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Background: Epidermal growth factor receptor (EGFR) co-mutated with TP53 could reduce 
responsiveness to tyrosine kinase inhibitors (TKIs) and worsen patients’ prognosis compared to TP53 wild 
type patients in EGFR-mutated lung adenocarcinomas (LUAD). To identify this genetically unique subset 
prior to treatment through computed tomography (CT) images had not been reported yet. 
Methods: Stage III and IV LUAD with known mutation status of EGFR and TP53 from The First 
Affiliated Hospital of Sun Yat-sen University (May 1, 2017 to June 1, 2020) were collected. Characteristics of 
pretreatment enhanced-CT images were analyzed. One-versus-one was used as the multiclass classification 
strategy to distinguish the three subtypes of co-mutations: EGFR+ & TP53+, EGFR+ & TP53−, EGFR−. The 
clinical model, semantic model, radiomics model and integrated model were built. Area under the receiver-
operating characteristic curves (AUCs) were used to evaluate the prediction efficacy.
Results: A total of 199 patients were enrolled, including 83 (42%) cases of EGFR−, 55 (28%) cases of 
EGFR+ & TP53+, 61 (31%) cases of EGFR+ & TP53−. Among the four different models, the integrated model 
displayed the best performance for all the three subtypes of co-mutations: EGFR− (AUC, 0.857; accuracy, 
0.817; sensitivity, 0.998; specificity, 0.663), EGFR+ & TP53+ (AUC, 0.791; accuracy, 0.758; sensitivity, 0.762; 
specificity, 0.783), EGFR+ & TP53− (AUC, 0.761; accuracy, 0.813; sensitivity, 0.594; specificity, 0.977). The 
radiomics model was slightly inferior to the integrated model. The results for the clinical and the semantic 
models were dissatisfactory, with AUCs less than 0.700 for all the three subtypes.
Conclusions: CT imaging based artificial intelligence (AI) is expected to distinguish co-mutation status 
involving TP53 and EGFR. The proposed integrated model may serve as an important alternative marker for 
preselecting patients who will be adaptable to and sensitive to TKIs.
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Introduction 

Lung cancer remains the most common malignancy and 
the leading cause of cancer-related mortality worldwide (1). 
In East Asia, approximately one third of all lung cancer 
patients are never-smokers and predominantly with female 
gender (2-5). These patients are more often diagnosed with 
adenocarcinoma and epidermal growth factor receptor 
(EGFR) activating mutations (2,4,6,7). Patients with this 
genotype usually confer exquisite sensitivity to tyrosine 
kinase inhibitors (TKIs) (8,9), and EGFR mutation has 
become the most important molecular marker for TKI 
therapy selection (9,10). However, approximately 20–30% 
non-small cell lung cancer (NSCLC) patients harboring 
EGFR mutation are primary resistance to TKIs (11) and 
not all the patients show equal response to TKIs. Recently, 
some studies found that multiple primary driver gene 
mutations, such as EGFR and TP53, could affect patients’ 
prognosis and response to TKIs (12,13). They deem that 
identifying mutation types in different combinations can 
help to select best responders to target therapy. Primary 
multiple mutations may be an important factor that affects 
curative efficacy of TKI in NSCLC patients.

TP53, encoding the p53 protein known as a tumor 
suppressor gene in preventing and suppressing of abnormal 
cell growth, is the most frequently mutated gene in 
NSCLC, with mutation rates up to approximately 40% 
in lung adenocarcinoma (LUAD) (14-16). So far, there 
are a series of clinical studies (12,13) focused on primary 
overlapping mutations involving TP53. They found that, 
in EGFR-mutated NSCLC patients treated with TKIs, 
EGFR co-mutated with TP53 could reduce responsiveness 
to TKIs and worsen patients’ prognosis compared to TP53 
wild type patients, with almost a fourfold risk of disease 
progression (12). Primary TP53 overlapping mutation 
may play a potential role in TKI resistance and act as an 
important factor in determining TKI sensitivity. Thus, 
to identify this genetically unique subset of lung cancer 
patients prior to treatment is of great clinical significance.

Tissue biopsy based mutational sequencing have become 
the gold standard of driver-gene mutation detection. 
However, it still has some shortcomings with regards to the 
situation of overlapping mutations. First, gene types depend 
on the scale of the testing panel. In some institutes, TP53 

may not be routinely detected and large panel sequencing 
is a heavy financial burden for patients in the developing 
countries. In addition, intolerance of repeated biopsies and 
difficulty of accessing tissue samples limits its applicability 
and impedes dynamic molecular monitoring. Therefore, 
to identify an alternative tool to predict TP53 co-mutation 
status in EGFR-mutated LUAD is necessary.

Computed tomography (CT) as a routinely used 
technique has been wildly studied in lung cancer diagnosis 
and therapeutic effect evaluation. Recently, with the rapid 
development of artificial intelligence technique in the field 
of medical imaging, CT derived imaging features have been 
reported to be a noninvasive biomarker to predict gene 
expression patterns in lung cancer patients (17,18), and 
EGFR is the most commonly studied gene and the method 
showed predictive power (19-21). Therefore, it is feasible to 
predict overlapping mutations based on CT features.

Based on previous studies and considering the impact of 
co-mutation status of TP53 on therapeutic efficacy of TKIs 
in EGFR-mutated LUAD, we aimed to noninvasively identify 
the genetically unique subsets concerned EGFR and TP53, to 
help preselect the best responders to TKIs via pretreatment 
CT images. To the best of our knowledge, this approach 
has not been previously reported. We present the following 
article in accordance with the STARD reporting checklist 
(available at http://dx.doi.org/10.21037/atm-20-6473).

Methods

Cohorts and clinical characteristics

Advanced LUAD [American Joint Committee on Cancer 
(AJCC) stage III and IV] patients with known mutation 
status of EGFR and TP53 were collected from The First 
Affiliated Hospital of Sun Yat-sen University (May 1, 
2017 to June 1, 2020). This project was approved by the 
Ethics Committee and Institutional Review Board of Sun 
Yat-sen University {No.[2013]C-084}. Informed consent 
was waived. This study conformed to the provisions of 
the Declaration of Helsinki (as revised in 2013) (available 
at https://www.wma.net/wp-content/uploads/2016/11/
DoH-Oct2013-JAMA.pdf). The study patients were 
confirmed by biopsy of the original tumor tissue, as well 
as immunohistochemistry. Metastasis were evaluated by 
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contemporaneous multi-site CT/magnetic resonance 
imaging (MRI) or positron emission tomography (PET)-
CT scans of the whole body. All the enrolled patients 
were first-visit and prior to treatment. CT images were 
acquired within one week after admission and before 
therapy. Patients previously treated were excluded in this 
study. Patient enrollment algorithm is shown in detail in 
Figure 1. Cohort clinical characteristics are demonstrated 
in Table 1. Patients were categorized into three subtypes 
according to the mutation status of EGFR and TP53: EGFR 
positive combined with TP53 positive (EGFR+ & TP53+); 
EGFR positive combined with TP53 negative (EGFR+ & 
TP53−); EGFR negative (EGFR−), including EGFR negative 
combined with TP53 positive or TP53 negative. The aim 
of this study is to prescreen the potential best responders to 
TKI therapy which is not recommended for EGFR negative 
patients. Therefore, TP53 overlapping mutation analysis is 
not performed in EGFR negative group.

Next-generation sequencing (NGS) for gene status

Archival tissue from 199 patients was adequate for 

assessment of genetic analyses including TP53, EGFR, 
etc. mutational status by NGS. Genomic profiling was 
performed by using a commercially available capture 
based targeted sequencing panel (Burning Rock Biotech 
Ltd., Guangzhou, China), targeting at least 13 genes 
and spanning 1.44 MB of human genomic regions. The 
mutations found were confirmed by a second, independent 
analysis.

Scan protocol

All preoperative enhanced chest CT images were obtained 
with multidetector CT scanners (Aquilion 64, Canon 
Medical Systems, Otawara, Japan) during inspiration. Scan 
parameters: tube voltage of 120 kVp; maximum of 500 mA  
with automatic tube current modulation. Axial thin-
section CT images of the whole lung were reconstructed 
with a section thickness of 1.0 mm at the same increment. 
Iopromide (300 mg I/mL, Schering Pharmaceutical Ltd.) 
was used as the contrast agent for enhanced scanning 
protocol, and 80–100 mL was injected at 3–4 mL/s flow 
rate. In order to ensure the uniformity of image features 

Figure 1 Flowchart of patient enrollment. LUAD, lung adenocarcinomas; CT, computed tomography; EGFR, epidermal growth factor 
receptor.

Stage III, IV LUAD patients (n=357)

Study cohort (n=199)

Stage III, IV untreated LUAD with known EGFR and TP53 

mutation status (n=228)

EGFR+ & TP53+ (n=55) EGFR+ & TP53− (n=61) EGFR− (n=83)

With any kind of prior therapy (n=89)

CT images unavailable (n=17)

Gene sequencing unavailable (n=40)

Non-enhanced CT images (n=4)

Imaging thickness other than 1 mm (n=8)
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Table 1 Clinicopathological characteristics of patients with advanced LUAD

Characteristics

Training cohort Validation cohort

EGFR − (n=66)

EGFR+

P EGFR− (n=17)

EGFR+

PTP53+ 
(n=44)

TP53− 
(n=49)

TP53+  
(n=11)

TP53− 
(n=12)

Age (years), n (%) 0.249 0.739 

<60 23 (34.9) 22 (50.0) 18 (36.7) 8 (47.1) 5 (45.5) 4 (33.3)

≥60 43 (65.2) 22 (50.0) 31 (63.3) 9 (52.9) 6 (54.6) 8 (66.7)

Gender, n (%) 0.000* 0.006*

Female 17 (25.8) 21 (47.7) 33 (67.4) 2 (11.8) 5 (45.5) 8 (66.7)

Male 49 (74.2) 23 (52.3) 16 (32.7) 15 (88.2) 6 (54.6) 4 (33.3)

Smoking status, n (%) 0.012* 0.004*

Non-smokers 24 (36.4) 27 (61.4) 29 (59.2) 6 (35.3) 8 (72.7) 11 (91.7)

Current/former smokers 42 (63.6) 17 (38.6) 20 (40.8) 11 (64.7) 3 (27.3) 1 (8.3)

AJCC stage, n (%) 0.146 0.539 

III 26 (39.4) 13 (29.6) 11 (22.5) 7 (41.2) 5 (45.5) 3 (25.0)

IV 40 (60.6) 31 (70.5) 38 (77.6) 10 (58.8) 6 (54.6) 9 (75.0)

T stage, n (%) 0.473 0.956 

T1 13 (19.7) 11 (25.0) 9 (18.4) 2 (11.8) 2 (18.2) 1 (8.3)

T2 13 (19.7) 11 (25.0) 14 (28.6) 4 (23.5) 3 (27.3) 4 (33.3)

T3 12 (18.2) 4 (9.1) 3 (6.1) 6 (35.3) 2 (18.2) 3 (25.0)

T4 28 (42.4) 18 (40.9) 23 (46.9) 5 (29.4) 4 (36.4) 4 (33.3)

N stage, n (%) 0.064 0.181 

N0 8 (12.1) 4 (9.1) 10 (20.4) 2 (11.8) 0 (0.0) 2 (16.7)

N1 2 (3.0) 7 (15.9) 1 (2.0) 0 (0.0) 2 (18.2) 0 (0.0)

N2 35 (53.0) 21 (47.7) 28 (57.1) 7 (41.2) 6 (54.6) 5 (41.7)

N3 21 (31.8) 12 (27.3) 10 (20.4) 8 (47.1) 3 (27.3) 5 (41.7)

Metastasis, n (%)

Bone 12 (18.2) 11 (25.0) 21 (42.9) 0.012* 8 (47.1) 2 (18.2) 1 (8.3) 0.044*

Lung 11 (16.7) 16 (36.4) 16 (32.7) 0.042* 6 (35.3) 0 (0.0) 1 (8.3) 0.017*

Pleural 19 (28.8) 10 (22.7) 26 (53.1) 0.004* 5 (29.4) 8 (72.7) 3 (25.0) 0.032*

Adrenal gland 6 (9.1) 5 (11.4) 1 (2.0) 0.138 5 (29.4) 2 (18.2) 2 (16.7) 0.666 

Brain 7 (10.6) 10 (22.7) 3 (6.1) 0.052 2 (11.8) 5 (45.5) 2 (16.7) 0.113 

Liver 4 (6.1) 4 (9.1) 2 (4.1) 0.611 1 (5.9) 1 (9.1) 0 (0.0) 0.455 

Other sites 9 (13.6) 6 (13.6) 6 (12.2) 0.972 1 (5.9) 2 (18.2) 1 (8.3) 0.581 

*, P value <0.05. AJCC, American Joint Committee on Cancer; LUAD, lung adenocarcinomas; EGFR, epidermal growth factor receptor.
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extracted by machine learning and to avoid feature 
extraction bias, patients with imaging thickness other than 
1mm were excluded in our study, as shown in Figure 1.

Semantic CT characteristics

Enhanced chest CT images were acquired within one 
week prior to treatment and the CT imaging features were 
evaluated by three experienced chest radiologists (XY Yang, 
DD Chang and X Wu, with experience of 21, 13 and 25 
years respectively) through PACS reading workstation 
blinded to gene mutation status to control potential bias. 
The order of all patients was disrupted during analysis. 
Consensus was reached when the radiologists disagreed.

Semantic CT imaging characteristics for evaluation 
inc luded (Table  2 )  maximum diameter ;  locat ion; 
morphology; contour; shape; enhanced attenuation 
[Hounsfield units (HU)]; presence of ground-glass opacity 
(GGO), peri-lesion emphysema, air bronchogram, 
bubble-like lucency, lobulation, spiculation, pleural tag, 
vascular convergence, vascular involvement, homogenous 
attenuation, pleural effusion. 

Imaging features designation: maximum diameter 
indicated maximal axial size (mm); axial location were 
classified as inner, middle or peripheral region of the 
lung lobe; presence of GGO indicated GGO component 
surrounded or within the tumor; peri-lesion emphysema 
indicated concurrent emphysema of any cause; bubble-
like lucency indicated the presence of air in the tumor; 
homogenous attenuation indicated the density of the lesion 
was homogenous after contrast administration and without 
definite necrosis; vascular involvement indicated vessels 
were narrowed, occluded, or encased by tumor tissue.

Lesion segmentation and radiomics features extraction

All enhanced CT images were manually segmented with 
an open-source software ITK-SNAP (http://www.itksnap.
org/pmwiki/pmwiki.php) to obtain whole lesion’s three-
dimensional volume segmentation of interest (VOI), which 
will be used for further feature extraction. DICOM data 
from two hospitals were blinded together and outlined by a 
chest radiologist (DD Chang) with 13 years of experiences, 
and then validated by a senior chest radiologist (X Wu) with 
25-year experience. 

The flow chart of radiomics model building was 
illustrated in Figure 2. Radiomic features were extracted with 
an open-source python platform Pyradiomics (version 2.1.2, 

https://pyradiomics.readthedocs.io/en/latest/#). Features 
used in this study include the following three classes: (I) 
shaped-based features (14 features): descriptions of three 
dimensional size and shape of VOI; (II) first order statistics 
features (18 features): distribution of voxel intensities within 
the image region from gray-level histogram of HU; (III) 
texture features in total 68 features including the gray-level 
co-occurrence matrix (GLCM, 22 features), gray level run 
length matrix (GLRLM, 16 features), gray level size zone 
matrix (GLSZM, 16 features) and gray level dependence 
matrix (GLDM, 14 features). Besides the original image, 15 
filtered images were also generated for feature extraction, 
including wavelet transform filter (eight decompositions 
with low and high frequencies), Laplacian of Gaussian filter 
over three-sigma levels (1.0, 3.0, 5.0); square filter; square 
root filter; logarithm filter; gradient filter. All the feature 
classes, with the exception of shape, were calculated on 
the original and filtered images. Therefore, in this study, 
(18+68+14) + (18+68) ×15=1,390 features were statistically 
analyzed.

Prediction models and workflow

All the patients were randomly split into training (80%) 
and testing set (20%). And all feature selections, classifiers 
establishment were based by the data in the training dataset 
to ensure independence from testing dataset. 

Since the gene status of LUAD were classified into 
three groups, traditional machine learning based classifiers, 
including support vector machine (SVM), k-nearest 
neighbors (KN), random forest (RF), decision tree (DT), 
logistic regression (LR), were applied to build multiclass 
models. The performance was compared by using 5-fold 
cross-validation in the training cohort, with the best one 
being selected. One-versus-one was used here as the 
multiclass classification strategy, where the problem consists 
in using many binary classifiers to discriminate between 
each pair of classes, then the final result was predicted by 
the combination of the outputs of these base classifiers. In 
this study, these 3 base binary classifiers were: (EGFR+ & 
TP53+) vs. (EGFR+ & TP53−); (EGFR+ & TP53+) vs. (EGFR−); 
(EGFR+ & TP53−) vs. (EGFR−). The flowchart of feature 
selection and model building was shown in Figure 2. Four 
types of models were built for the comparison in classifiers: 
(I) clinical features only, represented by clinical model; (II) 
semantic features only, represented by semantic model; (III) 
radiomics features only, represented by radiomics model; 
(IV) clinical & semantic & radiomics features, represented 

http://www.itksnap.org/pmwiki/pmwiki.php
http://www.itksnap.org/pmwiki/pmwiki.php
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Table 2 CT Characteristics of patients with advanced LUAD

Characteristics

Training cohort Validation cohort

EGFR− (n=66)

EGFR+

P EGFR− (n=17)

EGFR+

PTP53+  
(n=44)

TP53− 
(n=49)

TP53+  
(n=11)

TP53− 
(n=12)

Maximum diameter (mm), 
median (IQR)

38.8 (23.4, 51.0) 34.7 (20.3, 
41.0)

41.9 (26.0, 
50.1)

0.124 39.4 (21.0, 62.6) 42.4 (28.3, 
47.1)

43.3 (29.3, 
56.5)

0.259

Axial location, n (%) 0.107 0.863

Inner 33 (50.0) 19 (43.2) 27 (55.1) 7 (41.2) 4 (36.4) 5 (41.7)

Middle 21 (31.8) 8 (18.2) 12 (24.5) 6 (35.3) 3 (27.3) 5 (41.7)

Peripheral 12 (18.2) 17 (38.6) 10 (20.4) 4 (23.5) 4 (36.4) 2 (16.7)

Lobar location, n (%) 0.896 0.916

RUL 14 (21.2) 13 (29.6) 14 (28.6) 4 (23.5) 4 (36.4) 5 (41.7)

RML 8 (12.1) 6 (13.6) 8 (16.3) 2 (11.8) 1 (9.1) 1 (8.3)

RLL 19 (28.8) 8 (18.2) 10 (20.4) 4 (23.5) 3 (27.3) 2 (16.7)

LUL 15 (22.7) 10 (22.7) 12 (24.5) 5 (29.4) 3 (27.3) 3 (25.0)

LLL 10 (15.2) 7 (15.9) 5 (10.2) 2 (11.8) 0 (0.0) 1 (8.3)

Morphology, n (%) 0.339 0.916

Nodule (<3 cm) 29 (43.9) 15 (34.1) 24 (49.0) 4 (23.5) 2 (18.2) 3 (25.0)

Mass (≥3 cm) 37 (56.1) 29 (65.9) 25 (51.0) 13 (76.5) 9 (81.8) 9 (75.0)

Contour, n (%) 0.399 0.575

Smooth 37 (56.1) 20 (45.5) 22 (44.9) 8 (47.1) 6 (54.6) 4 (33.3)

Unsmooth 29 (43.9) 24 (54.6) 27 (55.1) 9 (53.0) 5 (45.5) 8 (66.7)

Shape, n (%) 0.982 0.208

Round/oval 41 (62.1) 27 (61.4) 31 (63.3) 14 (82.4) 6 (54.6) 7 (58.3)

Irregular 25 (37.9) 17 (38.6) 18 (36.7) 3 (17.7) 5 (45.5) 5 (41.7)

Presence of GGO, n (%) 8 (12.1) 5 (11.4) 15 (30.6) 0.016* 3 (17.7) 1 (9.1) 5 (41.7) 0.149

Peri-lesion emphysema, n (%) 11 (16.7) 9 (20.5) 14 (28.6) 0.301 5 (29.4) 2 (18.2) 0 (0.0) 0.048*

Air bronchogram, n (%) 20 (30.3) 20 (45.5) 35 (71.4) 0.000* 5 (29.4) 8 (72.7) 9 (75.0) 0.018*

Bubble-like lucency, n (%) 12 (18.2) 9 (20.5) 11 (22.5) 0.851 1 (5.9) 3 (27.3) 4 (33.3) 0.119

Lobulation, n (%) 59 (89.4) 41 (93.2) 44 (89.8) 0.770 13 (76.5) 10 (90.9) 9 (75.0) 0.526

Spiculation, n (%) 64 (97.0) 44 (100.0) 45 (91.8) 0.065 17 (100.0) 9 (81.8) 10 (83.3) 0.092

Pleural tag, n (%) 59 (89.4) 41 (93.2) 45 (91.8) 0.775 11 (64.7) 8 (72.7) 7 (58.3) 0.767

Vascular convergence, n (%) 32 (48.5) 25 (56.8) 42 (85.7) 0.000* 14 (82.4) 9 (81.8) 5 (41.7) 0.043*

Vascular involvement, n (%) 19 (28.8) 10 (22.7) 5 (10.2) 0.054 6 (35.3) 5 (45.5) 2 (16.7) 0.301

Homogenous attenuation, n 
(%)

49 (74.2) 31 (70.5) 45 (91.8) 0.022* 12 (70.6) 9 (81.8) 3 (25.0) 0.009*

Pleural effusion, n (%) 22 (33.3) 17 (38.6) 21 (42.9) 0.575 7 (41.2) 3 (27.3) 4 (33.3) 0.743

*, P value <0.05. CT, computed tomography; LUAD, lung adenocarcinomas; EGFR, epidermal growth factor receptor; RUL, right upper lobe; 
RML, right middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, left lower lobe; GGO, ground-glass opacity; IQR, interquartile range.
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Figure 2 The flowchart of feature selection and model building. LUAD, lung adenocarcinomas; CT, computed tomography; EGFR, 
epidermal growth factor receptor; KN, k-nearest neighbors; SVM, support vector machine; RF, random forest; DT, decision tree; LR, 
logistic regression.
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by integrated model.

Feature selection

Feature selection was performed separately for each type of 
features. Three steps were applied to reduce dimensionality: 
(I) features with variance larger than 0.8 were included for 
further analysis; (II) univariate feature selection is done by 
ANOVA (continuous variable) or chi-square test (discrete 
variable) to explore the associations between features and 
genotype. The features with P value above 0.05 were 
excluded from further analysis; (III) the most significant 
features were selected by the least absolute shrinkage and 
selection operator (LASSO) method, which is very effective 
to reduce dimensionality. For clinical model and semantic 
model, since the features number before selection was 
small, only step one was applied for feature reduction. For 
radiomics model and integrated model, all three steps were 
executed, and the nonzero feature coefficients ranking the 
first five were selected for each binary classifier to avoid 
overfitting.

Statistical analysis

Statistical analyses were performed by using SPSS 22.0 
(IBM, USA). Continuous variables were expressed as 
median [interquartile range (IQR)]. Categorical variables 
were displayed as frequency, n (%). All machine learning 
analyses were performed using the Python package scikit-
learn (0.19.0), and statistical plots were generated by 
Matplotlib (2.0.2). Area under the receiver-operating 
characteristic curves (AUCs) were calculated to evaluate the 
binary classifiers, and the best ones were applied for the final 
result. Statistical metrics, including accuracy, sensitivity, 
specificity, precision, recall, F1 score, were also calculated to 
evaluate the overall performance of the multiclass classifier. 
These statistical metrics for multiclass classification were 
defined similar as those for binary classification. It should 
be noted that once we picked up one category as positive, 
the other two are automatically negative. The Youden 
Index was used to generate the optimal threshold to convert 
probabilities into binarized labels.

Results

Basic clinical and semantic CT imaging characteristics

A total of 199 patients were included in our study, including 

66 (41.5%) cases of EGFR−, 44 (27.7%) cases of EGFR+ & 
TP53+, 49 (30.8%) cases of EGFR+ & TP53− in the training 
cohort and 17 (42.5%) cases of EGFR−, 11 (27.5%) cases of 
EGFR+ & TP53+, 12 (30.0%) cases of EGFR+ & TP53− in the 
validation cohort. Patient clinicopathological characteristics 
in the training and validation cohorts are given in Table 1. 
Gender, smoking status, bone metastasis, lung metastasis, 
pleural metastasis shows significant differences between the 
three groups both in the training and validation cohorts, 
with P value <0.05 respectively.

For the three groups of EGFR−, EGFR+ & TP53+, 
EGFR+ & TP53−, the detailed information of semantic CT 
imaging characteristics before treatment in the training 
and validation cohorts are given in Table 2. The differences 
in air bronchogram, vascular convergence, homogenous 
attenuation between the three groups both in the training 
and validation cohorts are significant. Presence of GGO 
shows significant differences in the training cohort and 
peri-lesion emphysema shows significant differences in the 
validation cohort.

Feature selection and the performance of base binary 
classifiers

The selected features for the clinical, semantic, radiomics, 
and integrated models were shown in Table 3. Each group 
contained three different base binary classifiers used in 
multiclass classifier.

Algorithms of SVM, KN, RF, and LR were applied to 
build base binary classifiers using selected features from the 
training cohort, and their performance were compared. We 
selected the SVM algorithm with the best performance for 
the training dataset as shown in Table 4, and all the analysis 
and validation were based on it. The Radial basis function 
(RBF) kernel, also called the RBF kernel, were utilized in 
the SVM algorithm, and the key hyperparameters gamma 
and C values were shown in Table S1. For the SVM model, 
the results indicated that the AUCs were 0.731, 0.653, 0.843 
for the three base binary classifiers in the clinical model, and 
the values were 0.792, 0.613, 0.781 for the semantic model. 
The radiomics model yielded relatively higher efficacy, 
with AUCs of 0.785, 0.771, and 0.812, compared with the 
former two models. When integrating all the information, 
the performance of the model was improved, with AUCs of 
0.831, 0.767, and 0.892. Moreover, it revealed that it would 
be possible to differentiate precisely (EGFR+ & TP53−) from 
(EGFR−), with >0.780 AUC across all models. Moderate 
performance was achieved in differentiating (EGFR+ & 

https://cdn.amegroups.cn/static/public/ATM-20-6473-supplementary.pdf


Annals of Translational Medicine, Vol 9, No 7 April 2021 Page 9 of 15

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(7):545 | http://dx.doi.org/10.21037/atm-20-6473

Table 3 Feature selection for the four different models

Model EGFR+ & TP53+ vs. EGFR+ & TP53− EGFR+ & TP53+ vs. EGFR− EGFR+ & TP53− vs. EGFR−

Clinical model Gender Gender Gender

Smoking status Smoking status Smoking status

Bone metastasis Bone metastasis Bone metastasis

Pleural metastasis Pleural metastasis Pleural metastasis

Lung metastasis Lung metastasis Lung metastasis

Semantic model Vascular convergence Vascular convergence Vascular convergence

Air bronchogram Air bronchogram Air bronchogram

Homogenous attenuation Homogenous attenuation Homogenous attenuation

Pleural effusion Peri-lesion emphysema Peri-lesion emphysema

Presence of GGO Vascular involvement Pleural effusion

Radiomics model log-sigma-5-0-mm-3D_glrlm_
HighGrayLevelRunEmphasis

log-sigma-5-0-mm-3D_gldm_SmallDep
endenceHighGrayLevelEmphasis

wavelet-LLH_firstorder_Maximum

log-sigma-5-0-mm-3D_glszm_
SmallAreaHighGrayLevelEmphasis

wavelet-LLL_firstorder_Median wavelet-HLH_gldm_SmallDependenc
eHighGrayLevelEmphasis

wavelet-LLH_firstorder_Maximum wavelet-HHL_gldm_SmallDependence
HighGrayLevelEmphasis

wavelet-LLL_firstorder_Range

wavelet-LHL_glrlm_
ShortRunHighGrayLevelEmphasis

wavelet-HLH_firstorder_Skewness  wavelet-LLH_gldm_
DependenceVariance

wavelet-HLH_glszm_
GrayLevelNonUniformity

wavelet-HLL_firstorder_Maximum wavelet-HLL_firstorder_Skewness  

Integrated model Pleural metastasis Gender Gender

Vascular convergence log-sigma-5-0-mm-3D_gldm_SmallDep
endenceHighGrayLevelEmphasis

Smoking status

log-sigma-5-0-mm-3D_glrlm_
HighGrayLevelRunEmphasis 

log-sigma-3-0-mm-3D_glrlm_
ShortRunHighGrayLevelEmphasis

Air bronchogram

log-sigma-5-0-mm-3D_glszm_
SmallAreaHighGrayLevelEmphasis

wavelet-HHL_gldm_SmallDependence
HighGrayLevelEmphasis

wavelet-LLH_firstorder_Maximum

wavelet-LHL_glrlm_
ShortRunHighGrayLevelEmphasis

wavelet-HLH_firstorder_Skewness wavelet-LLH_gldm_
DependenceVariance

GGO, ground-glass opacity.

TP53+) from (EGFR+ & TP53−), (EGFR+ & TP53+) from 
(EGFR−), except the poor accuracy was achieved when 
discriminating (EGFR+ & TP53+) from (EGFR−) using the 
clinical (AUC, 0.653±0.112) and semantic model (AUC, 
0.613±0.057).

Multiclass classification strategy

The performance of the multiclass classification for the 

validation dataset, in our study was three-type classification, 
was shown in Table 5 and Figure 3. When AUCs were used 
to evaluate the distinguishing efficacy of the models, the 
integrated model displayed the best performance for all 
the three subtypes of co-mutations: EGFR− (AUC, 0.857; 
accuracy, 0.817; sensitivity, 0.998; specificity, 0.663), EGFR+ 
& TP53+ (AUC, 0.791; accuracy, 0.758; sensitivity, 0.762; 
specificity, 0.783), EGFR+ & TP53− (AUC, 0.761; accuracy, 
0.813; sensitivity, 0.594; specificity, 0.977). Although the 
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Table 5 Comparison of the final performance of multiclass classifiers among the four different models

Model Subcategories Accuracy Sensitivity Specificity Precision Recall F1 score AUC

Clinical model EGFR+ & TP53+ 0.501 0.765 0.477 0.314 0.781 0.433 0.483

EGFR+ & TP53− 0.723 0.809 0.653 0.534 0.806 0.621 0.685

EGFR− 0.617 0.813 0.521 0.538 0.814 0.652 0.659

Semantic model EGFR+ & TP53+ 0.406 0.891 0.207 0.354 0.895 0.427 0.301

EGFR+ & TP53− 0.502 0.899 0.273 0.368 0.901 0.547 0.461

EGFR− 0.606 0.772 0.513 0.562 0.798 0.611 0.609

Radiomics 
model

EGFR+ & TP53+ 0.842 0.528 0.957 0.816 0.571 0.693 0.762

EGFR+ & TP53− 0.773 0.829 0.687 0.594 0.802 0.681 0.753

EGFR− 0.796 0.728 0.816 0.792 0.727 0.765 0.836

Integrated 
model

EGFR+ & TP53+ 0.758 0.762 0.783 0.569 0.791 0.672 0.791

EGFR+ & TP53− 0.813 0.594 0.977 0.782 0.592 0.674 0.761

EGFR− 0.817 0.998 0.663 0.694 0.989 0.831 0.857

EGFR, epidermal growth factor receptor; AUC, area under the receiver-operating characteristic curve.

Table 4 Comparison of the AUCs obtained from base binary classifiers using the different algorithms among the four models

Model Subcategories EGFR+ & TP53+ vs. EGFR+ & TP53− EGFR+ & TP53+ vs. EGFR− EGFR+ & TP53− vs. EGFR−

Clinical model 0.731±0.106 0.653±0.112 0.843±0.087 0.843±0.087

0.651±0.080 0.573±0.154 0.796±0.115 0.796±0.115

0.720±0.121 0.684±0.172 0.829±0.007 0.829±0.007

0.552±0.049 0.668±0.121 0.789±0.033 0.789±0.033

0.668±0.139 0.652± 0.107 0.807±0.024 0.807±0.024

Semantic model 0.792±0.126 0.613±0.057 0.781±0.114 0.781±0.114

0.739±0.108 0.562±0.131 0.785±0.043 0.785±0.043

0.741±0.054 0.525±0.018 0.797±0.021 0.797±0.021

0.733±0.062 0.521±0.004 0.759±0.025 0.759±0.025

0.782±0.123 0.467±0.011 0.767±0.109 0.767±0.109

Radiomics model 0.785±0.112 0.771±0.103 0.812±0.068 0.812±0.068

0.734±0.101 0.719±0.005 0.663±0.082 0.663±0.082

0.781±0.002 0.801±0.021 0.667±0.035 0.667±0.035

0.759±0.056 0.712±0.003 0.631±0.101 0.631±0.101

0.779±0.047 0.751±0.065 0.792±0.003 0.792±0.003

Integrated model 0.831±0.049 0.767±0.106 0.892±0.055 0.892±0.055

0.803±0.061 0.772±0.056 0.889±0.011 0.889±0.011

0.812±0.033 0.674±0.058 0.858±0.107 0.858±0.107

0.769±0.007 0.741±0.092 0.811±0.102 0.811±0.102

0.794±0.066 0.778±0.083 0.880±0.095 0.880±0.095

EGFR, epidermal growth factor receptor; AUC, area under the receiver-operating characteristic curve, expressed by mean ± standard 
deviation; SVM, support vector machine; KN, k-nearest neighbors; RF, random forest; DT, decision tree; LR, logistic regression.
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Figure 3 The performance of the three-type classifier. (A) ROC curves of the four different models for distinguishing the co-mutation 
status of EGFR+ & TP53+. (B) ROC curves of the four different models for distinguishing the co-mutation status of EGFR+ & TP53−. (C) 
ROC curves of the four different models for distinguishing the co-mutation status of EGFR−. Area under the ROC curves (AUCs) were used 
to evaluate the distinguishing efficacy of the four different models. The integrated model displayed the best performance for all the three 
subtypes of co-mutation status. ROC, receiver-operating characteristic; EGFR, epidermal growth factor receptor.

A B

C

integrated model showed the best prediction efficiency, 
the radiomics model showed only a slight decrease for 
all the three subtypes compared with it: EGFR− (AUC, 
0.836; accuracy, 0.796; sensitivity, 0.728; specificity, 0.816), 
EGFR+ & TP53+ (AUC, 0.762; accuracy, 0.842; sensitivity, 
0.528; specificity, 0.957), EGFR+ & TP53− (AUC, 0.753; 
accuracy, 0.773; sensitivity, 0.829; specificity, 0.687). The 
clinical model and the semantic model showed unsatisfied 
distinguishing efficiency, with AUCs less than 0.700 for all 
the three subtypes. 

Discussion

In the present study, we developed and validated a 
multiclass classification strategy for the pretherapeutic 
individualized prediction of primary overlapping mutations 
involving TP53 and EGFR in advanced LUAD. The 

integrated model is promising to distinguish EGFR+ & 
TP53+, EGFR+ & TP53−, EGFR−, with AUC more than 0.750. 
According to recent studies, in EGFR-mutated NSCLC 
patients treated with TKIs, EGFR co-mutated with TP53 
could reduce responsiveness to TKIs and worsen patients’ 
prognosis compared to TP53 wild type patients (12,13). 
Identify mutation types in different combinations can help 
to select best responders to target therapy. The model built 
by our team has the potential to preselect patients who will 
be sensitive to TKI therapy and patients who may have a 
better clinical outcome. Our study provided an alternative 
way to non-invasively assess TP53 genotype combined with 
EGFR, offered a great supplement to biopsy. To the best of 
our knowledge, this is the first study to predict overlapping 
mutations regarding TP53 based on CT images, it may 
serve as an alternative marker to select the best responders 
to TKIs in EGFR-mutated LUAD.
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So far, there have been many studies reported the 
correlation between imaging features and somatic mutations 
(22-31) as well as molecular expression (32). Image as 
a non-invasive method has great potency in predicting 
genotype and molecular for many kinds of tumors, it 
is likely to become an important alternative marker for 
treatment decision making. For lung cancer, most previous 
studies focus on the predictive value of CT features on 
EGFR mutation (22-27), and achieved favourable outcome, 
with AUC more than 0.800 (22). The established models 
may be helpful in selecting patients who will be adaptable to 
TKIs prior to treatment. Considering the potential impact 
of TP53 mutation on the therapeutic effect of TKI, further 
attention should be paid to the co-mutation status of TP53. 
We try to apply the multiclass classification strategy to solve 
the problem of overlapping mutations involving EGFR and 
TP53. The model proposed by our team can predict of the 
specific three mutational status by one step. Therefore, our 
model extends the potential application value of the existed 
model, it can better help to select the best responders to 
TKI therapy.

Several studies have explored the correlation between 
imaging features and TP53 mutation in some kinds 
of cancers, including LUAD (33), pancreatic ductal 
adenocarcinoma (34,35), head and neck cancer (36), 
colorectal cancer (37), glioma (38). In the study conducted 
by Wang et al. (33), they enrolled 51 patients with 
resectable early stage LUAD. The radiomics signature 
yielded a median AUC value of 0.604, and 0.586 
respectively in predicting EGFR and TP53 mutations. The 
combined radiomics and clinical model further improved 
the prediction performance, with AUC 0.697 for EGFR 
mutation, and 0.656 for TP53 mutation, respectively. 
Different from their study, we focused on advanced LUAD 
which may need TKI therapy if a sensitive gene mutation 
is detected. As for TP53, we studied the overlapping 
mutation status of EGFR and TP53, instead of predicting 
the mutation status of EGFR and TP53 alone. Despite 
the concurrent TP53 genomic alteration in EGFR mutant 
LUAD demonstrated distinctive therapeutic responses to 
TKIs, so far there is no relevant predicting biomarkers 
to distinguish this co-mutation condition. The multiclass 
classification radiomics model proposed by our team may 
be an auxiliary in screening the best responder to TKIs in 
advanced lung cancer.

In this study, the proposed multiclass classification 
radiomics model provides potential clinical utility from the 
following perspectives. (I) The proposed radiomics model 

can be used as an alternative tool to noninvasively predict 
TP53 genotype easily through routine CT images which is 
necessary for lung cancer patients to perform pretherapeutic 
staging, without adding cost. (II) As well studied by other 
researchers that CT-based imaging features can predict 
EGFR genotype (19,39-42), thus further distinguish 
TP53 genotype at the same time becomes feasible. This is 
promising for patients who are unable to afford large panel 
sequencing due to poor economic conditions. (III) For 
patients who have poor response to TKI therapy during 
treatment and are unwilling to conduct re-biopsy for 
repetitive sequencing or unable to acquire enough tumor 
tissue for re-biopsy, the proposed model is an alternative for 
treatment decision making. This approach makes dynamic 
molecular diagnosis and timely adjustment of treatment 
possible. (IV) Although there is no targeted drug for TP53 
co-mutation at present, with the rapid development of 
treatment modalities for advanced lung cancer, there may 
be some new therapeutic regimens for the clinical condition 
of TP53 overlapping mutation in the future to improve 
patient prognosis. 

Despite the encouraging and promising findings of 
our present study, it still has several limitations. First, our 
findings deserve further study with expanded samples and 
extra external validation. A large-scale study enrolling 
more patients may definitely help validate and improve its 
applicability as an effective prediction tool for predicting 
TP53 genotype in treatment decision making for LUAD. 
Second, our study focused on LUAD and did not address 
other histologic subtypes. Third, despite the present study 
was a multicenter study, the results cannot be generalized 
to other populations because gene mutation rate can 
be affected by race. Fourth, a large number of the gene 
sequencing results in this study were based on fine needle 
aspiration biopsy, so tumor heterogeneity is inevitable.

In conclusion, the proposed radiomics model is expected 
to distinguish co-mutation status involving TP53 and EGFR. 
It may have a potential application value in preselecting 
patients who will be adaptable to and sensitive to TKIs and 
have better prognosis.
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Table S1 Hyperparameters of SVM for base binary classifiers among the four models

Model
EGFR+ & TP53+ vs. EGFR+ & TP53− EGFR+ & TP53+ vs. EGFR− EGFR+ & TP53− vs. EGFR−

Gamma C Gamma C Gamma C

Clinical model 0.0001 1 0.001 100 0.0001 100

Semantic model 0.01 10 0.0001 10 0.01 100

Radiomics model 0.0001 100 0.1 100 0.0001 100

Integrated model 0.1 10 0.0001 100 0.1 1

EGFR, epidermal growth factor receptor; SVM, support vector machine.
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