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Background: Red blood cell (RBC) transfusion therapy has been widely used in surgery, and has yielded 
excellent treatment outcomes. However, in some instances, the demand for RBC transfusion is assessed by 
doctors based on their experience. In this study, we use machine learning models to predict the need for 
RBC transfusion during mitral valve surgery to guide the surgeon’s assessment of the patient’s need for 
intraoperative blood transfusion.
Methods: We retrospectively reviewed 698 cases of isolated mitral valve surgery with and without 
combined tricuspid valve operation. Seventy percent of the database was used as the training set and the 
remainder as the testing set for 13 machine learning algorithms to build a model to predict the need for 
intraoperative RBC transfusion. According to the characteristic value of model mining, we analyzed the risk-
related factors to determine the main effects of variables influencing the outcome. 
Results: A total of 166 patients of the cases considered had undergone intraoperative RBC transfusion 
(24.52%). Of the 13 machine learning algorithms, CatBoost delivered the best performance, with an 
AUC of 0.888 (95% CI: 0.845–0.909) in testing set. Further analysis using the CatBoost model revealed 
that hematocrit (<37.81%), age (>64 y), body weight (<59.92 kg), body mass index (BMI) (<22.56 kg/m2), 
hemoglobin (<122.6 g/L), type of surgery (median thoracotomy surgery), height (<160.61 cm), platelet 
(>194.12×109/L), RBC (<4.08×1012/L), and gender (female) were the main risk-related factors for RBC 
transfusion. A total of 204 patients were tested, 177 of whom were predicted accurately (86.8%).
Conclusions: Machine learning models can be used to accurately predict the outcomes of RBC 
transfusion, and should be used to guide surgeons in clinical practice.
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Introduction

Blood transfusion is widely used in surgery. Cardiac 
surgery uses the largest amount of blood products among 
surgeries, with a rate of blood transfusion ranging from 
40% to 90% (1-3). However, this treatment is a double-
edged sword. Transfusion has been associated with high 
rates of morbidity and mortality in critically ill patients (4).  
Some recent studies have shown worse outcomes incurred 
by blood transfusion, including increased renal failure and 
infection, as well as respiratory, circulatory, and neurological 
complications after cardiac surgery (5,6). A review of 
studies on cardiac surgery have shown that red blood cell 
(RBC) transfusion is associated with an increased risk of 
postoperative infections and mortality (7-9). It is widely 
acknowledged blood products are often wasted, where this 
may reflect a lack of application of evidence-based measures 
to blood transfusion (10-12). In some instances, the patient’s 
need for RBC transfusion is based on personal experience, 
and this leads to a waste of blood and burdens the medical 
staff (13). Transfusion is now recognized as among the most 
overused treatments in modern medicine (14). Owing to the 
large amount of blood used and the many factors affecting 
blood transfusion in cardiac surgery, few studies have used 
models of blood transfusion in cardiac surgery to examine 
the issue. Related research used traditional statistical models 
to predict the relevant factors that affect large volume blood 
transfusion (LVBT) results in thoraco-abdominal aortic 
aneurysm (TAAA) surgery. However, only few independent 
predictors are available for clinical practice (15).

Artificial intelligence (AI) is increasingly being used 
to aid diagnosis, treatment, automatic classification, and 
rehabilitation in medicine. The machine learning algorithm 
is an AI technique designed to simulate human intelligence 
by discovering patterns of reasoning about the available  
data (16). Given basic data, machine learning algorithms can 
be used to predict the relevant information, such as whether 
blood transfusion is needed. Because patients who have had 
mitral valve disease have good homogeneity, mitral valve 
disease has a set of standard procedures for diagnosis and 
treatment, the comparison of patient data is comparable 
and are easier to operate on, the amount of bleeding does 
not change significantly with surgeon during the operation. 
We use machine learning models to explore the risk-related 
factors that influence blood transfusion during mitral valve 
surgery, and accurately provide the boundaries of these 
factors to guide the surgeon’s assessment of patients’ need for 
intraoperative blood transfusion. We present the following 

article in accordance with the STROBE reporting checklist 
(available at http://dx.doi.org/10.21037/atm-20-7375).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This study was 
approved by the Ethical Committee of Zhongshan Hospital 
affiliated to Fudan University (No. B2020-218) and 
individual consent for this retrospective analysis was waived.

Database

The data was drawn from details of 698 patients undergoing 
isolated mitral or simultaneous tricuspid valve surgery at 
the Department of Cardiology of Zhongshan Hospital 
from January to December of 2019, where the surgeries 
included conventional and minimally invasive approaches. 
The data included demographic characteristics and the 
relevant variables before, during, and after surgery. The 
data extraction techniques included system extraction 
and manual collection. As usual, the missing values of the 
measurement data were inserted using the average value 
while those of counting data were inserted according to the 
most frequently occurring value. 

Patients

Patients who had the maze operation, aortic valve surgery, 
and atrial septal repair were excluded, as were patients 
with a history of heart surgeries (excluding interventional 
therapy). Postoperative complications related to sepsis 
were defined as those with pathogens that occur in two 
blood cultures. Preoperative patients were categorized as 
suffering from mild (HB >90 g/L, but lower than normal), 
moderate (HB =60–89 g/L), severe (HB =30–59 g/L), and 
extremely severe anemia (HB <30 g/L) (17). Acute kidney 
injury (AKI) was defined as an increase in absolute serum 
creatinine ≥0.3 mg/dL (≥26.5 mol/L) within 48 hours 
of surgery (18). The severity of all intraoperative valve 
stenosis or insufficiency was determined according to the 
results as interpreted by an echocardiographic physician.

Dependent and independent variables

The primary endpoint of this study was “intraoperative red 
blood cell (RBC) infusion”. Intraoperative RBC infusion 
refers to the amount of allogeneic RBCs initiated to be 
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injected during the operation, excluding autologous and 
postoperative blood transfusion (15).

Given the aim of establishing a predictive model, the 
independent variables were chosen by considering the 
baseline characteristics of the patients in the context of 
preoperative and intraoperative variables (Table 1).

AI model algorithm

The CatBoost algorithm was used to build the AI model. 
Yandex company proposed and tested the approach using 
oblivious decision trees as base predictors in 2017 (19) as 
well as a special method to deal with the characteristics of 
classification. CatBoost alleviates the problem of overfitting, 
and improves the generalization ability and robustness of 
the model, which is particularly suitable for small sample 
sizes and unbalanced data. 

Prediction migration is often a problem in modeling. 
In each iteration of the gradient boosting decision tree 
(GBDT), the loss function uses the same dataset to obtain 
the gradient of the model to train the base learner. This 
leads to a deviation in the estimated gradient, which in turn 
leads to the problem of overfitting. CatBoost replaces the 
method of gradient estimation of the traditional algorithm 
with order boosting, which reduces bias and improves the 
generalization ability of the model.

The SHapley Additive exPlanations (SHAP) evaluator 
proposed by Lundberg and Lee (20) can be used to explain 
the predictions produced by a model. Following model 
training, a partial dependency graph (PDP or PD graph) is 
used to calculate the SHAP value of each feature to allow 
clinicians to make more accurate predictions. In this way, 
the impact of each feature on the model can be represented 
using Shapley values (21). Using these calculations, a matrix 
of SHAP values can be obtained to provide a visualization 
of the contribution of each feature to the model predictions. 
This helps explain the role of each feature in the model in 
an intuitively understandable way.

Statistical analysis

SPSS 25.0 as well as Python 3.6, with the Python packages 
Scikit-learn, SHAP (feature analysis), and matplotlib 
(visualization), were used in. We described the continuous 
variables of the normal distribution using the mean and 
standard deviation (SD), the continuous variables of the 
non-normal distribution using the median and quartile 
values, and the categorical variables using proportion. 

Table 1 Information on variables

Variable name Subtype Number

BMI (kg/m
2
) 23.75±3.50

Age (year)* – 58.00 (48.00, 66.00)

Body weight (kg) – 63.50 (56.00, 72.00)

Height (cm)* – 165.00 (158.00, 170.00)

INR* – 1.05 (1.00, 1.12)

Creatinine (μmol/L)* – 77.00 (65.00, 90.00)

EF (%)* – 65.00 (61.00, 68.00)

Hematocrit (%) – 39.36±5.08

Hb (g/L) – 131.16±18.23

Aspartate transaminase 
(U/L)*

– 18.00 (15.00, 24.00)

Alanine transaminase  
(U/L)*

– 17.00 (12.00, 25.00)

RBC (10
12

/L)* – 4.33 (3.96, 4.77)

Platelet (10
9
/L)* – 183.00 (151.00, 225.00)

Prothrombin time (s)* – 11.60 (11.00, 12.30)

Gender Male 351 (51.85)

Female 326 (48.15)

Hypertension No 441 (65.14)

Yes 236 (34.86)

Diabetes No 625 (92.32)

Yes 52 (7.68)

Oral anticoagulants No 597 (88.18)

Yes 80 (11.82)

NYHA 1 8 (1.18)

2 250 (36.93)

3 51 (7.53)

4 368 (54.36)

Pulmonary arterial 
hypertension

No 289 (42.69)

Yes 388 (57.31)

Atrial fibrillation No 546 (80.65)

Yes 131 (19.35)

Infective endocarditis No 636 (93.94)

Yes 41 (6.06)

Preoperative anemia No 589 (87.00)

Table 1 (continued)
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Table 1 (continued)

Variable name Subtype Number

ASA 1 78 (11.52)

2 10 (1.48)

1 1 (0.15)

2 26 (3.84)

3 601 (88.77)

4 49 (7.24)

Surgeon_id Doc_1 78 (11.52)

Doc_2 38 (5.61)

Doc_3 34 (5.02)

Doc_4 56 (8.27)

Doc_5 44 (6.50)

Doc_6 44 (6.50)

Doc_7 26 (3.84)

Doc_8 64 (9.45)

Doc_9 20 (2.95)

Doc_10 98 (14.48)

Doc_11 32 (4.73)

Doc_12 21 (3.10)

Doc_13 38 (5.61)

Doc_14 20 (2.95)

Doc_15 31 (4.58)

Doc_16 33 (4.87)

Mitral valve replacement No 489 (72.23)

Yes 188 (27.77)

Mitral valve repair No 249 (36.78)

Yes 428 (63.22)

Tricuspid valve repair No 477 (70.46)

Yes 200 (29.54)

Autologous blood 
transfusion

No 137 (20.24)

Yes 540 (79.76)

Tricuspid regurgitation No 461 (68.09)

1 99 (14.62)

2 86 (12.70)

3 31 (4.58)

Table 1 (continued)

Table 1 (continued)

Variable name Subtype Number

Platelet <50 0 (0.00)

50–100 23 (3.40)

100–150 138 (20.38)

150–450 514 (75.92)

>450 2 (0.30)

Age groups <65 471 (69.57)

65–74 162 (23.93)

>75 44 (6.50)

Height groups <150 18 (2.66)

150–160 175 (25.85)

160–170 269 (39.73)

170–180 177 (26.14)

>180 38 (5.61)

INR groups <2 637 (94.09)

≥2 40 (5.91)

Preoperative cerebral 
infarction

No 653 (96.45)

Yes 24 (3.55)

Mitral stenosis No 517 (76.37)

1 28 (4.14)

2 70 (10.34)

3 62 (9.16)

Mitral regurgitation No 51 (7.53)

1 47 (6.94)

2 264 (39.00)

3 315 (46.53)

Type of operation Minimally 
invasive

216 (31.91)

Routine 461 (68.09)

Acute coronary 
syndrome

N 651 (96.16)

Y 26 (3.84)

*, non-normally distributed variable. Data are presented as 
mean ± SD, median (Q1, Q3), or n (%). BMI, body mass index; 
INR, international normalized ratio; ASA, American Society of 
Anesthesiologists; NYHA, New York Heart Association cardiac 
function grading; Hb, hemoglobin; EF, ejection fraction.
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The Student’s t-test and was used to identify statistically 
significant differences between the means of groups. 
The chi-square test was used to identify any significant 
association between variables. Mann-Whitney U test 
was used to compare non-normally distributed variables 
and variables of ranked data between two groups. First, 
the variables needed to be screened through univariate 
analysis to choose the ones with positive results. Second, 
the screened variables were used for multivariate analysis. 
We used logistic regression to build a model to mine the 
relationship between the variables and the outcomes. Third, 
the machine learning algorithm was used to construct the 
prediction model for intraoperative blood transfusion. 
The dataset is randomly divided into training set (70%) 
and testing set (30%), the training set is implemented to 
build up a model using 10-fold cross-validation, while 
the testing set is to validate the model built using the area 
under the ROC curve (AUC). According to its results, the 
characteristic values and risk factors were mined to analyze 
the effects of the latter on the outcome-related variables. 

Results

RBC consumption

Of the 677 patients considered, 166 (24.52%) had received 
intraoperative RBC transfusion, where the amount of RBC 
transfusion had varied from 2 to 10 Units. The average 
RBC consumption was 0.71±1.43 Units.

Building traditional models of RBC transfusion

Univariate analysis was performed on all independent 
variables, and P<0.1 was used for screening. Independent 
variables with P<0.1 were shown in Table 2.

Variables screened by a single factor were entered into 
the logistic model and screened backward. Variables were 
eliminated when P>0.1. Those with lower HCT, lower 
body mass index (BMI), longer PT, females, diabetics, those 
undergoing routine surgery, patients with atrial fibrillation, 
severe mitral stenosis, preoperative anemia, and older patients 
had increased likelihood of the need for of RBC transfusion. 
In addition, different surgeons are associated with the need 
for RBC transfusion (Table 3).

AI model

The 70% database was used as the training set and 30% as 

the testing set. Thirteen machine learning algorithms were 
used for calculation. The training set used 10-fold cross-
validation, and the results are shown in the table below. 
The CatBoost model delivered the best performance with 
an AUC of 0.888 (95% CI: 0.845–0.909) (Table 4).

Further analysis was performed using the CatBoost 
model, and the importance of the features was analyzed 
using their SHAP values (Figure 1). The main effects 
of each factor and the outcome variables are shown in  
Figure 2 .  Different surgeons also influenced this 
probability (Figure 3). 

Further analysis using the CatBoost model revealed that 
hematocrit (<37.81%), age (>64 y), body weight (<59.92 kg),  
BMI (<22 .56  kg/m 2) ,  hemoglobin  (<122 .6  g/L) ,  
type of surgery (median thoracotomy surgery), height 
(<160.61 cm), platelet (>194.12×109/L), RBC (<4.08×1012/L), 
and gender (female) were the main factors influencing the 
likelihood of blood transfusion (Figure 4).

Figure 2 shows that platelet was positively correlated with 
RBC transfusion. But its size was related to the coagulation 
function of the patient. The higher the platelet was, the 
better the coagulation function was, and the smaller the 
amount of intraoperative bleeding that occurred. This 
reduced the probability of transfusion. This variable is further 
analyzed in Figure 5, which shows that the relationship 
between platelet and RBC transfusion was stratified. When 
platelet was less than 194.5×109/L, platelet was positively 
correlated with RBC transfusion. When platelet was greater 
than 203.5×109/L, its correlation was negative.

Results of prediction and analysis of RBC transfusion 
models

A total of 204 patients were tested, with an AUC of 0.922 
(95% CI: 0.883–0.956), 177 of whom were predicted 
accurately (86.8%) and 10 were too large (the patient did 
not receive a blood transfusion) and 17 were too small (the 
patient did receive a blood transfusion) (Table 5).

The group that was predicted more accurately had 
more females (80% vs. 41.8%), higher age (mean ± SD, 
59.2±11.8 vs. 53.6±13.9 years), lower weight (mean ± 
SD, 56.7±8.4 vs. 66±13.1 kg), lower height (mean ± SD, 
156.9±6.5 vs. 165.4±9.1 cm), lower RBC (mean ± SD, 
3.7±0.4×1012/L vs. 4.4±0.7×1012/L), lower hematocrit (mean 
± SD, 34.3%±3.4% vs. 40.3%±4.8%), lower preoperative 
hemoglobin (mean ± SD, 111.5±12.9 vs. 134.0±17.5 g/L), 
more tricuspid valve repair (60% vs. 23.2%), and a higher 
percentage of patients with preoperative anemia (70% vs. 
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Table 2 Comparison of variables by blood transfusion

Variable name Subtype
Intraoperative blood transfusion

P
No Yes

BMI (kg/m
2
) – 24.30±3.35 22.06±3.42 <0.001

Hematocrit (%) – 40.57±4.51 35.63±4.93 <0.001

Hemoglobin (g/L) – 135.55±15.59 117.66±19.19 <0.001

Age (year) – 56.00 (47.00, 64.00) 65.00 (52.00, 71.00) <0.001*

Body weight (kg) – 66.00 (60.00, 75.00) 55.00 (50.00, 62.13) <0.001*

Height (cm) – 167.00 (160.00, 172.00) 160.00 (154.75, 165.00) <0.001*

INR – 1.04 (0.99, 1.09) 1.08 (1.02, 1.19) <0.001*

Prothrombin time (s) – 11.40 (11.00, 12.10) 11.90 (11.30, 13.03) <0.001*

Red blood cell (10
12

/L) – 4.44 (4.09, 4.84) 3.90 (3.64, 4.24) <0.001*

Gender Male 303 (86.32) 48 (13.68) <0.001

Female 208 (63.80) 118 (36.20)

Diabetes No 478 (76.48) 147 (23.52) 0.036

Yes 33 (63.46) 19 (36.54)

Oral anticoagulants No 461 (77.22) 136 (22.78) 0.004

Yes 50 (62.50) 30 (37.50)

NYHA 1 8 (100.00) 0 (0.00) 0.011*

2 196 (78.40) 54 (21.60)

3 45 (88.24) 6 (11.76)

4 262 (71.20) 106 (28.80)

Pulmonary arterial hypertension No 235 (81.31) 54 (18.69) 0.002

Yes 276 (71.13) 112 (28.87)

Type of operation Minimally invasive 189 (87.50) 27 (12.50) <0.001

Routine 322 (69.85) 139 (30.15)

ASA 1 1 (100.00) 0 (0.00) <0.001*

2 21 (80.77) 5 (19.23)

3 465 (77.37) 136 (22.63)

4 24 (48.98) 25 (51.02)

Atrial fibrillation No 435 (79.67) 111 (20.33) <0.001

Yes 76 (58.02) 55 (41.98)

Infective endocarditis No 492 (77.36) 144 (22.64) <0.001

Yes 19 (46.34) 22 (53.66)

Table 2 (continued)
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Table 2 (continued)

Variable name Subtype
Intraoperative blood transfusion

P
No Yes

Mitral stenosis Yes 17 (65.38) 9 (34.62) 0.009*

No 404 (78.14) 113 (21.86)

1 15 (53.57) 13 (46.43)

2 47 (67.14) 23 (32.86)

3 45 (72.58) 17 (27.42)

Tricuspid regurgitation No 370 (80.26) 91 (19.74) <0.001*

1 68 (68.69) 31 (31.31)

2 59 (68.60) 27 (31.40)

3 14 (45.16) 17 (54.84)

Surgeon_id Doc_1 52 (66.67) 26 (33.33) <0.001

Doc_2 34 (89.47) 4 (10.53)

Doc_3 23 (67.65) 11 (32.35)

Doc_4 46 (82.14) 10 (17.86)

Doc_5 33 (75.00) 11 (25.00)

Doc_6 32 (72.73) 12 (27.27)

Doc_7 24 (92.31) 2 (7.69)

Doc_8 61 (95.31) 3 (4.69)

Doc_9 18 (90.00) 2 (10.00)

Doc_10 54 (55.10) 44 (44.90)

Doc_11 20 (62.50) 12 (37.50)

Doc_12 14 (66.67) 7 (33.33)

Doc_13 27 (71.05) 11 (28.95)

Doc_14 18 (90.00) 2 (10.00)

Doc_15 27 (87.10) 4 (12.90)

Doc_16 28 (84.85) 5 (15.15)

Mitral valve replacement No 387 (79.14) 102 (20.86) <0.001

Yes 124 (65.96) 64 (34.04)

Mitral valve repair No 171 (68.67) 78 (31.33) 0.002

Yes 340 (79.44) 88 (20.56)

Tricuspid valve repair No 374 (78.41) 103 (21.59) 0.006

Yes 137 (68.50) 63 (31.50)

Preoperative Anemia No 480 (81.49) 109 (18.51) <0.001*

1 30 (38.46) 48 (61.54)

2 1 (10.00) 9 (90.00)

Table 2 (continued)
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Table 2 (continued)

Variable name Subtype
Intraoperative blood transfusion

P
No Yes

Platelet <100 12 (52.17) 11 (47.83) 0.004*

100–150 97 (70.29) 41 (29.71)

150–450 400 (77.82) 114 (22.18)

>450 2 (100.00) 0 (0.00)

Age groups <65 395 (83.86) 76 (16.14) <0.001*

65–74 92 (56.79) 70 (43.21)

>75 24 (54.55) 20 (45.45)

Height groups <150 13 (72.22) 5 (27.78) <0.001*

150–160 102 (58.29) 73 (41.71)

160–170 206 (76.58) 63 (23.42)

170-180 153 (86.44) 24 (13.56)

>180 37 (97.37) 1 (2.63)

INR groups <2 487 (76.45) 150 (23.55) <0.001*

≥2 24 (60.00) 16 (40.00)

*, using Mann-Whitney U test. Data are presented as mean ± SD, median (Q1, Q3), or n (%). BMI, body mass index; INR, international 
normalized ratio; ASA, American Society of Anesthesiologists; NYHA, New York Heart Association cardiac function grading.

Table 3 Final logistic regression model of intraoperative blood transfusion

Risk factors β S.E. χ
2

P OR
95% CI

Lower Upper

BMI −0.21 0.04 26.32 <0.01 0.81 0.75 0.88

Prothrombin time 0.03 0.02 2.88 0.09 1.04 0.99 1.08

Hematocrit −0.17 0.04 14.80 <0.01 0.84 0.77 0.92

Gender

Male

Female 1.42 0.33 18.23 <0.01 4.13 2.15 7.92

Diabetes

No

Yes 0.90 0.44 4.07 0.04 2.45 1.03 5.86

Type of operation

Minimally invasive

Routine 1.35 0.41 10.94 <0.01 3.84 1.73 8.54

Atrial fibrillation

No

Table 3 (continued)
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Table 3 (continued)

Risk factors β S.E. χ
2

P OR
95% CI

Lower Upper

Yes 1.07 0.39 7.47 <0.01 2.91 1.35 6.27

Mitral stenosis 7.16 0.07

No

1 1.01 0.55 3.35 0.07 2.76 0.93 8.16

2 −0.13 0.42 0.09 0.76 0.88 0.38 2.02

3 −0.79 0.50 2.46 0.12 0.45 0.17 1.22

Surgeon_id 59.78 <0.01

Doc_1

Doc_2 −1.60 0.85 3.55 0.06 0.20 0.04 1.07

Doc_3 0.38 0.60 0.39 0.53 1.46 0.45 4.76

Doc_4 −1.09 0.59 3.47 0.06 0.34 0.11 1.06

Doc_5 −0.46 0.63 0.53 0.47 0.63 0.18 2.18

Doc_6 0.34 0.59 0.33 0.57 1.40 0.44 4.49

Doc_7 −2.58 0.99 6.81 <0.01 0.08 0.01 0.53

Doc_8 −2.38 0.91 6.78 <0.01 0.09 0.02 0.56

Doc_9 −2.42 0.97 6.21 0.01 0.09 0.01 0.60

Doc_10 0.79 0.49 2.52 0.11 2.19 0.83 5.78

Doc_11 0.96 0.61 2.51 0.11 2.61 0.80 8.58

Doc_12 0.95 0.72 1.74 0.19 2.57 0.63 10.50

Doc_13 −1.19 0.64 3.46 0.06 0.30 0.09 1.07

Doc_14 −1.52 1.02 2.22 0.14 0.22 0.03 1.61

Doc_15 −2.71 0.84 10.31 <0.01 0.07 0.01 0.35

Doc_16 −0.35 0.74 0.23 0.63 0.70 0.17 2.98

Tricuspid valve repair

No

Yes −0.71 0.36 3.87 0.05 0.49 0.24 1.00

Preoperative anemia 13.17 <0.01

No

1 1.45 0.44 10.77 <0.01 4.27 1.79 10.14

2 3.20 1.33 5.76 0.02 24.43 1.80 331.89

Age 36.62 <0.01

<65

65–74 1.70 0.30 32.82 <0.01 5.49 3.07 9.83

>75 1.62 0.48 11.64 <0.01 5.07 2.00 12.89
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Table 4 Comparison of the results of machine learning models

Model Accuracy AUC Recall Prec. F1

1 CatBoost classifier 0.835 0.888 0.536 0.731 0.609

2 Light gradient boosting machine 0.844 0.887 0.579 0.732 0.640

3 Extreme gradient boosting 0.844 0.874 0.552 0.745 0.629

4 Gradient boosting classifier 0.823 0.860 0.536 0.706 0.594

5 Extra trees classifier 0.808 0.857 0.433 0.706 0.521

6 Logistic regression 0.823 0.856 0.571 0.689 0.609

7 Linear discriminant analysis 0.820 0.851 0.588 0.662 0.611

8 Random forest classifier 0.816 0.835 0.408 0.741 0.515

9 Ada boost classifier 0.791 0.812 0.536 0.603 0.554

10 Naive bayes 0.702 0.803 0.821 0.449 0.578

11 K neighbors classifier 0.787 0.751 0.328 0.563 0.408

12 Decision tree classifier 0.768 0.681 0.510 0.525 0.506

13 Quadratic discriminant analysis 0.435 0.613 0.885 0.313 0.444

Figure 1 Plots of the importance of the variables and the SHAP variable. The red dots represent large values and the blue dots low values. 
The former shows the importance of variables for predicting the likelihood of RBC transfusion, sorted by importance from high to low. The 
latter shows the importance of the value of each variable in predicting the likelihood of RBC transfusion. The red dots represent large values 
and the blue dots low values. HCT, hematocrit; BMI, body mass index; RBC, red blood cell; OP_TYPE, type of operation; Hb, hemoglobin; 
ASA, American Society of Anesthesiologists; PLT, platelet; AST, aspartate transaminase; ALT, alanine transaminase; PT, prothrombin time; 
INR, international normalized ratio; NYHA, New York Heart Association cardiac function grading; SHAP, SHapley Additive exPlanations.
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8.5%). 

Discussion

Table 3 shows that the factors influencing blood transfusion 
extracted from the traditional logistic regression model. 
Figure 1 shows that the machine learning model identified 
the influential factors. Thus, the factors excavated by the 
machine learning model and logistic model were roughly 

the same. Moreover, the factors identified by our model 
were consistent with the conclusions of previous studies (13). 
In addition, the machine learning model accurately gave 
the specific boundary values of the factors. (Figure 4), which 
will help clinicians in their judgment of blood transfusion in 
patients undergoing preoperative surgery.

Research on predicting the need for transfusion in 
cardiac surgery is rare. Many factors affect the blood used 
in cardiac surgery, and the traditional model cannot identify 

Figure 3 SHAP value for the surgeon. When it is greater than 0, the surgeon was more likely to transfuse the patient. SHAP, SHapley 
Additive exPlanations.

Figure 4 Analysis of factors influencing intraoperative RBC transfusion. BMI, body mass index; 
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Figure 5 Further analysis of platelet. We compared and analyzed values from the original data and those predicted by the model.

Table 5 Analysis of results of prediction

Variables Overall (n=204) Too large (n=10) Too small (n=17) Correct (n=177) P

Sex, n (%) 0.027

Male 112 (54.9) 2 (20.0) 7 (41.2) 103 (58.2)

Female 92 (45.1) 8 (80.0) 10 (58.8) 74 (41.8)

Age, mean (SD) 54.9 (13.8) 59.2 (11.8) 65.9 (7.3) 53.6 (13.9) 0.001

weight, mean (SD) 64.9 (13.0) 56.7 (8.4) 58.3 (10.8) 66.0 (13.1) 0.007

Height, mean (SD) 164.6 (9.1) 156.9 (6.5) 160.1 (6.7) 165.4 (9.1) 0.001

Red blood cell, mean (SD) 4.4 (0.7) 3.7 (0.4) 4.2 (0.5) 4.4 (0.7) 0.003

Hematocrit, mean (SD) 39.9 (4.8) 34.3 (3.4) 38.9 (4.0) 40.3 (4.8) <0.001

Hemoglobin, mean (SD) 132.5 (17.8) 111.5 (12.9) 129.1 (15.0) 134.0 (17.5) <0.001

Tricuspid valve repair, n (%) 0.032

No 153 (75.0) 4 (40.0) 13 (76.5) 136 (76.8)

Yes 51 (25.0) 6 (60.0) 4 (23.5) 41 (23.2)

Preoperative anemia, n (%) <0.001

No 181 (88.7) 3 (30.0) 16 (94.1) 162 (91.5)

1 22 (10.8) 7 (70.0) 1 (5.9) 14 (7.9)

2 1 (0.5) 1 (0.6)
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all factors influencing this or predict whether patient needs 
intraoperative blood transfusion (22). We use the machine 
learning to build a model to predict the need for blood 
transfusion among patients, and yielded an accuracy of up 
to 86.8%. The model can play an important role in clinical 
guidance.

Based on clinical observations, some researchers have 
suggested that hematocrit should be maintained at around 
30% and hemoglobin concentration at 10 g/dL (23). 
However, this threshold has been reconsidered due to 
risks associated with transfusion and a greater appreciation 
of the importance of varying physiological responses to  
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anemia (24). Due to the particularity of heart surgery, 
intraoperative extracorporeal circulation requires the 
heparinization of the patient's blood, and the operating time 
is long. This increases the risk of intraoperative bleeding. 
Our machine learning model thus considered cases of 
intraoperative heparin and the duration of the operation. 
The dangerous boundary of hemoglobin content was found 
at 12 g/dL and hematocrit to be 38%.

When platelet was less than 194.5, platelet was positively 
correlated with RBC transfusion. When platelet was 
greater than 203.5, its correlation was negative. We think 
that the increase in platelet was not due to each patient’s 
thrombocytosis, but perhaps because of acute infection, 
blood loss, or hemolysis. This suggests that patient might 
already have lost blood to increase the likelihood of the 
need for blood transfusion (25).

We used the machine learning model to analyze the 
surgeons, and found that Doctor 12 (33.3%, 0.76±1.19 U),  
Doctor 8 (4.7%, 0.22±1.29 U), and Doctor 7 (7.7%, 
0.42±1.65 U) were positively correlated with the likelihood 
of blood transfusion. Subsequent studies can use machine 
learning models to intervene in the doctors’ choice of 
administering blood transfusion to reduce the unnecessary 
use of blood (Figure 3).

Tables 2,3 and Figures 1,2,4 shows that women (36.2%, 
1.06±1.62 U) were more likely to receive blood transfusion. 
Owing to physical blood loss, many women develop anemia 
during surgery, which was the direct cause of their high 
intraoperative blood transfusion rate (26). The mode 
of surgery was also an important factor. The traditional 
surgical method involves direct midline thoracotomy into 
the heart while the minimally invasive method involves 
using the intercostal space to enter the area without 
requiring midline thoracotomy. Compared with the 
traditional surgery group (30.2%, 0.88±1.56), minimally 
invasive surgery (12.5%, 0.36±1.01) can significantly 
reduce the amount of blood needed, which is consistent 
with previous reports (27). Tricuspid valve repair was 
also an important factor influencing blood transfusion in 
the traditional model and the machine learning model. 
Functional regurgitation is noted during mitral valve 
surgery, synchronous repair (class I) is recommended (28).  
The tricuspid valve regurgitation can cause anemia, 
thrombocytopenia, coagulation disorders, hepatic failure, 
and other complications (29), leading to a higher likelihood 
of the need for blood transfusion.

Although our data were relatively complete and 
accurate, the analysis was retrospective and covered a single 

center. Short-term postoperative analysis was carried out 
for cases of incorrect prediction, but the relevant patients 
were not followed up with to better understand the impact 
of blood transfusion on their recovery. Our model is 
undergoing further development, and does not predict the 
amount of blood needed for transfusion. Moreover, it can 
predict the need for blood transfusion for only one type of 
surgery.

Conclusions

We used machine learning model to predict the need 
for RBC transfusion in cardiac surgery. It can help guide 
surgeons in clinic al practice.
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