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Abstract: Artificial intelligence (AI) has been widely applied to medical imaging. The use of AI for emission 
computed tomography, particularly single-photon emission computed tomography (SPECT) emerged 
nearly 30 years ago but has been accelerated in recent years due to the development of AI technology. In 
this review, we will describe and discuss the progress of AI technology in SPECT imaging. The applications 
of AI are dispersed in disease prediction and diagnosis, post-reconstruction image denoising, attenuation 
map generation, and image reconstruction. These applications are relevant to many disease categories 
such as the neurological disorders, kidney failure, cancer, heart disease, etc. This review summarizes these 
applications so that SPECT researchers can have a reference overview of the role of AI in current SPECT 
studies. For each application, we followed the timeline to present the evolution of AI’s usage and offered 
insights on how AI was combined with the knowledge of underlying physics as well as traditional non-
learning techniques. Ultimately, AI applications are critical to the progress of modern SPECT technology 
because they provide compensations for many deficiencies in conventional SPECT imaging methods and 
demonstrate unparalleled success. Nonetheless, AI also has its own challenges and limitations in the medical 
field, including SPECT imaging. These fundamental questions are discussed, and possible future directions 
and countermeasures are suggested.
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Introduction

As a functional medical imaging modality, single-photon 
emission computed tomography (SPECT) is an important 
tool for molecular imaging research and clinical studies. 
It can be used to evaluate normal physiology and monitor 
many diseases including cardiovascular diseases (1-4), 
disorders of the central nervous system (5-7), cancer (8-11),  
brain functions (12-14), etc. However, the drawbacks of 
SPECT imaging are also well known. Limited spatial 
resolution (1–2 cm full-width half maximum) and high noise 
are inherent to the current clinical SPECT systems due to 
the hardware design. The projection data is also affected 

by degrading factors such as attenuation, scatter, and 
collimator septal penetration. All those lead to challenges 
in image reconstruction, and consequently affect diagnostic 
accuracy of SPECT images. 

Recently, many artificial intelligence (AI) algorithms 
have been proposed to compensate for such deficiencies. 
Studies include denoising and resolution improvement for 
SPECT images, attenuation map generation and correction, 
end-to-end image reconstruction that directly takes the 
hardware implications into account, and many others. 
These techniques have been widely applied to the diagnosis 
of different diseases and conditions. In this review, we 
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discuss these AI systems and applications such that they can 
be shared among SPECT researchers so AI techniques can 
be better utilized to serve the SPECT academic community 
and clinical investigations.

This paper will not review how AI was used to perform 
SPECT image restoration, i.e., post-processing on existing 
images reconstructed by conventional approaches, because 
those essentially belong to the image processing ambit 
[for example in (13)]. Instead, it will concentrate on the 
application and integration of AI into SPECT imaging 
for the diagnosis and investigation of different diseases. 
Although most of the work on AI in SPECT emerged in 
the last few years, the history of AI in SPECT imaging 
can be traced back 30 years to the pioneers who deserve 
particular recognition (14-18). The field owes a great deal 
to those few teams who ventured into huge-data collection, 
validation, and clinical trials. We present the following 
article in accordance with the Narrative Review reporting 
checklist (available at http://dx.doi.org/10.21037/atm-20-
5988).

Brain imaging

In the 1990s, AI entered its first wave of prosperity. The 
AI methodology quickly spread to many areas including 
medical imaging. C. E. Floyd, Jr. might be the first SPECT 
researcher in that age who investigated the feasibility of 
using an artificial neural network (ANN) for SPECT 
brain imaging (14). The network was trained with an ideal 
projection-image pair to learn the mapping rule, which was 
accomplished by minimizing the mean squared error for a 
sample projection-image pair in the absence of noise. The 
developed ANN was a two-layer linear feedforward network 
validated by successfully reconstructing the Hoffman brain 
phantom (15), which provided a reconstruction result 
similar to those provided by the filtered backprojection 
(FBP) algorithm (16). 

Since attenuation, noise, scatter, and the geometric 
response function of the camera (all having an impact on 
the projection data) were not accounted for in the FBP 
algorithm, in 1994, Gopal and Hebert (17) developed a 
feedforward ANN to restore the projection data before 
the FBP reconstruction. This approach was not specifically 
proposed for restoring the brain SPECT data only, but 
more broadly for all SPECT data. Their validation was 
performed on Tc-99m methylene diphosphonate (MDP) 
bone SPECT studies and red blood cell (RBC) liver-spleen 
SPECT studies).

Fakhri et al. in 2001 developed an ANN method for 
scatter and crosstalk correction in simultaneous 123I/99mTc 
dual-isotope brain SPECT imaging (18). In this method, 
the measured energy spectrum in 26 energy channels 
from each projection bin was the input, and the ANN was 
trained to produce primary-to-total photon ratio of each 
radionuclide using a back-propagation algorithm. The 
estimated primary photons were then reconstructed using 
the ordered-subset expectation maximization (OSEM) 
algorithm with compensation for nonuniform attenuation 
and distance-dependent collimator response. The method 
was evaluated using Monte-Carlo (MC) simulations, and 
the accuracy and variability of both 99mTc and 123I activity 
estimates were very close to those obtained from data 
without any scatter. They concluded that the ANN method 
plus OSEM could be a promising approach for absolute 
activity quantitation in simultaneous 123I/99mTc SPECT.

Challenges

The pioneering research in the 1990s identified many 
challenges for AI in SPECT imaging. These challenges 
are fundamental: the architecture of ANNs was restricted 
to 2–3 feedforward layers that is too simple to solve 
complex problems in SPECT imaging, especially the 
nonlinear inverse problems. Furthermore, due to relatively 
insufficient computing power, it was challenging to develop 
advanced AI systems with a large training database, which 
significantly dampened the reliability.

Alzheimer’s disease (AD) diagnosis 

Not until approximately 10 years ago, thanks to the 
substantial progress in computer technology, that more 
advanced AI algorithms and systems could be developed 
to solve more practical problems. One example was the 
AI-aided early detection of AD. The examination of the 
predictive value of SPECT imaging with respect to AD 
has been performed since functional SPECT imaging 
was found to be effective in providing information about 
regional cerebral blood flow (rCBF), which is valuable for 
early diagnosis of AD (19). The evaluation on SPECT of 
patients who may have AD is usually done through visual 
assessments performed by experts. In 2010, Illan et al. 
proposed an independent component analysis method for 
designing a computer-aided diagnosis system for AD (20).  
The method was based on a support vector machine 
(SVM), another typical machine learning (ML) algorithm 
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differing from the NN approach. For training the diagnostic 
system, SPECT images (used for training) were labelled by 
physicians as one of four categories: normal (no symptoms 
of AD), possible (AD-1), probable AD (AD-2), and certain 
AD (AD-3) to distinguish between different levels of the 
typical characteristics of AD. The fully trained system was 
found to reach a 91.1% accuracy during the validation stage. 
Later, Rondina et al. developed another SVM approach to 
classify patients with mild AD versus age and gender (21).  
In contrast to using the whole-brain image, brain regions 
identified as the most relevant sources were used to 
discriminate the AD patients. The result was that such an 
approach contributed to the improvement of classification 
accuracy for 18F-FDG PET only, but not for rCBF SPECT.

In 2017, Höller et al. (22) combined quantitative 
markers from SPECT and electroencephalography (EGG) 
for differential diagnosis of disorders with amnestic 
symptoms. The classification was again accomplished 
by SVM algorithm. Training was performed on 39 
patients examined with AD, 69 patients with depressive 
cognitive impairment (DCI), 71 patients with amnestic 

mild cognitive impairment (aMCI), and 41 patients with 
amnestic subjective cognitive complaints (aSCC). The 
conclusion was that quantitative analysis of EGG and 
SPECT imaging plus ML techniques can effectively 
differentiate AD, DCI, aMCI, and aSCC. 

More recently, an ANN method was applied by Swietlik 
and Bialowas to identify AD using cerebral perfusion 
SPECT data (23). Data from 72 (43 female, 29 male) AD 
patients and 60 (44 female, 16 male) normal controls were 
involved in this study, where the training group contained 
100 (55 AD, 45 normal) patients and the testing group 
had 32 (17 AD, 15 normal) cases. For each patient, the 
reconstructed brain profile was segmented into 36 fixed 
subregions, and then the total counts in each subregion 
were computed and used as an input signal into and NN, as 
shown in Figure 1. The NN architecture was quite simple, 
which consisted of three layers with 36 neurons in input 
layer, 21 neurons in the hidden layer, and 1 neuron in the 
output layer. A comparison of AD diagnosis by this NN 
and by conventional statistical methods did not show any 
statistically significant differences. 

Figure 1 The ANN and its input signal by Swietlik and Bialowas (23).
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Parkinson’s disease (PD)
123I-Ioflupane (123I FP-CIT), also known as DaTscan, is an 
FDA approved (in 2011) radioactive tracer that binds to 
the dopamine transporter (DAT) on pre-synaptic neurons 
in the dopaminergic system. DAT SPECT has been 
rountinely used for the dignosis and monitoring of PD. 
There is an open database, Parkinson’s Progression Marker 
Initiave (PPMI, https://www.ppmi-info.org/), that contains 
thousands of DAT SPECT images and other relevant 
data, which has promoted more applications of AI in DAT 
SPECT for PD than many other SPECT studies. In 
addition to ML algorithms such as SVM (24-27), k-nearest 
neighbors (26,27), or deep learning NNs (28-33) that make 
diagnoses relying on reconstructed SPECT images, there 
are also many other interesting applications leveraging 
either the DAT SPECT images or DAT SPECT projection 
data. 

Tang et al. developed an ML prediction model in 2019 (34),  
aiming to predict motor outcome from baseline (year 0)  
DAT SPECT imaging radiomic features and clinical 
measurements. Images fed to the NN were reconstructed 
by OSEM algorithm (35,36). The trained ANN was able to 
predict the unified PD rating scale (UPDRS) part III motor 
score in year 4 from 92 imaging features extracted on 12 
different regions as well as 6 non-imaging measurements at 
baseline, with a prediction accuracy of 75%.

Similar work was conducted at Johns Hopkins University 
(JHU). In 2018, Leung et al. (37) designed a NN to predict 
outcome of patients of PD using longitudinal clinical 
data containing imaging and non-imaging information. 

Features were extracted from clinical data by the NN 
(imaging features were first extracted by an Inception V3 
network which was then combined with non-imaging 
information, such as age, gender, and diagnostic duration, 
to be delivered to a long short-time memory (LSTM)-
based network for making final processing, as illustrated 
in Figure 2) and then the motor performance (UPDRS 
part III) in year 4 can be outputted. The prediction result 
was compared with the true UPDRS part III in year 4. It 
was found that the accuracy of prediction given only the 
non-imaging data outperformed the approach given only 
the imaging data. But the performance was substantially 
improved when both imaging and non-imaging information 
were given to the NN. Recently, the same group has also 
worked on using NN approach to detect PD directly 
from DAT-SPECT projection data (38). Differing from 
other methods where reconstructed images were used  
(24-33), in this method the NN accepted SPECT projection 
data and a conclusion was made from the analysis in the 
projection-data space directly. The hypothesis was that all 
the necessary information for accurate diagnosis was already 
presented in the projection- data, and reconstruction into 
images was simply to allow easy interpretation by a human 
observer. A NN can retrieve such information directly 
from projection data, and thus eliminates the necessity 
of time-consuming image reconstruction processes. The 
team showed that the developed NN can yield an overall 
accuracy of 97%. Currently, they are working on comparing 
the performance of this approach with a NN that operates 
in the reconstructed DAT-SPECT image domain. 

Figure 2 A deep-learning architecture to predict UPDR-III scores in year 4 for PD patients, presented by the JHU group.
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Using AI to perform an end-to-end SPECT image 
reconstruction is also of interest (39-42). An ANN 
consisting of two fully connected layers followed by five 
convolutional layers was designed to accept SPECT 
projection data and attentuation map at its input, and 
to output a 2-D quantitative activity image showing the 
distribution of the 123I- Ioflupane in the brain. The network 
architecure is shown in Figure 3. The input is composed of 
two channels to accept the sinogram and the attenuation 
map respectively (their matrix size can be different). The 
sinogram will pass througth two fully-connected layers to 
reconstruct a raw image which will then concatenate with 
the attenuation map for compensation and noise reduction 
in the convolutional layers. Regarding the NN training, 
different from all previous examples using merely a few tens 
of patient data to conduct the training, 20,000 synthetic 
phantom images were employed in NN training and 
patient data was used for validation. The large training data 
pool significantly reduced the probability of overfitting, 
which is a serious issue in AI systems development. The 
reconstruction image by the developed NN was found to 
outperform the one reconstructed by the traditional OSEM 
algorithm validated using both the Zubal phantom data (43) 
and patient data.

Another interesting example was by Huertas-Fernández 
et al. who developed two machine learning models in 2015 
for differentiating vascular parkinsonism and PD (44), 
still using the data from 123I FP-CIT DAT SPECT. The 
study included 80 patients with vascular parkinsonism and 

164 patinets with PD who underewent 123I FP-CIT DAT 
SPECT studies. Signicant differences were found in the 
region of interest (ROI) analysis (counterpart of the whole-
brain analysis method) between vascular parkinsonism 
and PD in 123I FP-CIT uptake in the more affected side 
of the putamen and the ipsilateral caudate. The diagnostic 
accuracy of the logistic regression model using ROI 
data was 90.3% and of the SVM model using statistical 
parametric mapping (SPM) data was 90.4%. The conclusion 
was that the models built with ROI data and SPM data from 
123I FP-CIT SPECT provide great discrimination accuracy 
between vascular parkinsonism and PD.

Cardiac imaging

SPECT is widely used in cardiac imaging to investigate 
myocardial  perfusion,  metabol ism,  v iabi l i ty,  and 
innervation. Therefore, AI cardiac SPECT has attracted 
a great deal of attention in the last few years. In 2013, 
Ciecholewski presented a high-efficient SVM method to 
diagnose ischemic heart disease (45). Heart images acquired 
by SPECT were classified by the SVM system with a 
higher accuracy than using principal component analysis 
(PCA) and NNs. But the NN investigated in the article 
had only one hidden layer, raising some questions as to the 
robustness of the conclusions.

Other than diagnosis using ML approaches based on 
SPECT images, another topic that has been recently 
intensively researched is prediction of cardiac death in 

Figure 3 The architecture of the ANN presented in (39) and the reconstructed brain image showing the biomarker in the striatum using 
patient data.
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heart failure. In 2019, Haro Alonso et al. (46) developed 
several ML models to estimate a patient’s risk of cardiac 
death based on adenosine or exercise stressed myocardial 
perfusion SPECT (MPS). Accuracy of the models was 
measured by area under the receiver operating characteristic 
(ROC) curve (AUC). The performance of all  ML 
models outperformed the conventional baseline logistic 
regression (LR) method for prediction of cardiac death in 
patients undergoing MPS, and SVM method was found 
to yield the best AUC among all ML models. In contrast, 
Nakajima et al. proposed another ML system incorporating 
123I-metaiodobenzylguanidine (MIBG) myocardial 
innervation SPECT imaging to differentially predict risk of 
life-threatening arrhythmic events (ArE) and heart failure 
death (HFD) (47,48). The ANN was found diagnostically 
accurate and comparable to nuclear cardiology expert 
interpretation, and better than conventional semi-
quantitative defect scoring. The details of their ANN 
architecture, however, were not presented in the article. 

Another contribution of AI is to improve the scan 
efficiency (49,50) through benefitting from the powerful 
image-analysis capability of convolutional NN (CNN) 
technique. The acquisition time in SPECT can be either 
reduced by a decrease of acquisition time per projection, 
or a reduction of the number of angular projections. The 
obtained sinogram is then processed by a fully-trained 
CNN to recover the full sinogram from a normal SPECT 
scan (Figure 4). Shiri et al. (50) found that the predicted full-
time sinogram had better quality than the predicted full-
angle sinogram, when implementing a residual CNN to 

perform the transformation from the half-time sinogram 
and half-angle sinogram, respectively. The clinical benefit 
of such an application can be significant, including reduced 
radiation dose, improved patient comfort, and increased 
clinical efficiency.

In addition, attenuation map estimation is also an 
interesting application of AI. Attenuation correction using 
CT or transmission scan generated attenuation maps is 
often used in SPECT imaging to increase accuracy and 
to enable quantitative analysis. However, the use of CT 
scans increases radiation dose to patients, and significant 
artifacts may occur due to misregistration between SPECT 
and CT scans as a result of patient motion. Moreover, 
there are many existing SPECT systems that do not have a 
CT scanner or transmission scan capability. Recently, ML 
methods have been proposed to estimate the attenuation 
map directly from SPECT emission data. In Yale University, 
Shi et al. (51) developed a deep NN to perform such 
estimation. Both photopeak window and scatter window 
SPECT images were used as the input of the network. 
The CT-based attenuation maps were used as labels and 
65 cardiac SPECT/CT images were employed for the 
NN training and testing. Two training strategies, standard 
training and adversarial-mode training were applied in the 
NN development. In the adversarial mode, the generator 
was a U-net like network accepting primary SPECT image 
patch and the scatter SPECT image patch and generating 
attenuation map at its output. The generated attenuation 
map as well as the measured (real) attenuation map were 
fed to the discriminator to make a judgement, labelled 0 for 
generated or 1 for real. The generator and the discriminator 
were trained together until a Nash equilibrium was reached. 
The result was that highly reliable attenuation maps can 
be acquired by the CNN method to facilitate attenuation 
correction for SPECT-only scanners. The team also 
addressed that when only primary window SPECT data 
were available with the absence of scatter data, it was still 
feasible to generate accurate attenuation maps using the 
adversarial training mode, but impossible with the standard 
training mode.

Prostate cancer

A Sweden-US collaboration team (52) has recently 
developed a deep learning algorithm which is called by the 
team prostate-specific membrane antigen with AI (PSMA-
AI), to identify men with low risk of prostate cancer who 
are potential surveillance candidates, based on a PSMA-

Figure 4 Reconstructed image by the developed ANN in (39) 
using patient data.
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targeted small molecule SPECT/CT imaging agent (99mTc-
MIP-1404). SPECT/CT images were retrospectively 
analysed by the PSMA-AI system which calculates the 
uptake of 99mTc-MIP-1404 against the background 
reference. Upon adding PSMA-AI to their previously 
developed prediction model (based on a multivariable 
logistic regression method), the positive predictive value was 
increased from 70% to 77%, and the negative predictive 
value from57% to 74%. In a second experiment, the system 
was used to read SPECT/CT images from 464 patients 
with very low, low, or intermediate risk of prostate cancer 
and make an assessment (53). The result was compared with 
manual assessment and higher AUCs were achieved by the 
PSMA-AI system. 

Thyroid disease

Thyroid disease is the second largest disease in the 
endocrine field and SPECT has been a vital diagnosis 
tool in recognizing thyroid diseases. In order to apply 
a computer-aided system to thyroid disease diagnosis, 

researchers from China developed a NN to read SPECT 
images and then classify images into specific diseases 
according to characteristics in the SPECT images learned 
by the NN (54,55). A transfer-learning strategy was 
employed: a CNN that has been pretrained with ImageNet 
database was retrained by using SPECT patient images to 
fine-tune the network, including 780 samples of Grave’s 
disease, 438 samples of Hashimoto thyroiditis, 810 samples 
of subacute thyroiditis, and 860 normal cases, with label 
pre-signed to each SPECT image. Detailed training scheme 
is shown in Figure 5. The CNN was then expected to 
identify such four diseases given SPECT images after the 
training procedures. Their experimental results showed 
that the developed CNN was efficient for the diagnosis 
of thyroid disease with SPECT images and could provide 
superior performance relative to other CNN methods.

Bone lesions

99mTc-MDP SPECT has been well-established in the 
diagnosis of lumbar stress injury. However, the low 

Figure 5 The training strategy of the thyroid SPECT diagnosis AI system developed in (55).
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quality of 99mTc-MDP SPECT images hampers lesion 
detectability and leads to a high interobserver variability. A 
deep learning-based diagnostic system was thus developed 
by Petibon et al. (56) to improve lesion detection and 
reduce variability in interpretation. FBP reconstruction 
images were fed to a CNN to make a classification. The 
performance of the developed CNN was compared to 
nuclear medicine physicians using ROC and localization 
ROC analyses based on 65 adolescent athletes (mean age 
14.9 years) SPECT images. Five physicians reviewed 
the test images to provide a confidence rating of a lesion 
presence or absence. The developed CNN offered similar 
performance to that of physicians in detecting positive 
lumber lesions. The mean area under the ROC curve was 
0.893 for physicians and 0.905 for the CNN. For LROC, 
the mean area under the curve was 0.811 for the CNN and 
0.787 for physicians.

Role in projection simulation

MC simulation of SPECT imaging is a useful method 
to precisely model how particles propagate and the 
interactions inside the medium, e.g., a patient’s body, and 
the SPECT detector system, i.e., photon interactions in 
the collimator and the scintillator (crystal). It has been 
widely used in SPECT imaging research. However, such 
a method is extremely computationally expensive because 
one must track many photon histories to generate low-noise 
estimates. 

In 2018, Sarrut et al. proposed an NN algorithm for 
accelerating the MC simulation (57). Usually, a MC 
simulation can be thought to comprise of two steps: (I) 
tracking the particles inside the patient, and (II) tracking 
the particles in the SPECT detector including the 
digitization chain of the readout electronic components. 
As addressed by the team, the first step may be accelerated 
by employing a parallel algorithm running on GPUs, so 
the team’s focus was on developing an NN to accelerate 
the second step. Specifically, since photon interactions in 
the detector can be approximated by the angular response 
functions (ARF) (58,59), the purpose of the work was to 
essentially develop an NN to learn the ARF of a collimator-
detector system. The input of the NN is the photon energy 
and direction (incident angles), and the output was the 
photon detection probability within an energy window. 
The NN was composed of three fully-connected layers 
with each consisting of 400 neurons. The training dataset 
was generated from a MC simulation, and the training of 

the NN took 35–45 min on a Nvidia Titan XP graphics 
processing unit (GPU) (Nvidia, Santa Clara, CA, USA). 
As a result, the overall speed-up of a complete SPECT 
simulation was between 80 and 400 times compared to a 
non-NN involved conventional simulation, depending on 
the energy window.

Another example where AI played a role in SPECT was 
by Xiang et al., who developed a deep CNN (DCNN) for 
fast scatter estimation (60). In general MC simulation-
based scatter estimation is accurate but time consuming. 
Commonly used energy-window-based scatter estimation is 
simple to implement but suffers from inaccuracy. The team 
aimed to develop an NN to estimate the scatter projection 
given the SPECT emission projection (90Y bremsstrahlung) 
and the projection of the attenuation map. The training 
dataset was acquired from a high-count MC simulation 
(1 billion per projection), which modeled the Siemens 
Intevo SPECT/CT system (5/8’’ crystal, 105–195 KeV 
acquisition window, 128 views, 128×80 matrix, 4.8×4.8 mm 
pixel size). Scaling of the input to the network is required 
because the total counts in the emission projections may 
vary enormously between MC simulations and real clinic 
measurements. The estimated scatter projection was then 
provided to an OSEM reconstruction to compensate for the 
scatter. The network architecture developed by the team 
was a 13-layer NN consisting of separate paths for accepting 
the emission and attenuation projection respectively, and 
then concatenated before the final convolution steps. The 
method was evaluated by a simulated sphere phantom 
with a lung insert, measurements of a liver phantom, and 
patient data after 90Y radioembolization. The developed 
DCNN was found to be able to estimate the scatter in 
90Y bremsstrahlung SPECT/CT with accuracy similar to 
MC-based estimation, but at a fraction of the time. The 
DCNN could generate patient scatter projection for 128 
views within 1 min using a single processor on a desktop 
computer which is about 3 orders of magnitude faster than 
estimating bremsstrahlung scatter by MC.

Outlook

Although the birth of AI applications for SPECT imaging 
emerged approximately 30 years ago, there has been 
a marked acceleration in recent years. Nearly 80% of 
publications have occurred in or after the year of 2018, 
benefiting from the significant progress of the ML theory 
in the 2010s and the development of GPU computing. 
Unlike in the last century when applications were restricted 
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to image reconstruction and data restoration, many new 
applications are emerging, including diagnosis, projection-
data augmentation for quick SPECT examination, future 
risk forecasting, attenuation map generation, and MC 
SPECT simulation acceleration, as illustrated in the above 
sections. 

Thus, one trend of the use of AI in SPECT medical 
imaging which we can confirm at present is the diversity. 
It can be estimated that many new applications that have 
not been investigated or imagined by people in the past, 
are emerging and the speed of emergence is accelerating. 
In addition, the rapid growth of ML theory will benefit 
AI SPECT research in term of new training algorithms to 
develop more accurate and reliable systems. As more and 
more clinic/patient data are used in AI system development, 
the risk of overfitting will be reduced. The growth of CPU 
and GPU computational capability will further increase 
the efficiency of AI systems. It can be expected that more 
efficient and more accurate SPECT AI techniques are 
emerging to benefit scientific research, clinical patient care, 
and society as a whole sooner than imagined. 
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