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Editorial

Tricks to translating TB transcriptomics
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Abstract: Transcriptomics and other high-throughput methods are increasingly applied to questions relating to 

tuberculosis (TB) pathogenesis. Whole blood transcriptomics has repeatedly been applied to define correlates of 

TB risk and has produced new insight into the late stage of disease pathogenesis. In a novel approach, authors of a 

recently published study in Science Translational Medicine applied complex data analysis of existing TB transcriptomic 

datasets, and in vitro models, in an attempt to identify correlates of protection in TB, which are crucially required 

for the development of novel TB diagnostics and therapeutics to halt this global epidemic. Utilizing latent TB 

infection (LTBI) as a surrogate of protection, they identified IL-32 as a mediator of interferon gamma (IFNγ)-
vitamin D dependent antimicrobial immunity and a marker of LTBI. Here, we provide a review of all TB whole-

blood transcriptomic studies to date in the context of identifying correlates of protection, discuss potential pitfalls 

of combining complex analyses originating from such studies, the importance of detailed metadata to interpret 

differential patient classification algorithms, the effect of differing circulating cell populations between patient 

groups on the interpretation of resulting biomarkers and we decipher weighted gene co-expression network 

analysis (WGCNA), a recently developed systems biology tool which holds promise of identifying novel pathway 

interactions in disease pathogenesis. In conclusion, we propose the development of an integrated OMICS platform 

and open access to detailed metadata, in order for the TB research community to leverage the vast array of OMICS 

data being generated with the aim of unraveling the holy grail of TB research: correlates of protection. 
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Introduction

In 2013, an estimated 9.0 million people developed 
tuberculosis (TB) and 1.5 million died from the disease (1). 
Despite ongoing research efforts and ever-increasing 
knowledge of how Mycobacterium tuberculosis  (M.tb) 
interferes with the human immune response, we are still far 
from developing the diagnostic and therapeutic approaches 
that would reduce the severity of this global epidemic. 
Vaccines form the cornerstone of potential eradication 
strategies of TB, yet the biological factors that provide 
protection from disease progression (so-called biological 
correlates of protection), which would assist design and 
testing of new vaccine candidates are lacking. A better 

understanding of natural protective immunity to TB would 
facilitate these attempts. Following inhalation of M.tb 
bacilli, latent TB infection (LTBI) is the most common 
outcome. It is considered that in LTBI the growth of the 
bacilli is contained by the coordinated host innate and 
adaptive immune response, preventing disease progression, 
but there is failure to completely eradicate all organisms, 
such that an underlying asymptomatic infection persists. 
This makes LTBI a particularly useful model system for the 
discovery of protective correlates.

In the last 8 years, 15 transcriptomic studies have 
been published that use whole-genome gene expression 
microarrays in an effort to gain a broader understanding 
of the human response to M.tb infection, during various 
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stages of pathogenesis and treatment (Figure 1). These 
studies have generally characterized the whole blood 
response, although the papers by Berry et al. and Bloom  
et al. (5,12) also investigated expression profiles on separated 
cell populations to delineate the effect of varying cell 
number and cell activation on the whole blood response. 
These studies provide evidence for correlates of risk of 
active TB, and have been remarkably concordant in their 
findings. In particular, they reveal an important role for 
type-I interferon signaling and neutrophil influx in disease 
pathogenesis, driving new areas of TB research. Moreover, 
they provide evidence that LTBI actually represents a 
spectrum of disease states: the whole blood signature of 
some LTBI cases clustered with those with active TB, 
suggesting these participants may be at risk of developing 
disease. The microarray data on which these studies are 
based have mostly been deposited in public databases 
(Figure 1), but generally the associated patient metadata 
is incomplete or unavailable. This significantly limits the 
utility of the data as the primary research can often not 
be reproduced. Without such detailed metadata, it can be 
challenging to meaningfully combine datasets in meta-
analyses, even once the challenge of combining data from 
different platforms has been overcome. Moreover, while 
these studies provide evidence for blood biomarkers to 
diagnose active TB and monitor treatment, they have shed 
less light on correlates of protection against disease.

In a recent paper (17) published in Science Translational 
Medicine, Montoya et al. used an interesting combination of 
informatics and additional in vitro experiments to do just that. 
The novel strategy employed by the authors consisted of 
three components. Firstly, an idealized monocellular in vitro 
system was studied using transcriptomic approaches. The 
authors identified genes that correlate with defense response 
in differentiating macrophages, whose phenotype was 
previously associated with M.tb control (18,19). Hypotheses 
resulting from the first section were then tested in a second 
set of in vitro experiments. The final step involved further 
informatics analyses of existing human TB transcriptomic 
datasets to identify genes up-regulated in LTBI cases or 
which are decreased during active TB and increase during 
TB therapy. The three components were then integrated 
by determining the overlap of the genes sets from the  
in vitro and in vivo transcriptomic analyses in order to identify 
genes representing potential biomarkers of protective 
immunity. Via this method Montoya et al. identified IL-32 as 
a mediator of interferon gamma (IFNγ)-vitamin D mediated 
antimicrobial activity, and a marker of LTBI.

The importance of sample and patient 
characterization

While this novel approach yielded interesting candidate 
biomarkers of LTBI, there are a number of factors which 
must be taken into account to ensure this method yields 
translatable outcomes for understanding protective 
immunity (Table 1). Montoya et al.’s approach critically 
depends on how they differentiated and purified their 
in vitro cell populations, the differing proportions of 
circulating cell subsets between patient groups, and, 
critically, how they (or rather the authors of the original 
datasets) classified individuals as having LTBI.

Diagnosis of LTBI relies on the measurement of 
the adaptive response by tuberculin skin test (TST) or 
interferon-gamma release assay (IGRA), preformed on 
whole blood samples. Thus, these tests only inform us about 
immune memory, not current infection status; they cannot 
differentiate whether an individual eradicated the infection, 
either via the innate response or with help from the 
adaptive response. It has become clear that reliance on TST 
or IGRA-based classification approaches to define LTBI 
can result in very specific patient cohorts with different, and 
limited, disease phenotypes. Moreover, studies use different 
combinations of these tests to define LTBI (Figure 1). 
Thus better methods for defining LTBI are required; in 
particular, a marker for current M.tb infection, not based 
on immune sensitization. PET/CT imaging is one such 
approach that holds promise (20). When using LTBI as a 
model of protective immunity, it is therefore imperative 
that results are interpreted in the context of how patient 
groups were actually defined, particularly when an immune 
measure is used for classification; otherwise findings may be 
biased towards a specific phenotype. Moreover, outcomes 
need to be framed in the context of their derivation and 
not given a broad implication until validated on additional 
patient cohorts.

The cellular composition of samples from which 
RNA was extracted for these analyses is the second 
vital  component to interpreting the results  from 
transcriptomic studies. Whole-blood signatures are 
highly influenced by differing proportions of circulating 
cell populations, which obviously differ by disease states. 
Many of the differences in T cell transcripts identified 
between individuals with TB and healthy controls, 
identified by Berry et al. (5), were ascribed to decreased 
circulating lymphocyte numbers in TB patients, rather 
than functional differences in cells. TB is known to be a 
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Figure 1 Human sample types and patient group classification criteria in studies publishing novel TB transcriptomic data (2-16). †, this study 
exclusively recruited children <15 years; all other studies recruited adults >18 years. *, if BCG vaccinated. LTBI data subsets highlighted in 
red were used in the study by Montoya et al. -, negative test result; +, positive test result; ±, test not essential for inclusion. BAL, broncho-
alveolar lavage; IGRA, interferon-gamma release assay; LTBI, latent TB infection; MDR, multi-drug resistant TB; OD, other disease; 
PBMC, peripheral blood mononuclear cells; PTB, pulmonary tuberculosis; rx, treatment; TST, tuberculin skin test. 
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disease of relative lymphopenia and neutrophilia, thus, it 
may be predictable that whole-blood from TB patients 
is dominated by a neutrophil-driven transcriptomic 
response. Moreover, extrapolating observations in blood 
to processes of disease pathogenesis occurring at the site 
of disease remain problematic. Although this comparison 
does identify biomarkers of TB disease, in comparison 
to someone who is healthy, what is actually required 
is a disease-specific signature. Thus, a more rigorous 
comparison should include a third group of individuals 
with similar symptoms but differing etiology. Three such 
studies have performed this (Figure 1), two comparing TB 
and sarcoidosis patients (11,12), another granulomatous 

lung disease, and one comparing TB patients and 
respiratory symptomatics with other diagnoses (14). 
In their study, Bloom et al. found the signature of TB 
and sarcoidosis to cluster together, when compared to 
pneumonia and lung cancer, and both to be dominated 
by interferon-inducible transcripts. Thus, one must be 
extremely careful when conducting any transcriptomic 
study to ensure the interpretation of the differentially 
expressed genes are contextualized with regard to the 
disease states of the individuals, the effect of the disease 
state on the peripheral blood compartment and how it 
may relate to processes at the site of disease.

Finally, not only is it vital to acknowledge the effect of 
differing proportions of cell types in differing disease states, 
during a whole-blood comparison, but also the purity of 
an isolated cell population from in vitro or ex vivo analyses, 
when results are to be extrapolated to a particular cell type. 
Montoya et al. made particular note of this latter point, in 
relation to describing unexpected gene expression results 
from purified CD14+ monocyte cultures to the presence 
of potentially contaminating CD8 T cells. There must be 
consistency in how results are interpreted. If unexpected 
results are attributed to an unknown percentage of 
contaminating cells it can become difficult to ascribe other 
observations from the same data solely to the predominant 
cell population.

The paper by Montoya et al. is novel in its approach 
and is rich in data. But, to interpret the relevance of their 
findings, it is necessary to carefully examine the methods, 
both in vitro and the complex informatics that form the 
backbone of the authors’ findings. Immunologically, the 
in vitro methods are logical and easy to follow; based on 
their previous finding that IL-15 differentiates monocytes 
into macrophages exhibiting an M1-like phenotype with 
antimycobacterial properties (18,19), they extracted RNA 
for microarrays (GEO accession GSE59184) from CD14+ 
selected monocytes (90% purity) derived from adherent 
peripheral blood mononuclear cells (PBMC) from healthy 
donors treated for 6 and 24 hours with IL-15, IL-4 and 
IL-10 (to generate M2-like macrophages) or media 
control. Weighted gene co-expression network analysis 
(WGCNA) was then applied to the data and forms the crux 
of understanding all informatics analyses conducted in this 
study. This systems biology approach has the potential to 
elucidate novel pathways of cellular interaction which is vital 
to our understanding the complex disease pathogenesis of 
TB; but to correctly interpret its output, an understanding 
of the methodology is required. 

Table 1 Considerations for interpreting transcriptomic outputs 
based on inputs

Patient classification 

Diagnostic criteria

TB diagnosis: sputum culture or smear, CXR, empiric

Latent TB: TST cut-off, IGRA, TB contact

Healthy controls: no TB exposure, asymptomatic, negative 

TST and IGRA

Population of origin

Genetic diversity

Environmental exposures (NTM, co-morbidity)

Differences in demographics (age, sex)

Disease severity

Duration of symptoms

Extent of disease

Pulmonary vs. extrapulmonary or disseminated

Treatment regimen

Duration of treatment prior to sampling

Sample composition 

Single cell populations

Method of isolation

Method of differentiation

Measure of purity

Whole blood

Cellular composition

Separated cell subsets 

Time and season of blood draw

TB, tuberculosis; CXR, chest X-ray; TST, tuberculin skin 

test; IGRA, interferon gamma release assay; NTM, non-

tuberculous mycobacteria.
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Translating modular analyses

The WGCNA algorithm identifies modules of co-expressed 
genes whose transcript abundance co-varies across samples 
by correlation and clustering analysis. For each module, a 
module eigengene (ME) is determined; this represents the 
first principal component of the expression data matrix for 
the module (a genes × b samples). This ME summarizes the 
expression of the module in a single number, it does not 
represent one gene in the module, but all genes. Then the 
matrix of module eigengenes (m modules × by b samples) and 
the matrix of phenotype variables (b samples × p phenotypes) 
are correlated with a resulting m × p correlation matrix. 
This matrix provides information on the association 
between modules and phenotype. In the Montoya et al. 
paper, only a single module (MEblack) is highlighted as 
biologically relevant, being the most positively correlated 
with IL-15 treatment; all other modules are excluded in 
further discussion. The black module is enriched for the 
gene ontology (GO) term “defense response” (48 genes out 
of 802 probes), and contains IL32. Next, 36 “myeloid defense 
genes” are defined, characterized as any of these 48 defense 
response genes expressed in resting myeloid cells, as determined 
from a preexisting transcriptional dataset (21). Interestingly 
the authors define IL32 as myeloid-derived despite 
lymphoid cells being the predominant cells expressing it in 
their comparison of 24 gene-sets from resting cells. They 
further support the myeloid origin of IL32 by reference 
to studies identifying its expression by monocytic cells 
following IFNγ, TLR4 or NOD2 activation; an alternate 
interpretation of this data is that IL32 expression is induced 
by stimulation and not abundant in resting myeloid cells. 
Other “defense-response” genes were labeled myeloid-
derived based on their informatics approach alone and it 
highlights the need for consistency in the interpretation 
and selection of candidate genes which become the focus 
of further analyses. The top interactions for these myeloid-
defense genes were then visualized using the network 
visualization and analysis tool VisANT and consequently 
IL32 was linked to the vitamin D antimicrobial pathway, 
via correlation with CYP27B1 induction, which encodes the 
final enzyme needed to activate vitamin D. 

Avoiding selective bias

While the authors elegantly demonstrate with subsequent  
in vitro silencing experiments that IL-32, reliant on vitamin 
D, is a downstream gene in the IFNγ antimicrobial pathway, 

it would have been of interest to have more information 
about the module in which IL32 was identified, including 
the gene list for IL15black, the fold-change of IL32, 
direction of induction of and its position in the list of genes 
regulated by IL-15. It is clear IL32 is an important gene 
in this module, but there are others, which may also pose 
as potential correlates of protection. This is a fundamental 
issue researchers working with transcriptomic data now 
face; given a list of 100 interesting genes, what is the basis 
for further investigation? Supervised selection of genes 
may bias outcome and more high-throughput methods for 
robust validation and confirmation using in vivo systems is 
required. When researchers are selective, they must ensure 
their approach is transparent and reproducible. They must 
provide all gene lists which guided their selective approach, 
to ensure their outcomes are not biased and their findings 
are placed within the context of the greater gene regulation 
network(s).

The final section of the paper focuses on mining existing 
transcriptomic datasets from patients with active TB, 
LTBI or healthy controls, utilizing four of the 15 available 
studies (5,9,11,14). The overall approach is to identify 
genes that are more highly expressed in individuals with 
LTBI (diagnosed using a combination of TST, Quantiferon 
Gold and in-house IGRA assays) compared to those with 
either active TB or healthy controls (asymptomatic IGRA-
negative). One of these studies (9) also investigated the 
transcriptional response during TB treatment, and was 
used to identify genes highly expressed in LTBI, which 
are low at TB diagnosis and increase during treatment. 
The previously identified IL15black module from the 
macrophage microarray experiments was then overlapped 
with the LTBI-high genes and with the one module from 
the response to treatment analysis, which was selected on 
the basis that it contains IL-32. Four other modules from 
the TB treatment data set actually show a more significant 
ME for genes which increase during treatment, but these 
do not contain IL-32 and are therefore not followed-up. 
Thus there remain many uninvestigated but interesting 
modules, which may provide further potential correlates 
of protection, but which were deprioritized in a somewhat 
self-fulfilling approach. 

While it is clear that IL32 has a role in antimicrobial 
immunity, there are two methodological issues which may 
arise in any TB OMICS study, which should heed caution 
to it being defined an a correlate of protective immunity, 
until further validation. Firstly, the immunological basis of 
LTBI diagnosis, secondly, the differences in cell populations 
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between healthy and disease individuals. As the LTBI group 
used in this study was defined by IGRA positivity, and thus 
their greater ability to produce IFNγ, it is potentially self-
fulfilling that transcripts associated with the IFN-γ pathway, 
i.e., IL32, were identified to be more abundant in latent vs. 
healthy individuals. Moreover, IL32, which is predominantly 
expressed by lymphoid cells, is less abundant in active TB, 
a state of peripheral lymphopenia, and the increase in IL32 
during therapy is coincident with peripheral lymphocyte 
reconstitution. Thus, the lack of the marker in TB may 
merely be a reflection of the peripheral blood state of 
disease and not necessarily a functional defect resulting 
in loss of protective immunity. These issues highlight the 
importance of using non-immunological criteria for patient 
group classification and the need to adjust for differences 
in the cellular composition of samples compared between 
groups.

The future of TB OMICS

Translational Medicine increasingly relies on high-
throughput data to inform hypothesis generation and 
system descriptions. While the generation of such data 
is becoming routine; increasingly complex informatics 
approaches are being utilized in order to optimally extract 
information from the data. Based on our interpretation, 
it is not clear that the approach used to identify correlates 
of protection from active TB was truly unsupervised, 
but rather semi-supervised and it appears that the study 
conclusions were to some extent self-fulfilling. Despite these 
limitations, such systems approaches to identify correlates 
of protection using existing data sets are useful, as is the use 
of transcriptomics to identify novel pathways of protection 
from in vitro cultures. For the informatics approaches to 
work best, higher-quality patient-level metadata is required 
for published transcriptomic datasets. Such information 
is crucial to account for differences in populations, 
disease presentation, M.tb exposure and underlying co-
existent conditions (infections and non-communicable 
diseases). Ownership of such data and authorship of future 
manuscripts using this data may become complex. However, 
if we are to move towards utilizing the wealth of data 
accumulated over the last decade, in order to provide the 
crucial insights needed to advance TB research, this is a step 
researchers need to tackle.

To fully utilize the information from high-throughput 
OMICS approaches, there is the need to develop a platform 
for data integration. This should systematically capture all 

information from transcriptomics, proteomics and detailed 
clinical phenotype data. There should be an emphasis on 
shared relationships and common associations in order 
to develop a multiscale model of the biology of the host 
response to TB, constrained by unbiased, high-throughput 
observations. We therefore propose the time is ripe for the 
field of TB-OMICS to convene a combined workshop for 
all groups who have deposited large OMICS data sets to 
define how to proceed to look for translational outcomes 
for these data, specifically markers of protection, diagnostics 
and treatment monitoring.
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