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countfitteR: efficient selection of count distributions to assess 
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Background: DNA double-strand breaks can be counted as discrete foci by imaging techniques. In 
personalized medicine and pharmacology, the analysis of counting data is relevant for numerous applications, 
e.g., for cancer and aging research and the evaluation of drug efficacy. By default, it is assumed to follow the 
Poisson distribution. This assumption, however, may lead to biased results and faulty conclusions in datasets 
with excess zero values (zero-inflation), a variance larger than the mean (overdispersion), or both. In such 
cases, the assumption of a Poisson distribution would skew the estimation of mean and variance, and other 
models like the negative binomial (NB), zero-inflated Poisson or zero-inflated NB distributions should be 
employed. The model chosen has an influence on the parameter estimation (mean value and confidence 
interval). Yet the choice of the suitable distribution model is not trivial.
Methods: To support, simplify and objectify this process, we have developed the countfitteR software as 
an R package. We used a Bayesian approach for distribution model selection and the shiny web application 
framework for interactive data analysis.
Results: We show the application of our software based on examples of DNA double-strand break count 
data from phenotypic imaging by multiplex fluorescence microscopy. In analyzing numerous datasets of 
molecular pharmacological markers (phosphorylated histone H2AX and p53 binding protein), countfitteR 
demonstrated an equal or superior statistical performance compared to the usually employed two-step 
procedure, with an overall power of up to 98%. In addition, it still gave information in cases with no result 
at all from the two-step procedure. In our data sample we found that the NB distribution was the most 
frequent, with the Poisson distribution taking second place.
Conclusions: countfitteR can perform an automated distribution model selection and thus support the 
data analysis and lead to objective statistically verifiable estimated values. Originally designed for the analysis 
of foci in biomedical image data, countfitteR can be used in a variety of areas where non-Poisson distributed 
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Introduction

DNA double-strand breaks (DSBs) are complementary 
breaks in the phosphodiester backbone of both strands 
of a DNA molecule, leading to its complete segregation 
at the break point. They are considered a common, but 
very severe form of DNA damage as they can promote 
genomic instability and increase the risk of cancer (1). This 
is reflected in elevated levels of DSBs in various types of 
cancer, and prognostic relevance of this finding has been 
shown, e.g., in breast cancer [for a review, see (2)].

Typical inducers of DSBs are ionizing radiation and 
certain cytotoxic agents such as etoposide, rapamycin, 
doxorubicin and others, all of which are used in cancer 
therapy (2). This opens a wide field for diagnostic and 
prognostic use of DSBs in precision medicine. For example, 
DSBs occurring due to pathological cellular processes have 
been described as prognostic markers in radiological and 
pharmacological cancer management (3,4).

Physiologically, once a DSB has occurred, a cell will 
either perform an immediate repair or undergo apoptosis 
(becoming a cancer cell is the pathological alternative). 
Achieving the first requires a complex repair process to 
compensate for the lack of a complementary DNA template. 
Thus, cells can react to DSBs with several pathways. Among 
the very first events is the accumulation of histone H2AX 
at the break site, presumably to stabilize the disrupted 
molecule. H2AX becomes phosphorylated at serine 139 
either by ATM or other phosphatidylinositol 3-kinase-
related kinase (PIKK) kinases (5), then called γH2AX, as a 
sensing mechanism (6,7). This event recruits further DNA 
repair proteins like p53 binding protein (53BP1), MDC1, 
BRCA1/2 and RAD51 (2,5,8). An alternative sensing 
mechanism is provided by the Ku70/80 pathway (9,10). 

Similarly, different pathways are involved in the repair 
process itself, whose selection mainly depends on cell cycle 
state: While cells in late S and G2/M phase can perform 
homology-directed repair (HDR; activated through 
BRCA1/2 pathway) (9,11) due to the close vicinity of 
sister alleles and thus achieve a highly accurate repair, 

cells in G0/G1 and G2/M phase use non-homologous end 
joining (NHEJ) activated through the Ku70/80 pathway 
to maintain genomic integrity (11,12). As DNA damage 
promotes tumorigenesis, key players of the DNA damage 
repair system are often found mutated (12-14) neoplastic 
disease, leading to ineffective or absent damage response 
and thus, genomic instability without programmed cell 
death (11). In contrast, cancers with high resistance against 
ionizing radiation or other DNA-damaging agents have 
shown increased DNA damage response (DDR), thus 
avoiding potentially lethal damage (5,15). In some of these, 
susceptibility to DNA damaging agents could be restored 
by targeted inhibition of DRR proteins such as ATM or 
DNA-PKcs or via “baiting” of the DDR system with small 
interfering DNA (siDNA) (10-15).

Obviously, the critical process of DNA-damage 
recognition and repair interacts with numerous other 
processes, of which only few are briefly mentioned here. 
For a more thorough review, see (2,4,11).

Poly(ADP-ribose) polymerases (PARP) catalyze post-
transcriptional modification of proteins and play a crucial 
role, among other processes, in cell death, DNA repair and 
DNA modification. Previously only described in the repair 
of single-strand DNA nicks, newer research connects them 
to DSBs and γH2AX formation, too. This is of clinical 
importance, as PARP inhibitors are a new class of drugs in 
cancer therapy (16-18). Challenges lie in understanding 
the polypharmacology of current PARP inhibitors. While 
PARPs can be qualitatively associated with various processes, 
their quantitative levels vary not only between patients 
but also between replicates from the same patient (19),  
hindering their employment for diagnostic purposes.

A positive association was shown between nuclear 
γH2AX levels and PD-L1 expression in squamous cell 
lung carcinoma (20). Whether this finding points to a 
clinically exploitable cellular pathomechanism, e.g., via 
the cGAS-STING or the PI3K-Akt pathways, or is just 
an epiphenomenon of tumour mutational burden (TMB) 
remains to be elucidated. TMB is being discussed as a 
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predictive marker for immunotherapy, as it correlates with 
the emergence of tumor-associated neoepitopes forming 
immunological targets (21). Measuring of DSBs from 
patient samples allows to quantify the extent of DNA 
damage, be it intended or adverse (22,23), it may directly 
predict treatment response as well as toxicity. Also, it may 
indirectly indicate DSB repair capacity as a proxy for drug 
resistance. This may be of particular interest in adjuvant 
therapy, where patients potentially cured by surgery receive 
additional therapy to reduce their risk of relapse (24-26). In 
observational studies, the predictive potential of DDR foci 
has been demonstrated by correlating foci data with clinical 
endpoints such as tumour control probability (27,28). As the 
association between γH2AX levels and PD-L1 expression 
suggests, it may also predict response to checkpoint-
inhibitor immunotherapy.

Such information could help to personalize treatment 
and improve patient outcomes by adapting drug or radiation 
doses or choice of immunotherapy to cellular effects. As 
opposed to clinical effects observed weeks or even years 

later, DSBs could be measured between therapy sessions 
and thus help to individually adapt treatment in real-time. 
Similarly, drug development may be facilitated with regard 
to effectiveness as well as safety (29). To understand why 
this apparently attractive field has so far been cultivated 
only scarcely requires a closer look at its methodology.

The most widely used method for quantification of DSBs 
relies on intranuclear detection of fluorescence-labeled 
antibodies γH2AX by fluorescence microscopy (3,25,30). 
Visually, DSBs appear as intranuclear fluorescence foci 
varying in number and intensity. Manual counting of these 
foci in conventional microscopy is time-consuming and 
error-prone as it depends on the attention and experience 
of the examiner (31). Automated immunofluorescence 
microscopy has been developed to obtain more objective 
and reproducible results and to allow for high throughput in 
diagnostics (25). Phenotypic imaging is also an approach for 
testing pharmacodiagnostic and drug combination strategies 
and is used, among others, to predict drug resistance (32).

Image processing algorithms implemented in software 
like CellProfiler (33) or AutoFoci (34) allow both counting 
and sizing of the foci (Figure 1). In this method the 
algorithm calculating the result is of paramount importance. 
In a previous study we have examined image analysis 
software for counting focus data (35). Most of the programs 
used different algorithms and optimizations regarding 
the recognition of foci and cell nuclei. Consequently, the 
reported counts were different.

If DSBs are to be used as a key factor in clinical decision-
making, a precise and unbiased method to estimate the 
mean foci count per cell is indispensable. A Poisson 
distribution is typically assumed to model count data. DNA 
DSBs are prerequisite for the formation of chromosome 
aberrations (36). For radiation-induced chromosome 
aberrations it was shown that the Poisson distribution is not 
optimal to model the data (37). Our studies of DSB data 
support the observation that Poisson, zero-inflated Poisson 
(ZIP), negative binomial (NB) and zero-inflated negative 
binomial (ZINB) distributions are appropriate to describe 
foci counts. Mathematically, assuming a Poisson distribution 
can be incorrect for two reasons: overdispersion and zero-
inflation (31).

Overdispersion and zero-inflation

Count data represents the number of occurrences of a signal 
as non-negative integer values. Since this is one of the most 
common types of data, the modeling of counting data is 

Figure 1 Foci detection of DNA double-strand breaks (DSBs) 
and cell nuclei by phenotypic imaging as shown in the software 
NucDetect. In a cascade of phosphorylation events, thousands of 
H2AX molecules may surround a single DSB. Depending on the 
damage induced, few to a hundred foci per cell can occur. Cell 
nuclei of the human HEp-2 line were labelled with the DNA-
binding dye DAPI (blue) and DSBs were detected by an H2AX-
specific monoclonal antibody with a FITC-conjugated secondary 
antibody (green). The number of foci (red dot) was determined via 
digital image processing. Example conditions: 24 h incubation with 
5 µM Etoposide.  

5 μm
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of primary interest in many areas, including public health, 
medicine and epidemiology. It is generally assumed that 
such data can best be fitted to the Poisson distribution, but 
other distribution models have been described (38).

The Poisson distribution relies on the assumption that 
the mean (λ) and the variance are equal (equidispersion). 
If this is not true, the Poisson distribution cannot 
appropriately model the data. The case of the variance 
exceeding the mean is termed overdispersion, a variance 
smal ler  than the mean,  underdispers ion (39,40) . 
Distribution models exist for both cases. Others have shown 
that deviation from the Poisson model may also depend 
on the scoring method (41). Overdispersion in Poisson 
distributions can be tested by a test proposed by Cameron 
and Trivedi (42). Within the biomedical scope of this article, 
we will focus on overdispersion as by far the most frequent 
case (43,44).

The NB distribution best describes data with a 
high variance due to numerous extremely high or low  
counts (45). As an example, this kind of overdispersion 
can arise from partial body exposure with radiation. Even 
though the NB distribution is used primarily for counting 
the number of failures before a predetermined number of 
successes occurs, it can be alternatively parameterized to 
describe count data with non-equal variance and mean. 
One of the critical properties of the NB distribution is 
that the maximum likelihood (ML) estimator of its mean  
(µ∧) (e.g., the mean number of occurrences) is equal to the 
arithmetic mean of counts in a data set. The additional 
variability provided by the parameter θ is known as size. 
When θ is approaching infinity, the NB distribution 
becomes a Poisson distribution.

Another cause of overdispersion is zero-inflation, i.e., 
an excessive number of zeros in a data set (46). To describe 
this phenomenon, we can use the ZIP and the ZINB 
distributions. The former depicts Poisson-distributed 
data with excessive zeros. The latter describes data where 
overdispersion arises from both increased variability of 
counts and zero-inflation. It is important to note that in 
the case of zero-inflated distributions, the mean number of 
counts λ is not equal to the average number of occurrences 
(μ). To describe their relationship, we need to introduce 
another parameter, r, which is equal to the fraction of 

counts faulty turned to zeros. Using the notation: 1 r
µλ =
−

. Henceforth, if we do not correctly identify zero-inflation, 
we underestimate the real number of occurrences. Further 
information on overdispersion can be found in the 

Supplement document in section 5 (available online: https://
cdn.amegroups.cn/static/public/ATM-20-6363-1.pdf).

Usually, the NB distribution is parameterized using μ 
and θ, but to make comparison clearer, we use λ instead of 
μ. Poisson and NB distributions have the same expected 
value (table S1 available online: https://cdn.amegroups.cn/
static/public/ATM-20-6363-1.pdf). In the case of ZIP and 
ZINB, the expected value is smaller than the real average 
number of foci per cell. Depending on the value of r, the 
variance of ZIP and ZINB may be smaller or bigger than 
the variance of the Poisson distribution. In the case of the 
NB distribution, the variance is always bigger than for 
the Poisson distribution, although the difference becomes 
negligible when the θ is much bigger than λ2.

Selection of the most appropriate distribution

As the selection of the appropriate distribution is the key 
to successful modeling, the wrong choice leads to biased 
results of analysis (47,48). There are plenty of methods 
to test the equidispersion of data (49) or find out if the 
data does not contain exceeding amounts of zeros (50,51). 
However, even though these tests are statistically rigorous, 
they do not point to a specific distribution, but rather detect 
over- or underdispersion.

The next class of solutions are decision-making 
procedures designed to help in choosing the most 
appropriate count distribution (46,52). Here, the results 
of statistical tests are used to find out which distribution 
is underlying the data. Nevertheless, these procedures 
are often limited to a very specific set of distributions. 
Moreover, their power (here, the ability to select the most 
appropriate distribution) is reduced in the case of zero-
inflated models (53).

Considering the s ituation described above,  we 
implemented countfitteR as a framework for the selection 
of the underlying count distribution. Our software fits 
count data to four distributions that describe foci counts: 
Poisson, NB, ZIP and ZINB. The countfitteR framework 
selects the most appropriate model using the Bayesian 
information criterion (BIC). Additionally, countfitteR 
also estimates parameters of the distribution of choice 
and their confidence intervals. As our goal was to enable 
experimentalists to work with their own data, countfitteR is 
available not only as the R package but also on a web server. 

We present the following article in accordance with 
the MDAR reporting checklist (available at http://dx.doi.
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Methods

Model selection

In our parameterization, NB and ZINB are treated as a 
mixture of Poisson and Gamma (Γ) distributions (table 
S2, available online: https://cdn.amegroups.cn/static/
public/ATM-20-6363-1.pdf). Moreover, Poisson, ZIP 
and NB distributions can be seen as special cases of 
ZINB distribution. From the modeling point of view, 
all of them belong to the family of General Linear  
Models (54). Poisson, ZIP and NB models are nested in 
ZINB, as ZINB contains all terms necessary to describe the 
other three distributions. Moreover, Poisson is nested in 
both ZINB and ZIP. However, ZIP is not a nested model to 
NB. Therefore, to compare fits with all four distributions, 
we must use a measure that is suitable for comparing fits 
with both nested and non-nested models.

Therefore, we have decided to use BIC, as this model 
selection criterion is appropriate for comparison of both 
nested and non-nested models (55). We decided to choose 
BIC instead of similar criteria for model complexity (e.g., 
Akaike’s Information Criterion) based on the assumption 
that the distributions underlying the data we have examined 
here could be either Poisson, ZIP, NB, ZINB. In this case, 
when the sample size approaches infinity, the probability 
that BIC will select the correct distribution reaches 
certainty, which does not hold for AIC.

Thus, for samples with almost only zeros, BIC would 
choose the model with the smallest number of parameters, 
i.e., Poisson. It is the desired outcome for our framework, 
as we expect from the decision-support tool that it will be 
able to provide a conclusive answer about the underlying 
distribution. 

The study was approved by the ethics committee of the 
Brandenburg University of Technology (BTU) Cottbus-
Senftenberg (Ethikkommissionssatzung BTU, document 
number EK2018-3).

Statistical analysis

Statistical analysis to fit above mentioned models was 
performed by countfitteR, which uses R (36) packages  
pscl (37) and MASS (56). The data is presented as BIC 
values. The differences between models are interpreted 
according to the guidelines published elsewhere (55). The 

confidence level by default is set as 0.95. The assessment 
of the empirical power of the countfitteR framework 
was performed using the likelihood ratio test and the  
Vuong test (52).

Empirical power analysis

The empirical power of the countfitteR framework was 
compared with the two-step distribution selection (52). 
We have performed statistical simulations with a range of 
distributional assumptions based on the scheme published 
elsewhere (46). We have extended the proposed scheme 
by considering more values of parameters defining the 
distributions.

We have generated univariate data from Poisson (λ), 
ZIP (λ, r), NB (λ, θ), and ZINB (λ, θ, r) distributions. Each 
data set consists of 1,000 replications of samples with one 
of three possible sample sizes (n=50, 100, 200), and one 
of three possible means (λ =2, 5, 10). For zero-inflated 
distributions, the r ranges from 0.1 to 0.9 In the case of NB 
and ZINB distributions, similarly to Perumean-Chaney  
et al. (46), we have parameterized the dispersion parameter θ 

as 
2
λ . Additionally, we have considered θ equal to λ and 2λ. 

Here, we have defined empirical power as the ability to 
select the correct distribution among Poisson, ZIP, NB, and 
ZINB. However, depending on the distribution, the two-
step procedure does not work correctly and provides no 
answer (labeled as “uncomputable”). Although this behavior 
stems from the numerical assumptions of the two-step 
procedure, we have decided to highlight it in results to keep 
the comparison with the countfitteR framework fair.

The code necessary to reproduce the simulation study is 
available in the supplementary repository: https://github.
com/BioGenies/countfitteR-simulations.

Acquisition of data for case study

The protocol for foci quantification was adopted from 
previous studies (30,57) .  Hereby, the AKLIDES® 
Nuk Human Lymphocyte Complete Combi (4268) 
Kit (MEDIPAN GmbH, Germany) was used for the 
immunofluorescence staining of DNA repair foci. In 
detail, 104 HEp-2 (ATCC® CCL-23TM) cells were seeded 
in Dulbecco’s modified Eagle’s medium (DMEM; 10% 
fetal calf serum (FCS), 2 mM L-glutamine, 100 U/mL 
penicillin/streptomycin) on 10 well slides and incubated 
for 24 h (37 ℃, 5% CO2). After incubation, the medium 
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was discarded and the cells were incubated for 24 h with  
5 µM etoposide in DMEM (10% FCS, 2 mM L-glutamine, 
100 U/mL penicillin/streptomycin) to introduce DSBs. 
The medium was again discarded and the cells were fixated 
with 2% formaldehyde for 15 min at room temperature. 
The wells were rinsed three times with phosphate 
buffered saline (PBS; 140 mM NaCl, 2.7 mM KCl, 1 mM 
Na2HPO4·2H2O, 2 mM KH2PO4, pH 7.4) and blocked/
permeabilized with 50 μL/well blocking/permeabilization 
buffer (5% bovine serum albumin, 0.3% Triton X-100 in 
PBS) for 30 min at room temperature. After removing the 
blocking buffer, the primary antibody (anti-γH2AX/53BP1) 
was added (1:500 dilution in blocking/permeabilization 
buffer) and the slides were incubated for 60 min at room 
temperature. Upon rinsing the slides three times with PBS, 
25 μL/well of secondary antibody solution [1:500 dilution 
of anti-mouse/rabbit antibody, 5 μg/mL, 4,6-diamidino-2-
phenylindole (DAPI)] was added. The slides were incubated 
for 1 h in the dark at room temperature and then rinsed 
three times with PBS. A drop of mounting medium was 
added to each well and slides were sealed with a cover slip. 
Images were taken via immunofluorescence microscopy and 
analyzed via bioimage informatics (35). Foci numbers per 
cell were determined using the CellProfiler (33) (v. 3.1.9) 
with standard speckle counting pipeline and NucDetect (v. 
0.11.15.dev2) (58) software.

Results

Modi operandi of countfitteR

countfitteR (v. 1.4) uses R as a basis because this statistical 
computing language is also used in clinical research (59). 
It can be used in different modes. These are the use 
of the R console for the programmatic use of specific 
functions and the use of the software as an interactive 
application with a graphical user interface. countfitteR can 
be installed in the R console using the command “install.
packages(‘countfitteR’)”. Once installed successfully, 
the functions and sample data sets from the package are 
available with the command “library(‘countfitteR’)” and 
can be used in dedicated R graphical user interfaces like 
RStudio or RKWard (60) (Figure 2). A detailed example is 
given in the Supplement document in section 3.

The countfitteR web server is an implementation of 
our framework as a graphical user interface running in the 
majority of modern browsers. The online version limits the 
user to datasets smaller than 5 MB. The local version can be 

used to analyze larger datasets.
The main functionalities of the web server are in two 

panels: Fitted models and Compare distributions. The 
first one presents results of the countfitteR framework: 
count data fitted to the distribution with the lower BIC. 
This panel contains the information, both in graphical and 
tabular format, about the fitted parameters as λ and their 
confidence intervals (Figure 3).

The second panel, compare distributions, allows in-depth 
exploration of the fitted models. The user can investigate 
all fits and their BIC values. countfitteR is a decision-
support system, but the actual decision remains in the user’s 
responsibility. This panel allows the researcher to determine 
whether the distribution suggested by countfitteR is 
plausible.

The important part of the web server is the report 
generation. All inputs changed by the user, such as 
confidence levels, are included in the report to ensure the 
reproducibility of the analysis. The report also includes the 
version of R and all R packages required to perform the 
analysis. This is necessary because the version of R and the 
package versions on which countfitteR depends may change 
due to updates. The report is also enriched with the md5 
checksum of the input file and information about it to check 
if the file has been modified with the internal spreadsheet 
tool (Figure 4).

Empirical power summary

To validate the countfitteR framework, we have analyzed 
its empirical power with a simulation study and compared 
it with an existing two-step procedure (52). The empirical 
power is defined as the fraction of correctly identified 
distributions. The detailed description of simulations is 
available in the Methods section.
The countfitteR framework outperformed the two-step 
procedure for ZIP distribution [Figure 5; table S3 (available 
online: https://cdn.amegroups.cn/static/public/ATM-20-
6363-1.pdf)] for all considered values of λ and n (number 
of counts in a sample). This is reflected by the overall 
empirical power of 0.94 for countfitteR, compared to 0.22 
for the two-step procedure (Table 1). Moreover, countfitteR 
detects the ZIP distribution even for very high values of r , 
with the exception for the lowest considered λ=2. The two-
step test performed adequately only for the highest value of 
λ and low-to-medium r. For other cases, the two-step test 
was wrongly pointing to NB distribution.

Results for the ZINB distribution were less conclusive 

https://www.zotero.org/google-docs/?ZrUtE6
https://www.zotero.org/google-docs/?hd67JO
https://www.zotero.org/google-docs/?YTFKqa
https://www.zotero.org/google-docs/?8crYaY
https://www.zotero.org/google-docs/?n6Ra8C
https://www.zotero.org/google-docs/?Z2mvcG
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Figure 2 Modi operandi of the countfitteR software. The countfitteR software was started in an R environment. Within this example 
RKWard (60) (0.7.1z+0.7.2+devel4) was used. A: On all operating systems the commands “library(‘countfitteR’)”, to load the countfitteR 
package, and “countfitter_gui()”, to start the interactive graphical user interface (GUI), are identical. B: A list of functions and data sets 
of the countfitteR software is shown as an example. Details to the functions can be taken from the documentation. C: By executing the 
command “countfitter_gui()” the interactive GUI of the countfitteR software will be started automatically as soon as an environment which 
supports ECMAScript and HTML5 is detected [e.g., modern browser, RStudio (https://rstudio.com/), RKWard]. In this interface, data can 
be uploaded (“Data upload”) and the steps for analysis and report generation can be defined.

as for some combinations of λ and θ. Both algorithms 
performed equally poorly [Figure 6; table S4 (available 
online: https://cdn.amegroups.cn/static/public/ATM-
20-6363-1.pdf)]. For low lambda and high variance (θ= 
λ×0.5 and λ=2), the two-step procedure performed slightly 
better than the countfitteR framework, while countfitteR 
outperformed the two-step procedure for larger values 
of lambda, regardless of the θ. Due to this, the overall 
performance of countfitteR for the ZINB distribution was 
0.43 compared to 0.25 for the two-step procedure. In the 

case of wrong decisions, the two-step procedure pointed 
towards NB and was unable to recognize even very high 
values of zero-inflation (r=0.5 and higher). The countfitteR 
software did not show such preference and reported a 
mixture of NB and ZIP distributions.

By intention, one of the most critical aspects of our tool 
is its practical applicability for experimental researchers. 
The two-step procedure, although statistically sound, often 
does not yield any results due to numerical limitations. In 
the case of only (or almost only) zeros in a small sample, it 
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Figure 3 The countfitteR graphical user interface (GUI). The interface shows the top bar with drop-down selection menus. (A) This 
allows the user to create plots, tables and statistical analyses. In the example, counting data from the “case_study_FITC” data set were used 
[Supplement section 4: available online: https://cdn.amegroups.cn/static/public/ATM-20-6363-Supplement.pdf]. Under “Fitted models” 
→ “Man value (λ) estimate” plots and the estimated parameter values can be displayed. (B) Using the interactive table, the data set “L3_
AF_100_ETP_11_FITC” was filtered out (red box). Consequently, the measured values of the other samples are not displayed. It can be 
seen that the λs (mean value estimate), with values from 2.3 to 9.66 foci per cell, show marked differences between the distributions. The 
ZINB distribution has the lowest BIC (plot with turquoise arrow) and is therefore the most likely distribution model for the data of the 
measurement “L3_AF_100_ETP_11_FITC”. Its estimated values from λ and the confidence intervals (“lower” & “upper”) should be used 
for further analysis. ZINB, zero-inflated negative binomial; BIC, Bayesian information criterion.

A

B

is statistically impossible to distinguish between the four 
distribution models. In such cases, the two-step procedure 
returned no information to the user, while countfitteR still 
worked according to the implemented methodology.

This difference is clearly visible in the case of a Poisson 
distribution [Table 1; table S3 and figure S1 (available 
online: https://cdn.amegroups.cn/static/public/ATM-
20-6363-1.pdf)]. Overall statistical performance of 
countfitteR (0.98) is higher than the overall performance 

of two-step procedure (0.89). The two-step procedure 
worked properly only for the lowest considered λ=2. For 
higher values of λ, the two-step procedure was unable 
to return any answer most of the time. This problem 
seemed to be less prevalent for larger samples sizes 
(n=100 and higher). By contrast, countfitteR was able to 
assess these cases and therefore seems to offer a broader  
practical use.

Similarly, in the case of an NB distribution, countfitteR  
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A

B

C

Figure 4 The countfitteR report. All information that led to the result is contained in the countfitteR software report. (A) This includes 
information about the data used, the md5-sum of the data (unique assignment) and the parameters used for statistical analysis (upper 
area). (B) The report is saved as interactive HTML (e.g., middle section: tables with sorting and filter functions) and can be read or edited 
independent of platform and device. (C) In the decisions section, the strength of trust is displayed using Bayesian criteria. The report also 
contains information about the R packages and software environment used in the analysis (end of the report).
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Figure 5 Empirical power of countfitteR and two-step test for ZIP distribution. n: number of counts in the sample. λ: Poisson parameter 
(number of occurrences, e.g., average number of foci per cell). r: zero inflation (fraction of occurrences treated as number of counts in the 
sample. λ: Poisson parameter (number of occurrences, e.g., average number of foci per cell). r: zero inflation (fraction of occurrences treated 
as zeros, e.g., fraction of cells treated by system as having no foci regardless of their real state). ZINB, zero-inflated negative binomial.

Table 1 Mean empirical power of countfitteR and two-step test for Poisson, ZIP, NB and ZINB distributions supplemented with percentages of 
solved cases

Distribution Method countfitteR Two-step

Poisson Mean 0.98 0.89

Solved 100% 50.11%

ZIP Mean 0.94 0.22

Solved 100% 90.19%

NB Mean 0.86 0.92

Solved 100% 69.03%

ZINB Mean 0.43 0.25

Solved 100% 99.95%

ZIP, zero-inflated Poisson; NB, negative binomial; ZINB, zero-inflated negative binomial.

was able to make a decision in all simulations [Table 1; table 
S5 and figure S2 (available online: https://cdn.amegroups.cn/
static/public/ATM-20-6363-1.pdf)]. The two-step procedure 
yielded a result in only 69.03% of cases, mostly for the lowest 
values of λ and for small sample sizes. Although the overall 
empirical power for the two-step procedure was higher 
(0.92), countfitteR still had a reasonable performance (0.86) 
while being able to analyze all cases. It is important to point 
out that this was irrelevant in both types of zero-inflated 
distribution (ZIP and ZINB). Here, the two-step procedure 
returned a decision for almost all analyzed samples.

Case study

We analyzed 2,253 images (as described in the Methods 
section) and used the countfitteR framework to find 
out which distribution is best describing the foci counts  
(Figure 7). To highlight the impact of the foci-counting 
software, we have compared counts obtained from 
CellProfiler and NucDetect.

The counts produced by CellProfiler mostly followed the 
NB distribution (63.2% for γH2AX and 59.4% for 53BP1). 
Still, the Poisson distribution was the second most common 
distribution (31.1% for γH2AX and 37.9% for 53BP1). 

λ:2



Annals of Translational Medicine, Vol 9, No 7 April 2021 Page 11 of 17

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(7):528 | http://dx.doi.org/10.21037/atm-20-6363

Figure 6 Empirical power of countfitteR and two-step test for ZINB distribution. λ: Poisson parameter (number of occurrences, e.g., 
average number of foci per cell). r: zero inflation (fraction of occurrences treated as zeros, e.g., fraction of cells treated by system as having 
no foci regardless of their real state). θ: dispersion parameter. ZINB, zero-inflated negative binomial.
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Figure 7 Distributions selected by countfitteR underlying data from the case study for γH2AX and 53BP1 biomarkers. The counts of 2,253 
images were analyzed by CellProfiler (top row) and NucDetect (bottom row) software. ZIP, zero-inflated Poisson; NB, negative binomial; 
ZINB, zero-inflated negative binomial.

Both zero-inflated distributions were marginally present for 
both markers.

For NucDetect, the NB distribution dominated in both 
channels (70.3% for γH2AX and 87.2% for 53BP1) and 
was much more prevalent than in the case of foci counts 
produced by CellProfiler. However, the second most 
common distribution for the relevant γH2AX channel was 
ZINB (26.7%), and for 53BP1 it was Poisson (8.4%).

Nevertheless, as indicated elsewhere (61), the Poisson 
distribution was never the most frequent distribution. The 
equidispersion for γH2AX was observed in 4.1% of cases 
for NucDetect counts and 32.1% of cases for CellProfiler. 
Thus, the majority of the data expressed some kind of 
overdispersion, mostly caused by the presence of extremely 
high counts. The counts for the co-localized biomarker 
53BP1 behaved similarly (10.5% of cases for NucDetect 
counts and 37.9% of cases for CellProfiler).

Discussion

Although both overdispersion and zero-inflation are 

problematic during the analysis of count data, it is very 
critical not to confuse these two phenomena. The increase 
in variance can result from different factors, such as the 
patients’ resistance to DSB-inducing effects, and zero-
inflation is usually linked to the measuring devices and 
foci counting algorithms. Both effects are unwelcome, and 
it is essential to be able to distinguish between, e.g., ZIP 
and NB. The two-step procedure seems to mix those two 
distributions easily. An important feature of countfitteR 
is the exact distinction between overdispersion due to 
increased variability and excessive zeros.

With our approach, we provide evidence that relying 
on the basic assumption of a Poisson distribution is not 
tenable. The consequences reach much deeper than to data 
post-processing alone, as the Poisson assumption could 
also affect foci counting software. For example, AutoFoci 
compares raw data to Poisson distribution. This gives the 
user the option to compare the theoretical and empirical 
distribution for this particular model. However, our data 
show that more models are needed for consideration. 
Figure 3A shows that the location (λ) and dispersion (95% 
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confidence interval) may vary considerably between models. 
We interpret this to mean that giving these values based on 
the evidence for a distribution (the lowest BIC among four 
likely models) is good practice.

There is  a  plethora of  software for count data 
analysis and very specific count distributions. Software 
for the (semi)automatic analysis of distributions [e.g., 
SPC (BPI Consulting, LLC, USA), Pelican (Vose 
software,  Belgium),  Weibull++ (rel iasoft .com)] is 
closed source and tied to commercial platforms like 
EXCEL or specific operating systems. Most importantly 
they lack specific models for the analysis of DNA 
damage, as they were designed to be used for more 
general datasets. Other software like fitdistrplus (62) 
or fitter (63) are usually confined to command-line 
interfaces and lack objective and reproducible model 
selection with a report generation.

The distribution of digital data is important for 
diagnostic decisions and the generation of novel, data-
driven hypotheses (64). We also see the countfitteR software 
as having biomedical significance for future diagnostic 
applications, which includes the recording and distribution 
of digital data. Since the software is based on R, it could 
be connected to existing technologies, such as the rEHR 
package (65), for working Electronic Health Record data 
and other medical data (66,67).

Our tool breaks ranks in both aspects, as countfitteR 
is designed to be as user-friendly and accessible to 
experimentalists as possible. We specifically aimed for 
the web server to make our tools available for users non-
proficient in R. At this point it should be emphasized 
again that the countfitteR package contains the functions, 
exemplary data sets and the source code for calculation. 
Therefore, statistical bioinformaticians can develop 
pipelines for highly automated analyses.

As a downside, graphical user interfaces may be 
associated with a lower reproducibility than programmatic 
command lines, as the latter can easily be exactly recorded 
and repeated. Reproducibility means that a detailed 
description of the research workflow allows others to 
precisely replicate published results (68). Therefore, a 
leading design principle of the countfitteR web server 
was to enhance the reproducibility by providing advanced 
reporting functions. Every analysis comes with information 
about the version of used R packages and the md5 control 
sum of the input data.

countfitteR is a powerful and easily accessible tool for 
the selection of a proper count distribution among the 

four distribution models: Poisson, ZIP, NB and ZINB. Of 
course, its performance is limited to its area of competence 
defined by these models. In cases where countfitteR does 
not offer a plausible result, an even rarer distribution pattern 
has to be considered and to be tested for by other methods. 
For example, the zero-truncated Poisson distribution 
(value zero cannot occur) looks like a possible model for 
foci count data. However, in none of our experiments 
we ever had datasets where none zero values occurred. 
Therefore, we did not include it. In our experience and 
results by others regarding radiation-induced chromosome  
aberration (61), however, foci data appear to follow one 
of the four distributions implemented in the countfitteR 
software. The rationale for the selection of a specific 
model is documented for each analysis and thus supports 
reproducible research. We limited the software to Poisson, 
ZIP, NB and ZINB distribution, because there was not 
enough evidence in the literature for further models. 
However, since countfitteR is a cross-platform open-
source software it can be extended by other models. The 
presented countfitteR software (v. 1.4) has a modular 
structure that contains 13 functions [as assessed by “lsf.
str(‘package:countfitteR’)” in R] for statistical analysis 
and the graphical user interface. Since these functions are 
open source, the GitHub hosted software can be extended 
and forked. In the software we have implemented four 
distribution models (Poisson, ZIP, NB, ZINB distribution) 
based on the literature. If a new suitable model is described 
in the literature, it can be implemented in the software as a 
new function. The Bayesian selection algorithm adapts itself 
automatically. At this point we would like to mention that 
this can already be tested from the command line.

Conclusions

Other authors, and we expect that the tight integration of 
phenotypic imaging methods and automated data analysis 
will make a valuable scientific contribution. Our software 
can be integrated into your own bioinformatic analysis 
pipelines or users can use the software in a graphical user 
interface to get an objective assessment of the distribution. 
We recommend that the analysis of count data could be 
performed as follows and presented in studies:

(I)	 Documentation of data provenance [see (69) or 
further information];

(II)	Data screening to identify possible errors in values 
and coding [see (70) for further information);

(III)	Automated selection of the distribution model; 

https://www.zotero.org/google-docs/?twmiJc
https://www.zotero.org/google-docs/?BfGTLJ
https://www.zotero.org/google-docs/?pqJiKs
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https://www.zotero.org/google-docs/?8TNZCp
https://www.zotero.org/google-docs/?kbg2pV
https://www.zotero.org/google-docs/?8TNZCp
https://www.zotero.org/google-docs/?GAiayg
https://www.zotero.org/google-docs/?8TNZCp
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(IV)	Determination of the location and dispersion 
parameters, at a defined confidence level, for the 
corresponding optimal distribution model; 

(V)	Preparation of a report containing information 
about the tested distribution models, the BIC for 
the optimal distribution model, the analyzed counts 
(location, dispersion and confidence level) along 
with the R/countfitteR version used.

The value of this approach was demonstrated by 
providing a tool for the automated statistical analysis of 
pharmacological responses to DNA damage. We tested 
our method on a specific pool of cells. This is important 
because we suspect that in other laboratories the distribution 
models may occur with a different frequency. Biological and 
technical factors are probably the primary reasons for this. In 
a review (35), we have listed other types of cancer cells that 
could be used for pharmacological studies and personalized 
medicine. These have the potential to advance personalized 
medicine and the development of novel therapeutic 
agents that include pharmacological compositions or 
polypharmacology in the disease context (71). 
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