several 
others. Response in some patients treated with single agent 
immunotherapy can be quite dramatic; however, only a 
small subset of patients across cancer indications derive 
significant benefit (5). Combination of ICPIs with other 
immunotherapeutic or chemotherapeutic agents improves 

1040

Review Article on Cancer Immunotherapy: Recent Advances and Challenges

https://crossmark.crossref.org/dialog/?doi=10.21037/atm-20-6396


Bindal et al. Biomarkers of response to immunotherapy

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(12):1040 | http://dx.doi.org/10.21037/atm-20-6396

Page 2 of 15

response rates but this comes with a cost in the form of 
clinical and financial toxicities (6,7). The current array 
of predictive biomarkers for ICPI therapy are limited in 
predictive accuracy due to significant variability with tumor 
histology, tumor heterogeneity, lack of standardization of 
pre analytical techniques and subsequent challenges with 
clinical interpretation. Thus, development of biomarkers 
that are broadly applicable and well standardized for ICPI 
therapy across cancer subtypes is of critical interest to 
current clinical and investigative efforts. 

An approach to organize current and emerging biomarkers 
of response to ICPIs is to consider categorization based 
on four broad elements of cancer immunity that govern 
the anticancer response (Figure 1) (7). The first category 
of cancer immunity is the inflamed tumor, as it is now well 
known that tumor inflammation is one of the hallmarks of 
cancer. Our understanding of the immune mediated cancer 
elimination is based on the widely accepted process of the 
“cancer immunity cycle” (8). Innate and adaptive immunity 
work together to eliminate evolving tumors. Signs of an 
inflammatory tumor microenvironment (TME) that can 
serve as biomarkers for response to ICPIs include PD-L1 
expression, the presence of tumor infiltrating lymphocytes 
(TILs), and mRNA profiles with increased expression of 
genes associated with inflammation (9). 

The second category of cancer immunity is tumor 
antigens. Tumor antigens are molecules presented on the 
surface of tumor cells that make tumor recognizable by 
the immune system. Presentation of tumor antigens can 
be affected by genetic or epigenetic alterations (10,11). 
States of higher tumor antigenicity may be represented by 
high tumor mutational burden (TMB) or microsatellite 
instability (MSI) which is usually caused by deficient 
mismatch repair (MMR) proteins. 

The third category of tumor immunity is immune 
suppression where tumor proliferation is related to 
progressive immune dysfunction and tolerance leading to 
a loss of immune surveillance, thereby generating tumor 
immunity (12,13). PD-L1 expression bridges the first and 
third category because PD-L1 expression can be triggered 
by inflammation and the presence of PD-L1 on the tumor 
and immune cells causes immune suppression. Other 
proteins that affect immune evasion, such as lymphocyte 
activation gene 3 (LAG-3) and indoleamine 2,3-dioxygenase 
(IDO), are being investigated as the next generation of 
cancer immunotherapy predictive biomarkers. 

The fourth category of tumor immunity is the overall 
tumor host environment. Factors like the host microbiome 

and germline mutations can influence not only the 
development of cancer but also response to chemotherapy 
and immunotherapy (14).

Here, we will review the key clinically relevant biomarkers 
of response to ICPIs and explore the limitations in their 
broader applicability in the treatment of cancer.

The inflamed tumor

PD-L1

Over the last decade, PD-L1 emerged as a companion and 
complementary diagnostic biomarker in parallel with the 
advent of anti-PD-1 and anti-PD-L1 immunotherapy. A 
majority of TILs express PD-1 after activation and it binds 
to two specific ligands, PD-L1 and PD-L2. Engagement of 
PD-1 with its ligand results in elimination of activated T 
cells upon completion of their effector functions, thereby 
serving as an immune checkpoint (8,15). Tumor cells can 
engage this immune inhibitory pathway by expressing 
PD-L1 as an ICPI on their cell surface. Increased PD-L1 
expression (8) is achieved either by development of adaptive 
immune resistance or by certain genomic alterations  
(16-19). PD-L1 adaptive immune resistance refers to the 
expression of PD-L1 on the tumor surface in response to 
T cell recognition of target antigens on the tumor surface 
and release of interferon gamma. PD-L1 expression and 
interaction with PD-1 allows the tumor cells to evade 
immune-mediated destruction. Therapeutic inhibition of 
the PD-1 and PD-L1 immune inhibitory axis (for example 
by ICPIs) can lead to persistent activation of T cells and 
anti-tumor activity.

One of the first clinical indications of the potential 
for PD-L1 expression to serve as a predictive biomarker 
for response to ICPIs came from a large pivotal study 
by Topalian et al. that evaluated anti-PD-1 therapy 
with nivolumab in a variety of tumor types (20). In this 
study, 60% of tested tumors were positive for PD-L1 
expression (defined as >5% PD-L1 expression using 
immunohistochemistry (IHC) assay IHC-5H1). Amongst 
the PD-L1 positive tumors, an overall response rate (ORR) 
of 36% was observed compared to 0% ORR in patients 
with PD-L1 negative tumors. Anti-tumor activity of 
single agent PD-L1 therapy was seen in melanoma, RCC 
and non-small cell lung cancer (NSCLC) but no activity 
was seen in metastatic castrate resistant prostate cancer 
and metastatic colon cancer regardless of PD-L1 status. 
Overtime, multiple studies have established that patients 
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who have tumors that express PD-L1 correlate with higher 
response rates to ICPIs across multiple classes of cancer, 
including NSCLC, RCC, urothelial cancer, triple-negative 
breast cancer, among others (20-22). The PD-L1 expression 
may also have a role in identifying patients who may benefit 
from ICPI maintenance therapy. This is supported by an 
unplanned post hoc analysis of the PACIFIC trial that did 
not demonstrate an improvement in overall survival with 
maintenance durvalumab post chemoradiation in patients 
with unresectable stage III NSCLC whose tumors had PD-
L1 expression less than 1% (23).

Multiple assays for PD-L1 expression have been 
approved as companion and complementary diagnostics 
for use with PD-1/PD-L1 directed FDA approved drugs in 
different disease indications. These assays utilize different 
antibodies and PD-L1 expression cutoffs to predict 
response to ICPIs as established by various trials and 
agents used. Furthermore, differences in scoring systems 
such as the tumor proportion scoring system (TPS, total 

number of PD-L1 positive tumor cells) or combined 
positive scoring system (CPS, divides number of PD-L1 
positive tumor cells, lymphocytes, macrophages by the 
number of tumor cells) prevent standardization across  
assays (24).  McLaughlin et al .  demonstrated poor 
concordance between two PD-L1 rabbit monoclonal 
antibodies (E1L3N and SP142) with approximately 25% 
discordance in expression of PD-L1 in tested samples from 
patients with NSCLC (25). The predictive value of PD-
L1 expression for response to immunotherapy can also 
vary among the ICPIs agents used or disease setting. For 
instance, Balar et al. demonstrated correlation between 
increased PD-L1 expression in advanced urothelial cancer 
with response to first line pembrolizumab in cisplatin-
ineligible patients (26). However, a study by Sharma 
et al. in recurrent, advanced urothelial cancer after 
platinum-based chemotherapy did not demonstrate a 
correlation between PD-L1 expression and response to  
nivolumab (27). There is also discordance between expected 
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Figure 1 Current and emerging biomarkers of response to immune checkpoint inhibitors categorized based on elements of cancer 
immunity.  TMB, Tumor mutational burden; MSI-H, Microsatellite instability-High; dMMR, Deficient mismatch repair; LAG-3, 
Lymphocyte activation gene 3; IDO-1, Indoleamine 2.3-dioxygenase; Tregs, Regulatory T-cells; PD-L1, Programmed death ligand-1;  
PD-L2, Programmed death ligand-2.



Bindal et al. Biomarkers of response to immunotherapy

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(12):1040 | http://dx.doi.org/10.21037/atm-20-6396

Page 4 of 15

responses when using the same assays for same tumor 
histology based on the treatment setting (first line versus 
subsequent lines of treatment). For instance, atezolizumab 
showed a higher response with increased levels of PD-L1 
expression in immune cells in patients with locally advanced 
and metastatic urothelial cancer who had progressed 
following treatment with platinum-based chemotherapy 
(objective response rate, ORR 26% vs. 10% in patients with 
PD-L1 ≥5% compared to PD-L1 1–4%) (21). This study 
utilized the SP142 antibody assay for assessment of PD-L1 
expression and, interestingly, patients with no expression 
(PD-L1 <1%) also demonstrated an appreciable response 
rate of 8%. When the same PD-L1 assay with the SP142 
antibody was used to evaluate the response to atezolizumab 
in treatment naïve, platinum-ineligible patients with 
advanced urothelial cancer, the degree of PD-L1 expression 
was not predictive of the response to atezolizumab (ORR 
21% with PD-L1 <1%, ORR 21% with PD-L1 ≥1% but 
<5% and 28% in patients with PD-L1 ≥5%) (28). This 
variability in the predictive power of PD-L1 may be due to 
differences in tissue selection and processing, differences 
in techniques of performing (antigen retrieval, fixation) 
staining, and/or differences in interpretation of the results 
which all pose challenges with standardized testing across 
different laboratories. 

In addition to the technical challenges of PD-L1 
testing mentioned above, intra-tumoral and inter-tumoral 
heterogeneity in PD-L1 expression also limits accurate 
assessment of PD-L1 expression (29,30). Moreover, it 
has been shown that PD-L1 expression is dynamic with 
chemotherapy, and that radiation therapy can induce PD-
L1 expression (31,32). Thus, the response to ICPIs seen 
in PD-L1 negative tumors may be in the setting of tumor 
heterogeneity or temporally dynamic expression (33). 
Despite these limitations and caveats, PD-L1 is a clinically 
valuable predictive biomarker in certain tumor types like 
NSCLC where its use in determining first line treatment 
with ICPIs is now standard practice. Pembrolizumab is 
currently FDA approved as a single therapy for management 
of metastatic NSCLC with PD-L1 TPS ≥1% (PD-L1 
IHC 22C3 assay), and in combination with chemotherapy 
regardless of the PD-L1 TPS (34). The FDA has designated 
PD-L1 as a companion diagnostic for certain indications 
and a complementary diagnostic marker for others based on 
emerging efficacy and safety data with frequent adaptations 
based on new findings. For instance, PD-L1 has recently 
emerged as a clinically relevant biomarker in urothelial 
cancer. In two ongoing trials, KEYNOTE-361 using PD-L1 

IHC 22C3 PharmDx assay (NCT02853305) and IMvigor130 
using Ventana PD-L1 SP142 assay (NCT02807636), patients 
with PD-L1 low status were found to have decreased survival 
with ICPI monotherapy compared to patients receiving 
platinum-based chemotherapy. Thus, FDA issued an alert 
after the initial review by the respective data monitoring 
committees leading to a revision in the trial protocols with 
enrollment of only PD-L1 high expression patients to the 
ICPI arm (35).

Tumor infiltrating lymphocytes and the tumor 
microenvironment  

It has long been recognized that inflammatory cells 
including CD8+ cytotoxic T cells, natural killer cells, 
dendritic cells, macrophages and neutrophils mediate the 
cancer immunity cycle and their role as biomarkers is 
currently being explored (8). In 2011, TILs were identified 
as a prognostic marker in patients with breast cancer with 
the presence of CD8+ TILs associated with improved 
outcomes (36). Since TILs are a marker of inflammation 
in the TME, they have also been assessed as a potential 
predictive biomarker for response to ICPIs. In 2014, Tumeh 
et al. found that response to pembrolizumab in metastatic 
melanoma was associated with a higher CD8+ T cell density 
in the baseline biopsies (37). This finding of increased T 
cell density was also noted by Chen et al. in pretreatment 
tissue samples of responders treated with CTLA-4 blockade 
for melanoma (38). However, neither of these studies 
could establish a clear cut-off for T cell infiltration to 
differentiate between responders and non-responders. 
KEYNOTE-086 (39) and KEYNOTE-173 (40) also 
found increased TILs in pretreatment biopsy samples of 
patients with triple negative breast cancer who had a better 
response to treatment with single agent pembrolizumab 
and neoadjuvant pembrolizumab plus chemotherapy 
respectively compared to patients with lower TIL levels. 
Recent investigations have focused on characterizing the 
type, density and immune phenotype of intratumoral TILs 
as predictors of clinical outcomes to ICPIs (41). Studies of 
the transcriptomic profile of TILs have shown significant 
heterogeneity in the expression of molecules of T cell 
activation and presence of tissue resident memory cells that 
may predict better outcomes in patients with NSCLC and 
breast cancer (42,43). 

In addition to assessing hematoxylin-eosin morphology 
and single analyte IHC, recent years have seen development 
of “molecular imaging” with IHC and immunofluorescence 
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multiplexing methods (mIHC and mIF respectively) and 
technologies to allow a more comprehensive assessment of 
the markers of inflammation or lack thereof in the tumor-
host microenvironment (44). In 2016, Zhang and Chen (45) 
introduced a classification system for the tumor immune 
microenvironment (TIME) based on the expression of PD-
L1 and TILs as PD-L1 expression in tumors correlates 
with the presence of TILs (46). The four proposed classes 
of TME included T1 (PD-L1 and TIL negative), T2 
(PD-L1 and TIL positive), T3 (PD-L1 negative and TIL 
positive) and T4 (PD-L1 positive and TIL negative). In 
this model, the T2 tumors are predicted to account for 
the most responses to anti-PD therapy while T1 tumors 
are predicted to be inherently resistant. In another study, 
Gettinger et al. used qualitative mIF to evaluate the location 
and immunophenotype of TILs in NSCLC samples prior 
to treatment with ICPIs. They found a population of 
“dormant” TIL phenotype with elevated CD3 expression 
and low T cell Ki67and granzyme B (indicators of T 
cell proliferation and activation) was associated with a 
favorable and durable response to ICPI therapy (47). 
These models need further clinical validation and perhaps 
incorporation of other characteristics of the tumor immune 
microenvironment to allow us to predict responses in 
patients treated with ICPI therapy reliably. One potential 
translation of evaluation of the complex immune interactions 
in the TME as a clinical biomarker is the development of 
the “Immunoscore” for many cancers, including colorectal 
cancer (48). The Immunoscore quantifies the lymphocyte 
populations at the tumor center and margins with higher 
scores correlating with longer patient survival. In some 
studies, the Immunoscore outperforms the classical TNM 
classification as a prognostic marker (49). In addition to 
serving as a prognostic factor, integrative analyses have 
also revealed that Immunoscore can predict disease specific 
recurrence and survival in patients with colorectal cancer 
(50,51). The considerable prognostic impact of combining 
stromal PD-L1 and PD-1 expression on TILs in a novel 
Immunoscore approach within each pathologic stage of 
NSCLC has also been demonstrated (52). Another novel 
noninvasive tool for detection of variations in whole body 
CD8+ T cells as a response to treatment with ICPIs has 
been developed and this immuno-PET imaging modality is 
currently being investigated for potential utility in clinical 
practice (53). The role of the TME in suppressing response 
to ICPIs is also an area of active research that is described 
in greater detail in the section on “immune suppression” in 
this manuscript.

Gene expression profiling

It has now been established that interferon-γ (IFN-γ) is 
a key cytokine in the TME that plays a vital role in the 
development of antitumor immune response (54). However, 
feedback inhibition of the IFN-γ signaling pathway can 
lead to the upregulation of PD-L1 and PD-L2 in the tumor 
and immune microenvironment compromising antitumor 
immunity (55,56). As discussed above, the assessment 
of PD-L1 expression can be used as a predictive marker 
for response to ICPIs, but PD-L1 expression likely only 
represents a small component of T cell biology in the 
TME. Newer technologies are now available that allow us 
to elucidate gene expression profiles and understand the 
complexity of tumor and immune cell interaction.

In the POPLAR trial, an 8-gene T-effector and IFN-γ 
gene signature was noted to be associated with improved 
overall survival in previously treated patients with advanced/
metastatic NSCLC treated with atezolizumab (57). The 
T-cell inflamed gene expression profile (GEP) consisting 
of an 18 gene signature was validated and refined by Ayers 
et al. using baseline tumor samples of pembrolizumab-
treated patients in different clinical studies. This 18 gene 
signature is currently being evaluated in several ongoing 
trials (58). Higgs et al. also demonstrated that IFN-γ mRNA 
signatures may be used to identify patients with NSCLC or 
urothelial cancer who may have improved outcomes with 
durvalumab regardless of the PD-L1 status (59). Cristescu 
et al. then evaluated GEP in over 300 patients with 22 
tumor types from four KEYNOTE clinical trials and found 
that clinical responders had higher GEP scores compared 
to non-responders (60). Another analysis of 475 patients 
with 20 solid tumor types enrolled in KEYNOTE-028 also 
demonstrated that higher GEP scores were seen in clinical 
responders (61). Interestingly, GEP had low correlation 
with TMB in both of these studies, thereby suggesting that 
these biomarkers may capture distinct features of T cell 
activation and neoantigenicity.

Recent efforts have also focused on development 
of immune-predictive scores as predictors of response 
to ICPIs. Auslander et al. built the immune-predictor 
score (IMPRES) as a predictor of response to ICPIs in 
patients with melanoma that encompasses 15 pairwise 
transcriptomics relations between immune checkpoint 
genes (62). In validation studies across multiple melanoma 
datasets, IMPRES was demonstrated to have a high 
predictive performance and further studies of its predictive 
performance in other cancer types are needed (62). Jiang  
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et al. have also developed a predictive computational 
method, Tumor Immune Dysfunction and Exclusion 
(TIDE), that models the mechanisms of tumor immune 
evasion, i.e., prevention of cytotoxic T cell infiltration and 
induction of T cell dysfunction. These models and pre-
treatment RNA sequencing GEP were used to predict 
clinical outcomes in patients with melanoma treated with 
ICPIs with results suggesting that TIDE may be a more 
accurate predictor of response than PD-L1 and TMB (63). 
There is significant interest in validating these immune 
predictive scores in clinical trials and it is highly likely that 
computational modeling will refine our understanding of 
the predictive biomarkers of ICPI responses. 

Tumor antigens

Tumor neoantigens are generated by somatic alterations 
in the tumor cell genome as a result of point or nonsense 
mutations, chromosomal translocations, splicing variants 
or epigenetic alterations in antigen expression. The cancer 
immunity cycle is initiated when immunogenic neoantigen 
derived proteins are released into the TME after tumor 
cell apoptosis (14). These neoantigens are recognized as 
foreign and processed by the dendritic cells to activate 
tumor-specific cytotoxic T-cells. The cytotoxic T-cells in 
turn attack the neoantigen targets on tumor cells, thereby 
releasing more tumor neoantigens and renewing the 
cancer immunity cycle (33). MMR, MSI and TMB can 
be considered surrogate markers of these immunogenic 
neoantigens as a higher mutational burden within a tumor 
significantly increases the changes of generation of a 
neoantigen that would generate an effective adaptive T cell 
response (33).

MMR and MSI

The DNA MMR system edits and corrects the DNA 
mismatches that can occur during DNA replication and 
recombination repair (64). Deficient MMR (dMMR) 
occurs due to inactivation of one or more of the four main 
MMR proteins, i.e., MLH1, MSH2, PMS2 and MSH6. 
MLH1 and MSH2 account for 90% of cases of dMMR 
with the other two genes, PMS2 and MSH6 accounting 
for the remainder (65). dMMR can be caused by germline 
mutations (Lynch syndrome) or acquired somatic 
mutations leading to an increased rate of mismatch errors 
and alterations in the lengths of microsatellite regions 
referred to as MSI (66,67). Although initially identified in 

colorectal cancer, dMMR occurs in several tumor types 
including endometrial, gastrointestinal, biliary, and thyroid 
carcinomas among others (68,69). Microsatellites are 
short tandem repeats of DNA in the noncoding regions of 
the genome (70). dMMR leads to increased mismatched 
errors in the microsatellite regions resulting in MSI and 
neoantigen formation. The severity of this instability in 
tumors is described as MSI high, MSI low and microsatellite 
stable (71).

The potential of MMR to be utilized as a predictive 
biomarker was first demonstrated in a phase 2 trial 
evaluating pembrolizumab in colorectal cancer by Le 
et al. (72). The patients with dMMR had a significantly 
higher objective response rate of 40% compared to 
patients with proficient MMR (pMMR) (72). Le et al. 
subsequently performed a large trial evaluating the efficacy 
of pembrolizumab in patients with dMMR tumors across 
12 tumor histologies (73). The patients with dMMR had 
a significant and durable response to PD-1 blockade. 
The study also demonstrated a rapid in vivo expansion of 
neoantigen directed T-cells in the responding patients (73). 
In 2017, these results led to the accelerated tumor agnostic 
FDA approval of pembrolizumab for patents with dMMR 
or MSI high tumors (74). This was the first FDA approval 
of an anti-cancer treatment based solely on a biomarker 
instead of a tumor type (74).

Defects in MMR are screened by two methods: IHC 
for the 4 MMR proteins (MLH1, MSH2, PMS2 and  
MSH6) (75) and polymerase chain reaction (PCR) testing 
for detection of MSI (76). Both tests have been shown to 
be equally sensitive with current recommendations in place 
for use of IHC-testing as the first screening tool due to its 
universal availability and cost effectiveness (77,78). Although 
the predictive value of defects in MMR for response 
to ICPI therapy is compelling, its clinical utilization is 
mainly limited to certain tumor types like colorectal and 
endometrial cancer. This may be due to a lower frequency 
of dMMR in other tumor types or due to the limitations of 
the assays as the microsatellite repeats currently evaluated 
in the PCR assays may not be representative for all cancer 
types (79). Thus, other assays to test and complement the 
defects in MMR including next generation sequencing and 
TMB are currently under development (80,81).

TMB

TMB is defined as the number of somatic mutations 
(non-synonymous s ingle nucleotide variants)  per  
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megabase (33). These mutations that are acquired by 
the tumor cells result in the development of neoantigens 
that are expressed on the surface of tumor cells. These 
neoantigens can be recognized as foreign by T cells leading 
to activation of the cancer immunity cycle (14). Tumors 
then may develop mechanisms of immune evasion such 
as upregulation of immune checkpoints and thus may be 
susceptible to ICPI therapy (33). TMB is highly variable 
among different tumor types with lung cancer, melanoma 
and bladder cancer representing the cancers with generally 
higher TMB. The higher prevalence of mutations in these 
cancer types may reflect higher effects of environmental 
factors on tumorigenesis in these tumor types (82). 

In 2014, Snyder et al. observed that a high TMB in 
patients with melanoma correlated with long term clinical 
benefit upon treatment with CTLA-4 blockade (83). 
Although this study suggested that the neoantigen signature 
might be more relevant than TMB in predicting response, 
this finding was not reproduced in subsequent studies using 
the currently available bioinformatics algorithms (84,85). 
Several subsequent studies demonstrated that mutational 
burden can be a predictor of response to ICPIs in other 
tumor types like lung cancer (86,87), head and neck 
cancer (88) and urothelial cancer (21). In 2017, Yarchoan 
et al. conducted a meta-analysis and found a significant 
correlation between TMB and objective response to PD-1 
blockade in 27 different tumor types (89). In a large study 
of 151 patients, Goodman et al. also found that TMB is an 
independent predictor of response to ICPI therapy in over 
20 different tumor types (90). It has also been demonstrated 
that other mutations and DNA repair defects like dMMR, 
DNA polymerase epsilon (POLE) and DNA polymerase 
delta 1 (POLD1) generate a high TMB and are associated 
with enhanced response to ICPI therapy (91,92). 

Most of the studies demonstrating predictive potential 
of TMB and clinical benefit to ICPI therapy utilized 
whole-exome sequencing (WES) for assessment of TMB. 
Thus, access to testing and its high cost remains a major 
barrier to its practical application. More recently, studies 
have shown that targeted next generation sequencing is 
concordant with WES and may be applicable (93). Another 
limitation of TMB is the lack of a standardized cutoff 
predictive of clinical benefit. It has been postulated that 
different tumor types may have different TMB cutoffs to 
reliably predict response (94) with higher TMB cutoff, 
such as using a cut-off for 20% of cases with the highest 
TMB values for each tumor histology associated with better  
survival (95). Interestingly, it is now recognized that 

mutations are not equally immunogenic with evidence 
suggesting that frameshift mutations may create new open 
reading frames and generate a large number of mutagenic 
neoantigens thereby contributing to a highly immunogenic 
phenotype (96). Further, there remains a concern that TMB 
evaluation may underestimate spatial and intra-tumoral 
heterogeneity. Some of these challenges may be overcome 
by utilizing circulating cell free tumor DNA (ctDNA) shed 
into blood by tumor cells. A recent retrospective analysis of 
two randomized trials (OAK and POPLAR trials) showed 
that blood based TMB (bTMB) may serve as a promising 
alternate predictive biomarker (97). Subsequently, Aggarwal 
et al. (98) utilized a 500 gene NGS panel to assess bTMB 
in a study of 66 patients with metastatic NSCLC initiating 
treatment with first line pembrolizumab based therapy. In 
this study, a bTMB of >16 mutations/megabase pair was 
associated with improved progression free survival. It was 
also noted that concurrent mutations in STK11/KEAP1/
PTEN and ERBB2 can be used as signals for patients with 
high bTMB who are not likely to respond (98). Based on 
this data, TMB has emerged as a promising predicting 
biomarker of response to ICPI therapy but the remaining 
complexities associated with TMB evaluation continue 
to challenge its clinical application. It is best used in a 
composite biomarker setting and further studies to establish 
tumor mutational signatures are needed. 

Immune suppression

Studies have shown that both the tumor mutational signatures 
and their microenvironment contribute to high response 
rates in MSI-high tumors on treatment with ICPIs (99). 
MSI-high colorectal cancers tend to have a highly infiltrated 
population of CD8+ T cells (100). To counterbalance this 
highly immune phenotype, MSI-H colorectal cancers also 
express high levels of immune checkpoints, including PD-
1, PD-L1, CTLA-4, lymphocyte activating 3 (LAG3) and 
IDO1 (99). Although initially thought to be an MHC II 
inhibitor, LAG3 is now known to cause down-modulation 
of lymphocyte response by widespread inhibition of several 
other ligands (101). Studies have shown a strong synergy 
between the PD-1 and LAG3 inhibitory pathways (102). 
Of the several LAG3 inhibitors under development, 
relatlimab is one of the most extensively studied. When 
used in combination with nivolumab, it has been shown to 
have a significant response rate (11.5%) and disease control 
rate (49%) in ICI-pretreated melanoma patients.103 These 
responses correlated with LAG3 expression (103).
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Multiple non-lymphoid cells also inhabit the TME (104). 
In particular, the presence of tumor-associated macrophages 
has emerged as a negative prognostic biomarker (105). 
Enzymes and growth factor receptors on these non-
lymphoid cells are being studied as possible biomarkers and 
targets for immune based therapies. IDO1 is an intracellular 
enzyme that initiates the breakdown of tryptophan that is 
crucial for survival of cytotoxic T cells. It was first shown to 
be a critical factor in development of maternal-fetal immune 
tolerance (106). It has been shown that most human 
tumors constitutively express IDO1 and resist immune  
rejection (107). Due to its well-defined molecular structure 
and functions, IDO1 has generated unparalleled interest 
among novel target directed drug development. Preliminary 
results from a study of combination indoximod and 
sipuleucel-T for patients with refractory metastatic prostate 
cancer showed promising results with improved PFS 
compared to sipuleucel-T alone (108). Although preliminary 
activity was also seen in other tumor types, the first 
large human phase 2/3 trial of an oral IDO1 inhibitor in 
combination with pembrolizumab for advanced melanoma 
showed no indication that IDO1 inhibition provided an 
increased benefit (109). This led to a significant scaling 
back on the trials for IDO inhibitors and its development 
as a biomarker (110). Preclinical studies have shown that 
lung cancer associated fibroblasts are also potentially 
immunosuppressive (111). Targeting these fibroblasts using 
nintedanib in combination with nivolumab and ipilimumab 
in advanced NSCLC is currently being investigated in an 
ongoing phase I/II study (NCT03377023).

Over 100 other molecular targeting multiple pathways 
are currently under investigation (110). There has been 
an exceptional growth of interest in targeting signaling 
pathways in addition to the core checkpoints, but better 
biomarker identification remains a challenge in this arena.

Host environment

Several host factors like germline polymorphisms or host 
microbiome may contribute to a patient’s sensitivity to ICPI 
therapy. 

It is becoming increasingly clear that patients with 
alterations in the tumor DNA damage repair genes 
generate a higher neoantigen load and thus may have a 
favorable response when treated with ICPI (112). Recent 
investigations have shown that patients with germline 
alterations in the DNA double-strand break repair pathways 

exhibit unique immune signatures in their T-cells upon 
induction of DNA damage that may interact with the 
immune response (113,114). This suggests that a patient’s 
ability to repair DNA damage may regulate their response 
to ICPI therapy and further studies are warranted to 
understand this impact of germline mutations. Preclinical 
studies have suggested that human leukocyte antigen class 
I (HLA-I) molecules may act as tumor suppressor genes 
affecting the invasive potential of cancer cells (115,116). 
Heterozygosity in HLA-I loci has also been associated with 
improved survival in patients with advanced cancers with 
varied histologic types after treatment with ICPIs (117). 

Interest in the role of the microbiome as a predictive 
biomarker of response to immunotherapy has grown in the 
recent years (118,119). Studies have shown that differences 
in the composition of the human gut microbiome are noted 
among responders and non-responders to ICPI therapy. 
In two studies (120,121) on patients with metastatic 
melanoma receiving PD-1 blockade therapy, responders 
had significantly higher gut microbiome diversity with 
enrichment of certain species (Akkermansia muciniphila 
in study by Matson et al. and Rumonicococcaceae family, 
Faecalibacterium genus in study by Gopalakrishnan et al). 
Enrichment for these species was also correlated with 
significant higher CD8+ T cells in these tumors suggesting 
enhanced immune response (121). Interestingly, when the 
stool from responders was transplanted into mice, they had 
a higher proportion of CD8+ T cells with a better response 
to ICPI therapy when compared to mice transplanted with 
stool from non-responders. Together, these studies provide 
gripping evidence that the gut microbiome may serve as a 
potential biomarker for response to immune checkpoint 
blockade.

Certain viral infections have also been associated with 
improved response to ICPIs with the hypothesis that viral 
proteins may lead to immune activation. For instance, 
Panda et al. reported a meaningful clinical response in 
a patient with Epstein-Barr virus (EBV) positive gastric 
cancer without high TMB or MSI (122). This observation 
was also supported by an analysis of patients with advanced 
gastric cancer who were treated with pembrolizumab 
as a salvage treatment with dramatic responses seen in 
patients with EBV positive tumors (123). A higher response 
rate to pembrolizumab was seen in patients with human 
papillomavirus (HPV) positive head and neck squamous 
cell cancers (HNSCC) compared to HPV negative  
HNSCC (124). However, these observations of improved 
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response in virally driven cancers are not consistent across 
cancer types or different ICPI agents (125,126). 

Recently, accumulating evidence also suggests that 
combining ICPIs with therapies targeting regulatory 
pathways governing host immune response to ICPIs may 
provide a synergistic effect. Small molecule inhibitors 
targeting histone deacytelases (HDACs) have been shown 
to have complex effects on immune cell function with 
preclinical (127,128) and clinical studies (129,130) showing 
potential therapeutic benefit. Combination immunotherapy 
targeting both tumor vasculature and immune cells has 
also emerged as a promising approach especially in the 
management of RCC (131,132), endometrial cancer (133) 
and hepatocellular carcinoma (HCC) (134). Further, 
combinations of fibroblast growth factor receptor inhibitors 
and immunotherapy are also being investigated in  
NSCLC (135). These combinations can be associated with 
an increase in toxicities compared to ICPI monotherapy 
and the next critical step would be to identify a biomarker 
that helps predict which patients are most likely to benefit 
with the combination regimens.

Conclusions

Despite significant advances in the era of immunotherapy, 
our ability to accurately identify the minority of patients 
who derive benefit from immunotherapy remains very 
limited. Thus, there is a critical need to develop and validate 
biomarkers that better predict response. So far, only PD-
L1 and MMR/MSI testing are FDA-approved as validated 
biomarkers for anti-PD-1/PD-L1 immunotherapy. This is 
partly due to the complex interaction between the multiple 
tumors, host, environmental and immune mechanisms that 
drive response or lack thereof to immune based therapies. 
Another challenge in the development and broader 
application of predictive biomarkers is the significant 
variability in standardization and interpretation of these 
biomarkers as described in this review. Furthermore, the 
targets of these ICPIs are dynamic and change over time 
and location owing to the complex changes in the TME and 
immune milieu. The biomarkers reviewed here represent a 
small fraction of the currently ongoing investigations into 
the mechanisms underlying immune destruction of cancer. 
The development of an effective predictive biomarker 
for checkpoint inhibitor-based immunotherapy will likely 
integrate multimodal approaches with advanced analyses of 
host, tumor, immune and environmental factors.
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