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Development of a normal tissue complication probability (NTCP) 
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necrosis after carbon ion re-irradiation in locally recurrent 
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Background: The aim of the present study was to build a normal tissue complication probability (NTCP) 
model using an artificial neural network (ANN) for radiation-induced necrosis after carbon ion re-irradiation 
in locally recurrent nasopharyngeal carcinoma (rNPC), and to determine the predictive parameters applied 
to the model.
Methods: A total of 150 patients with rNPC treated at Shanghai Proton and Heavy Ion Center during 
2015–2019 were selected to determine the dominant factors causing mucosal necrosis after carbon therapy. 
An ANN was built to study both dose-volume histogram (DVH) and clinical factors. Simple oversampling 
and data normalization were used in the training process. Ten-fold cross validation was conducted to prevent 
overfitting.
Results: Of the DVH factors, the prediction accuracy ranged from 58.3–65.2%, whereas planning target 
volume (PTV) receiving dose more than 25 GyE (PTV.V25) yielded the best prediction accuracy. Of the 
clinical factors, baseline necrosis, sex, and biologically equivalent dose (BED) of initial treatment could 
increase the accuracy of PTV.V25 by 0.5%, 0.5%, and 1.5%, respectively.
Conclusions: An ANN was built to predict radiation-induced necrosis after re-irradiation in rNPC. The 
best accuracy and area under receiver-operating characteristic (ROC) curve (AUC) were 66.7% and 0.689. 
The most predictive dosimetric and clinical parameters were PTV.V25 and BED of initial treatment.
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Introduction

The main goal of radiotherapy is to kill tumor cells 
effectively, as well as avoid damaging normal tissues. 
Normal tissue complication probability (NTCP) is a 
significant index to assess the likelihood of radiation-
induced injuries to normal organ and plays an important 
role in treatment planning and decision making. Since early 
complication factor research (1), studies on normal tissue 
complication probability have mainly focused on building 
a mathematical model to describe the dose response and 
radiobiologic mechanism. Of these models, the most 
accepted is the Lyman-Kutcher-Burman model (2-6), which 
is now used by various treatment planning systems (TPS). It 
uses the dose-volume histogram (DVH) reduction method 
to simplify non-uniform dose distributions into uniform 
ones, which could be compared to existing data to calculate 
complication probability. Different from Lyman-Kutcher-
Burman model, the Källman model (7) calculates the 
response of single cells first, and combines the response of 
cells to obtain the final NTCP. While those two models are 
not based on any biophysical background, the Niemierko 
model (8) is built usng linear-quadratic model, the best-
known cell-killing model. In addition, since it takes into 
consideration the differrence of radiation sensitivity among 
organs and cohorts, Niemierko model is able to calculate 
the NTCP over the patient population. However, later 
studies have revealed that DVH is not the only factor to 
predict NTCP. Therefore, a model using both dosimetric 
data and patient characteristics is required for a more 
accurate prediction. The development of machine learning 
has enabled the combination of these factors. Through the 
numerical scoring of plans and predicting the likelihood 
of a certain complication (9-15), the feasibility and 
generalizability of machine learning in NTCP research 
have been confirmed.

An NTCP model for carbon therapy is necessary, as 
traditional NTCP models are based on photon irradiation. 
Due to different radiobiologic effects, applying these 
models to carbon therapy directly may be inappropriate. 
There are some methods to transfer the doses of carbon 
therapy to those of photon therapy, but an NTCP model 
for carbon therapy specifically has not been built yet, to the 
best of our knowledge.

The aim of the present study was to build an NTCP 
model for predicting mucosal necrosis after carbon therapy 
of locally recurrent nasopharyngeal carcinoma (rNPC) 
using a 2-layer artificial neural network (ANN). Both 

dosimetric and non-dosimetric data were used to build the 
model. Compared with previously published models, there 
are some changes we have made. On the one hand, since 
no NTCP model has been built for carbon re-irradiation, 
our model might be the first one for carbon therapy. On 
the other hand, whereas previous studies that only focused 
on patients without re-irradiation, our model has included 
dose of initial treatment and demonstrated its correlation 
with mucosal necrosis. We present the following article in 
accordance with the TRIPOD reporting checklist (available 
at https://atm.amegroups.com/article/view/10.21037/atm-
20-7805/rc).

Methods

Patient and treatment data

Follow-up data and treatment plans of 214 rNPC patients 
treated with carbon therapy at Shanghai Proton and Heavy 
Ion Center from 2015 to 2019 were collected for the 
present study. The inclusion criteria were as follows: (I) 
initial treatment data were available; (II) no T0N1 stage; 
and (III) all the plans shared the same contouring file. In 
total, 150 patients were finally enrolled in the study. Patient 
characteristics are given in Table 1.

Recurrent treatment plan data were obtained from TPS. 
Patients were identified as positive when low intensity 
defects of mucosa were found enhanced magnetic resonance 
image. As no mucosa structure was contoured in the TPS, 
the DVH of PTV was exported as an alternative. Vx values 
of all the studied structures were calculated every 5 GyE 
from 5 to 50 GyE. As well as dosimetric variables, clinical 
factors from our follow-up database were also included in 
this study (Table 2). As the first 4 factors (core parameters) 
in Table 2 were considered important, according to the 
clinicians’ experience, they were fixed throughout the study, 
whereas the other factors were studied to determine the 
variable resulting in the best prediction. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The study was approved by the Ethics 
Committee at Shanghai Proton and Heavy Ion Center 
(approval number: 2008-43-02). Written informed consent 
was obtained from all patients.

Statistical analysis

T-test was performed to compare the distribution of age at 
recurrent treatment, BED of initial treatment and recurrent 

https://atm.amegroups.com/article/view/10.21037/atm-20-7805/rc
https://atm.amegroups.com/article/view/10.21037/atm-20-7805/rc
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Table 1 Patient characteristics

Patient character Range Mean

Sex

Male 109

Female 41

Age at initial treatment (years) 15.7–64.4 45.6

Initial stage

I 0

II 16

III 68

IV 40

NA 26

Initial treatment technique

IMRT 145

Non-IMRT 5

Initial treatment dose (Gy) 34–60 45.5

Initial treatment fraction 30–38 32.4

Induction chemotherapy of initial treatment

Yes 24

No 126

Disease-free interval (months) 39.0–89.7 80.5

Age at recurrent treatment (years) 17.0–68.7 49.1

Final pathology

NKU 107

NKD 20

SCC 21

NA 2

Recurrent stage

I 7

II 40

III 49

IV 54

Baseline necrosis

Yes 42

No 108

Concurrent chemotherapy 

Yes 33

No 117

IMRT, intensity-modulated radiation therapy; NA, not available; 
NKD, non-keratinizing differentiated; NKU, non-keratinizing 
undifferentiated; SCC, squamous cell carcinoma.

treatment, while t-test was conducted to compare the 
distribution of other variables shown in Table 1.

ANN

As suggested by Heckerling et al. (16), an ANN was 
constructed with 2 hidden layers, each containing 40 
nodes (Figure 1). Variable values were normalized to the 
distribution, with an average of 0 and standard deviation of 
1, before being input into the network. During the training 
process, stochastic gradient descent with momentum was 
used to optimize the model, and 10-fold cross-validation 
was conducted to evaluate the prediction performance. 
Due to the data-dependent nature of an ANN, groups 
were divided randomly using different seeds to minimize 
the influence of outliers, and the final performance was 
calculated by averaging all the results. The hyperparameters 
used are listed in Table 3. Due to an imbalanced positive-
negative ratio (32:118), simple oversampling was used in the 
training process. Overall accuracy and AUC were obtained 
to evaluate prediction performance.

Results

DVH parameters

The overall accuracy of different DVH parameters 
combined with core parameters ranged between 73.2% and 
81.9% on the training set, and between 58.3% and 65.2% 
on the validation set (Table 4). In general, DVH parameters 
of PTV give a higher prediction accuracy than that of 
other regions. Of all the parameters PTV.V25 had the best 
predictive factor. Interestingly, although using all DVH 
parameters of a region of interest has better prediction 
results than using no DVH parameter, it is not even better 
than the best single factor. In addition, the DVH of PTV is 
the most predictive, on average.

Clinical parameters

As PTV.V25 was found to be the best predictor in the 
previous step where different DVH parameters were 
studied, it was fixed with core parameters in this step. 
Different clinical factors were included in the model to 
see how they could improve prediction accuracy. The 
results showed that most clinical parameters could increase 
accuracy, except location of baseline necrosis (necro_
loc) and biologically equivalent dose of recurrent therapy 
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(BED2) (Table 5). Of these factors, biologically equivalent 
dose of initial therapy (BED1) was the most effective, with 
an increase of 1.5%, but with a decrease in true positive rate 
(TPR).

The most predictive parameters in the present study 
were T stage, tumor_vol, interval, reRT_age, PTV.V25, and 
BED1. The receiver-operating characteristic (ROC) curve of 
the final model using these parameters is shown in Figure 2.  
As no data were available for external validation, only the 

best (not average) performance was shown.

Discussion

Although no sampling algorithm had a significant advantage 
in Gabryś’s study (17), sampling was confirmed necessary 
in the present study, or the network would classify all 
data into the majority group. Classifying all data into the 
majority group could result in better accuracy (80%), but 

Table 2 Variables used to build the model

Variable Description Remark

T stage T category of locally recurrent nasopharyngeal carcinoma

tumor_vol Volume of recurrent tumor (cm3)

Interval Time interval between initial treatment and recurrent treatment

reRT_age Age at recurrent radiotherapy

body.Vx Volume (cm3) inside outer contour receiving dose more than x GyE x=5, 10, 15, …, 50

bodyus.Vx Volume (cm3) under sphenoid sinus receiving dose more than x GyE x=5, 10, 15, …, 50

PTV.Vx Volume (cm3) of PTV receiving dose more than x GyE x=5, 10, 15, …, 50

Gender Sex of patient

BED1 Biologically equivalent dose of initial treatment α/β=3

Baseline Whether baseline necrosis exists before recurrent treatment

necro_loc Location of baseline necrosis before recurrent treatment Used with baseline

BED2 Biologically equivalent dose of recurrent treatment α/β=3

PTV, planning target volume.

Figure 1 Structure of the artificial neural network used in the present study.
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Table 3 Hyperparameters used to build the model

Hyperparameter Value

Learning rate 0.2

Momentum 0.9

Number of hidden layers 2

Number of nodes in each hidden layer 40

Epoch 10,000

Batch size 32

Table 4 Performance of Vx parameters 

Parameter
Training set Validation set

TPR (%) TNR (%) Accuracy (%) AUC TPR (%) TNR (%) Accuracy (%) AUC

PTV.Vx

PTV.V5 79.3 76.3 77.9 0.757 52.2 65.8 62.9 0.614

PTV.V10 78.7 75.6 77.2 0.768 53.3 67.3 64.3 0.642

PTV.V15 78.3 74.8 76.7 0.758 50 67.3 63.6 0.635

PTV.V20 76.8 75.9 76.4 0.761 47.8 66.7 62.60 0.636

PTV.V25 77.3 75.2 76.3 0.751 53.3 68.5 65.2 0.659

PTV.V30 78.8 76 77.5 0.749 52.2 66.7 63.6 0.637

PTV.V35 78.9 77.1 78.1 0.76 53.3 67 64 0.637

PTV.V40 79.7 76.5 78.2 0.752 50 67.9 64 0.636

PTV.V45 82.6 74.5 78.8 0.746 52.2 64.2 61.7 0.64

PTV.V50 71.9 74.7 73.2 0.738 48.9 67 63.1 0.64

None 76.9 69 73.2 0.742 48.9 60.9 58.3 0.548

All 70.8 76.5 73.5 0.783 50 69.1 65 0.641

Body.Vx

Body.V5 88 74.1 81.3 0.751 54.4 65.2 62.9 0.643

Body.V10 85.5 77.9 81.9 0.759 52.2 65.5 62.6 0.633

Body.V15 85.3 77.7 81.6 0.756 53.3 66.4 63.6 0.604

Body.V20 84 75.4 79.9 0.735 52.2 64.8 62.1 0.618

Body.V25 80.5 78.2 79.4 0.747 46.7 66.1 61.9 0.589

Body.V30 82.6 75.2 79.1 0.753 46.7 65.8 61.7 0.648

Body.V35 83.9 73.9 79.1 0.749 51.1 66.4 63.1 0.617

Body.V40 84.6 72.1 78.6 0.755 53.3 65.2 62.6 0.634

Body.V45 82.4 75.8 79.3 0.75 48.9 68.8 64.5 0.626

Body.V50 84.7 74.4 79.7 0.73 53.3 63.6 61.4 0.61

None 76.9 69 73.2 0.742 48.9 60.9 58.3 0.548

All 76.8 76.9 76.8 0.771 47.8 68.8 64.3 0.622

Table 4 (continued)

this is meaningless for NTCP prediction. Therefore, in the 
training process, data from the minority group (positive 
group) was copied 4 times, so that data the data in both 
groups had approximately the same volume. Additionally, 
overall accuracy should not be the only standard to evaluate 
an NTCP model, and other indexes, such as the confusion 
matrix and the ROC curve, should also be studied for a 
comprehensive evaluation.

Another condition that should be considered is the 
random division of data according to ratio. For example, 
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Table 4 (continued)

Parameter
Training set Validation set

TPR (%) TNR (%) Accuracy (%) AUC TPR (%) TNR (%) Accuracy (%) AUC

Bodyus.Vx

Bodyus.V5 84.6 76.8 80.9 0.745 44.4 66.1 61.4 0.599

Bodyus.V10 87.4 73.4 80.6 0.745 51.1 62.4 60 0.628

Bodyus.V15 84.1 74 79.3 0.737 45.6 66.1 61.7 0.596

Bodyus.V20 82.2 77.1 79.7 0.746 46.7 68.5 63.8 0.615

Bodyus.V25 83.2 77.7 80.6 0.757 45.6 67.6 62.9 0.593

Bodyus.V30 84.4 76.9 80.8 0.756 51.1 64.5 61.7 0.581

Bodyus.V35 85.2 73.4 79.5 0.746 52.2 63.3 61 0.597

Bodyus.V40 85.5 74.7 80.3 0.75 48.9 63.3 60.2 0.604

Bodyus.V45 85.9 74.4 80.4 0.746 53.3 64.8 62.4 0.61

Bodyus.V50 85.1 73.8 79.6 0.752 51.1 62.4 60 0.581

None 76.9 69 73.2 0.742 48.9 60.9 58.3 0.548

All 82.3 81.9 82.1 0.769 40 67.9 61.9 0.574

None: no DVH parameter was used in the model; all: all DVH parameters were used in the model. PTV, planning target volume; TPR, true 
positive rate; TNR, true negative rate; AUC, area under receiver operating curve; DVH, dose-volume histogram.

Table 5 Performance of clinical parameters

Parameter
Training set Validation set

TPR (%) TNR (%) Accuracy (%) AUC TPR (%) TNR (%) Accuracy (%) AUC

Baseline 82.8 80.3 81.6 0.802 42.2 72.1 65.7 0.638

Baseline + necro_loc 87.4 73.4 80.6 0.745 51.1 62.4 60.0 0.628

Sex 83.7 81.2 82.5 0.766 53.3 69.1 65.7 0.642

BED1 87.7 79.9 84.0 0.783 50.0 71.2 66.7 0.689

BED2 85.2 78.6 82.0 0.772 46.7 67.8 63.3 0.651

None 77.3 75.2 76.3 0.751 53.3 68.5 65.2 0.659

All 83.9 86.4 85.1 0.807 40.0 73.3 66.2 0.582

None: no clinical parameter was used in the model; all: all clinical parameters were used in the model. BED, biologically equivalent dose; 
TPR, true positive rate; TNR, true negative rate; AUC, area under receiver operating curve.

if the network divides the data into the negative group for 
80% of situations and the positive group for the other 20% 
of situation, then the accuracy = 80%×80%+20%×20%=68%, 
but will have a poor TPR of 20%. As the TPR of the 
validation set shows, the network also succeeded in avoiding 
such classification.

The clinical factor test results showed that baseline 
necrosis and sex can slightly improve prediction accuracy. 
Conventionally, sex is considered a questionable variable, 

whereas the odds ratio of sex was >2.5 in our study cohort. 
Further study is necessary to demonstrate whether this 
is due to the imbalanced distribution of sex. The BED of 
initial treatment was found to be the most effective factor to 
increase predictivity, which confirmed our hypothesis. This 
suggests that the condition of initial treatment may need to 
be included in NTCP research of re-irradiation.

Due to the data-driven nature of an ANN, the accuracy 
of this model was <70%, partly because data distributions 
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of both the positive and negative groups were quite similar 
(Figure 3). Therefore, the best prediction accuracy, 66.7%, 
might be seen as an acceptable model for these data. More 
“typical” and “separable” data are required to build a 
model with higher accuracy. Additionally, it remains to be 
studied whether the hyperparameters used in this model 
are the optimal ones. In order to improve the performance 
of our model, further study might focus on the changes of 
prediction accuracy over a series of network structures and 

input parameters. 
Finally, as a result of the “black-box” character of an 

ANN, only factors that were considered important were 
analyzed in the present study. More efforts are needed to 
determine the specific correlation within variables and 
between variables and results, and to build the ideal model 
using the best variable group as inputs. This model is only 
the first and a small step in NTCP research in carbon ion 
therapy and re-irradiation, but more complete models 

Figure 2 Receiver-operating characteristic curve of the training group that had the best performance. (A) Training set; (B) validation 
set. Green line shows the average FPR and TPR. Red line shows the result of random classification. FPR, false positive rate; TPR, true 
positive rate.
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should emerge in the future.

Conclusions

An ANN was built for the prediction of radiation-induced 
necrosis after carbon ion re-irradiation in rNPC. Of the 
DVH parameters, PTV.V25 was found to be the most 
predictive, with an accuracy of 65.2%. Of the clinical 
parameters, baseline necrosis, sex, and BED of initial 
treatment were found to increase the prediction accuracy of 
PTV.V25 by 0.5–1.5%.
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