
Page 1 of 13

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(8):735 | http://dx.doi.org/10.21037/atm-20-5422

Exosomes as therapeutic vehicles in liver diseases
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Abstract: The diagnosis and treatment of various liver diseases have progressed greatly over the years, 
but clinical outcomes are still not satisfying. New research on the mechanisms and application thereof may 
effectuate positive changes. Exosomes are membrane-derived nanovesicles ranging in size from 40 to 160 nm  
and are released by a diversity of cells. They contain a variety of cargo, including lipids, proteins, coding 
RNAs, and noncoding RNAs. Recent studies have recognized exosomes as intercellular communication 
agents, which play important roles in physiological or biological processes in acute or chronic liver disorders 
by horizontal transferring of genetic bioinformation from donor cells to neighboring or distal target cells. 
In the hope that exosomes can potentially be used as vehicles for clinical intervention, this review aims to 
focus on the roles of exosomes and their cargo in the field of various liver disorders, including virus-related 
liver diseases, alcoholic liver diseases (ALD), nonalcoholic fatty liver diseases (NAFLD), and liver cancer. In 
addition, many studies have indicated that mesenchymal stem cell (MSC)-derived exosomes or engineered 
MSC-derived exosomes can also exert hepatoprotection, antioxidation, or enhance drug sensitivity on 
corresponding liver diseases with the advantage of low immunogenicity and high biocompatibility. Overall, 
exosomes are expected to serve as an important therapeutic tool for various liver diseases. However, there 
are still many problems that need to be resolved by further research and a greater body of evidence before 
exosomes are ready for clinical application.
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Introduction

Exosomes were first described as a means to eliminate 
cellular waste by Pan et al. in 1985 (1). While studying 
the maturation process of erythrocytes, they found that 
exosomes served to remove unnecessary components from 
cells. The terms “exosome” and “extracellular vesicle (EV)” 
were once used interchangeably in many publications. 
However, it is now widely accepted that an exosome is a 

membrane vesicle structure ranging from 40 to 160 nm 
in size that originates from multivesicular bodies (MVBs) 
through endosomal pathways, which consist of endosome 
formation and exocytosis (2). The formation of MVBs 
starts from the early sorting of endosomes (ESEs) which 
are generated from the invagination of plasma membrane 
and the endocytosis of biomolecules (3). After periods of 
maturation, the late endosomal membrane buds inward 
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to form the intraluminal vesicles (ILVs), which leads to 
the formation of MVBs (4). Some of MBVs can be fused 
with plasma membrane, and subsequently release ILVs 
into the extracellular space, and these can be defined as 
exosomes (2,5-7). Other MBVs can be fused with lysosomes 
or autophagosomes for self-degradation (3) (Figure 1, A). 
Recent research (8,9) has recognized that exosomes serve as 
intercellular communication agents which contain various 
biomolecules, such as lipids, proteins, amino acids, coding 
RNAs, and noncoding RNAs. In this capacity, exosomes 
play critical roles in physiological or biological processes in 
acute or chronic liver disorders by the horizontal transfer 
of genetic bioinformation from donor cells to neighboring 
or distal target cells. Other studies (4) have shown that 
exosomes can be secreted by the majority of cell types. 
Depending on the cell types released, the quantity, contents, 
and biological characteristics of exosomes can promote 
or inhibit the physiological or pathological progression 
of cells. For instance, normal hepatocytes were found to 
release a small number of exosomes to regulate liver repair 
and regeneration (10). Meanwhile, stressed hepatocytes 
were found to increase exosome release and the expression 
of cellular mRNA, which modulates the transcriptional 
process of adjacent hepatocytes and hepatic stellate cells 
(HSCs) (11). Exosomes released by nonparenchymal cells, 
such as sinusoidal endothelial cells, Kupffer cells, and 
HSCs, also participate in the regulation of liver function 
physiologically or pathologically. Moreover, liver tumor 
cells exert great influence on regulating the growth, 
angiogenesis, proliferation, and metastasis of neoplasm 
by releasing exosomes (12). Such exosome-modulated 
responses can be disease promoting or suppressing (3).

Accumulating evidence (13,14) has clarified the functions 
of exosomes in the hepatic pathological state: due to their 
low immunogenicity and good biocompatibility, exosomes 
may transfer biomolecules to the target cells without RNA 
degradation and loss of biological information. Thus, 
there has been increasing emphasis on the use of exosomes 
to control the progression of liver diseases. There are 
three main ways in which exosomes can be manipulated 
to facilitate liver regeneration, regulate inflammation and 
fibrosis, or inhibit tumor growth and metastasis: (I) direct 
regulation of the release of exosomes from particular cell 
types (15,16); (II) interference with exosome cargo (17); 
and (III) delivery of drugs into exosomes (18). Indeed, the 
study of exosomes has become a very active field. Ongoing 
experiments may discover more about exosome functions, 
which may in turn help to enhance the diagnosis and 

treatment of a variety of diseases (3).

Hepatitis B

Hepatitis B virus (HBV) infection has become a major 
global health problem (19). According to the World 
Health Organization (WHO) Global Hepatitis Report 
2017, 257 million people were estimated to be chronically 
infected with HBV worldwide. People who are chronically 
infected with HBV may develop cirrhosis or hepatocellular 
carcinoma (HCC), a potentially fatal disease. Hence, 
it is crucial to understand the pathogenesis of HBV in 
order to better intervene in liver diseases. After HBV 
reaches the liver and infects the hepatocytes through 
the bloodstream, its envelope fuses with the hepatocyte 
membrane, and the HBV genome, a partially double-
stranded, relaxed circular DNA (rcDNA), is transported 
to the nucleus of host hepatocytes and converted into 
covalently closed circular DNA (cccDNA) which serves 
as the template to synthesize the pregenomic mRNA 
after multiple steps (20-22). HBV DNA is then created 
by reverse transcription and may be integrated into the 
chromosome. Based on these characteristics, exploring 
the roles of exosomes in HBV replication, transmission, 
and immune responses is particularly important. HBV X 
protein (HBx), a multifunctional viral regulator, figures 
prominently in HBV duplication and viral carcinogenesis 
by interacting with host factors (19). It can surpass the host 
exosomal biogenesis mechanism by enhancing the activity 
of neutral sphingomyelinase 2 and interacting with foreign 
biomarkers such as neutral sphingomyelinase 2, CD9, 
and CD81 (23). Moreover, a growing body of evidence 
suggests that exosomes that contain the HBV genome can 
be released from infected hepatocytes to adjacent normal 
cells, leading to the spread of virus (24,25). Yang et al. (26) 
highlighted that carboxyfluorescein diacetate succinimidyl 
ester (CFSE)-labeled HLCZ01 cells incubated with HBV-
positive exosomes labeled with 4-chlorobenzenesulfnate 
salt (DiD) were shown to be positive for hepatitis B surface 
antigen (HBsAg) and core antigen (HBcAg) after 2 days 
of exposure. We can thus infer that the spread of the virus 
can be blocked by regulated exosomes. Furthermore, Wang 
et al. (27) confirmed that the exosome-mediated clustered 
regularly interspaced short palindromic repeats (CRISPR)-
CRISPR-associated protein 9 (Cas9) system could cut the 
intercellular transmission function of the HBV genome 
(Figure 1, A). Additionally, exosomes released after virus 
infection can also modulate immune responses to control 
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Figure 1 Role of exosomes in liver diseases. (A) The biogenesis of exosomes. Exosomes are generated from the formation of ESE, LSE, 
and MVBs in sequence. In cytoplasm, ILVs are either degraded by lysosomes or released to the extracellular environment as exosomes. 
(B) Exosomes exert antiviral effects during viral hepatitis. Exosomes could induce viral genome degradation and activate immune cells. 
(C) Exosomes have functions in antifibrosis in alcoholic liver disease and nonalcoholic fatty liver diseases. (D) Role of exosomes in HCC. 
Exosomes participate in the inhibition of tumor growth, metastasis, cell division, and the activation of CTL. (E) Multiple roles of MSC-
derived exosomes. MSC-derived exosomes involved in injured hepatocyte repair, HSC inactivation, anti-inflammation, and antitumor and 
chemosensitivity promotion. ESE, early sorting endosome; LSE, late sorting endosome; MVB, multivesicular bodies; ILV, intraluminal 
vesicle; HCC, hepatocellular carcinoma; MSC, mesenchymal stem cell; HSC, hepatic stellate cell; ECM, extracellular matrix; NK cell, 
natural killer cell; CTL, cytotoxic T cell; ER, endoplasmic reticulum; Golgi, Golgi apparatus.
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the virus (28). Kouwaki et al. (29) discovered that exosomes 
containing viral genes derived from HBV-infected 
hepatocytes in vitro could induce the expression of natural 
killer group 2, member D (NKG2D) ligand in macrophages 
through myeloid differentiation factor 88 (MyD88), TIR 
domain-containing adaptor molecule-1 (TICAM-1), and 
mitochondrial antiviral signaling (MAVS)-dependent 
pathways (Figure 1, B). The depletion of exosomes may 
significantly reduce the expression of NKG2D ligand, so as 
to postpone disease progression.

Hepatitis C

Hepatitis C virus (HCV), a small, enveloped RNA virus, can 
progress to chronic hepatitis, cirrhosis, or even HCC under 
long-term exposure (30). It is reported that approximately 
170 million people suffering from this virus (31). Therefore, 
it is urgent to explore new treatments for HCV. Cosset 
et al. (32) reported that exosomes derived from HCV-
infected hepatocytes (HCV-exo) had the ability to transmit 
pathogenic substances to human hepatoma HuH7.5.1 cells 
through resisting neutralizing antibodies. However, in an 
experiment of HCV-replicating Huh7.5 cells treated by the 
MVB inhibitor, U18666A, the quantity of the viral genomes 
released to the supernatant showed a significant decrease (31).  
HCV-exo can also transfer viral nucleic acid from HCV-
infected cells to adjacent immune cells, stimulate the 
expansion of myeloid-derived suppressor cells (MDSCs), 
subsequently promote the differentiation of T follicular 
regulatory cells (TFR), and inhibit the functions of T 
follicular helper cells (TFH), all of which constitute a newly 
discovered mechanism of immune dysfunction in the process 
of chronic viral infection (33). Meanwhile, it was reported 
that the promotion of TFR differentiation and repression of 
TFH function were associated with the inhibition of miRNA 
(miR)-124 expression in MDSCs stimulated by HCV RNA-
containing exosomes (33). Reintroduction of miR-124 into 
peripheral blood mononuclear cells (PBMCs) may reduce 
the induction of MDSCs by viral nucleic acid-containing 
exosomes (33).

Activation and differentiation of HSCs into myofibroblasts 
compose a key mechanism for liver fibrosis. Exosomes 
released by the HBx-containing cells can stimulate 
proliferation signals in HSCs (23). miR-192 can be 
delivered to HSCs through exosomes secreted from HCV-
replicating hepatocytes, and upregulate fibroblast markers 
by upregulating transforming growth factor β1 (TGF-β1) 
in HSCs (34). Devhare et al. also demonstrated that miR-

19a in HCV-exo was internalized to activate HSC through 
regulating the suppressor of cytokine signaling (SOCS)-
signal transducers and activators of transcription 3 (STAT3) 
axis in vitro (35). Thus, it can be seen that after infection with 
the hepatitis virus, exosomes and their cargo play a critical 
role in information communication between hepatocytes 
and nonparenchymal cells, determining the fate of the virus 
and the evolution of diseases. Researchers have speculated 
that exosomes can serve as a new target of viral hepatitis 
or further fibrosis intervention through the inhibition of 
their release and the modification of their cargo. Grünvogel  
et al. (36) demonstrated in vitro that exosomes could transfer 
the intermediate products of HCV replication, and thus 
blocking exosomal release might inhibit the replication 
of HCV through activating toll-like receptor 3 (TLR-3). 
Moreover, exosomes containing HBV-miR-3 derived from 
HBV-infected hepatocytes may restrain macrophages from 
expressing SOCS5 and facilitate M1 polarization by activating 
the Janus kinase (JAK)/STAT pathway. HBV-miR-3 is 
capable of enhancing the expression of epidermal growth 
factor receptor (EGFR) via suppressing SOCS5-mediated 
ubiquitination, and then stimulating IL-6 secretion to inhibit 
HBV replication (37). Taken together, the above findings 
point to the potential value of exosomes in interfering or 
reversing disease progression after viral infection. However, 
numerous animal experiments and preclinical studies are still 
needed before this potential can be confirmed and realized.

Alcoholic liver disease (ALD)

ALD, which manifests as a wide range of diseases, including 
alcoholic hepatitis (AH) and cirrhosis, accounts for about 5% 
of the global disease burden and 6% of total global deaths 
annually. AH is a syndrome characterized by inflammatory 
cell infiltration and hepatocyte damage which can stimulate 
HSCs to secrete excessive extracellular matrix (ECM), such 
as collagen, and facilitate liver cirrhosis (38) after long-
term excessive drinking. With the development of exosome 
isolation and detection technology, scientists have started to 
pay attention to their roles in the pathological progression 
of ALD. A recent study showed that exosome quantity in 
the serum of healthy people increased after alcohol abuse 
or long-term drinking (39), with statistically significant 
correlation with alanine aminotransferase (ALT) levels (40). 
Ethanol treatment has been found to increase the release 
of hepatocyte exosomes, which were further preferentially 
localized in hepatocytes or HSCs, and stimulated the 
expression of the mRNA involved in exosome biogenesis 
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through ceramide or endosomal sorting complexes required 
for transport (ESCRT) pathways (11). Hence, interference of 
RNA involved in ESCRT or ceramide pathways in ethanol-
treated hepatocytes may reduce exosome production. 
Meanwhile, in vivo, it has been shown that the exosome 
inhibitor, GW4869, may suppress intercellular transport of 
RNA from hepatocytes to target cells (11).

MicroRNAs are the most studied small RNAs in exosomes 
from mice models and patients with AH. It was demonstrated 
that miR-30a, miR-30b, miR-122, miR-130a, miR-192, miR-
744, and miR-1246 were upregulated in serum exosomes 
from chronic alcohol-fed mice (40). Babuta et al. (41) further 
discovered that the inhibition of autophagy and impaired 
autophagosome and lysosome function were correlated with 
increased exosome production through the alcohol-related 
increase of miR-155 in ALD mice models and human livers 
with ALD. Thus, it may be possible to reduce alcohol-
induced liver damage by decreasing the production of 
exosomes via miR-155 regulation. Transferring exosome miR-
122 may induce the sensitization of lipopolysaccharide (LPS) 
and inhibit the heme oxygenase 1 (HO-1) pathway which 
can suppress the cell injury induced by cytokines and reactive 
oxygen species. Hence, these effects can be prevented by the 
exosome-mediated transmission of miR-122 inhibitor (39).  
Primary HSCs exhibit profibrotic markers, pri-miR-17-92, 
and connective tissue growth factor (CCN2) (42), and reduce 
the expression of miR-19b (43) when exposed to alcohol. 
During HSC activation, the overexpression of exosome 
miR-19b may change the responsiveness and epigenetic 
regulatory factors of TGF-β, further suppressing collagen 
production (43) (Figure 1, C). Exosomal transfer of miR-214 
into the recipient HSCs may also revert the HSC phenotype 
by directly inhibiting the transcription of CCN2 (42). 
Understanding these phenomena may be critical to the future 
development of exosomes as ALD therapeutics.

Other types of cargo in exosomes can also influence 
the pathological progress of ALD. It was reported that 
endoplasmic reticulum (ER) stress and oxidative stress may 
increase the amount of cytochrome P450-2E1 (CYP2E1) 
in EVs which may promote cell death by stimulating the 
apoptosis signaling pathway (44). Similarly, alcohol was found 
to significantly induce CYP2E1 levels of plasma exosomes 
in an overdrinking mouse model, and these CYP2E1-
enriched exosomes worsened alcohol-induced hepatotoxicity 
and monocyte toxicity, which might be reduced by selective 
CYP2E1 enzyme activity inhibitors (45). In summary, 
exosomes have the capacity to regulate inflammatory and 
fibrotic pathways by delivering cargo to target cells in the 

occurrence and progression of ALD. The above experiments 
(44,45) provide clues for future clinical treatment, but 
determining the exact method by which exosomes and their 
cargo can be used to intervene in the pathogenesis of ALD 
requires more experimental research.

Nonalcoholic fatty liver diseases (NAFLD)

NAFLD is a complex disease, ranging from simple steatosis, 
nonalcoholic steatohepatitis (NASH), cirrhosis, and even to 
HCC. Its emergence is attributed to systemic inflammation, 
insulin resistance, and hepatocyte apoptosis. NAFLD is 
becoming one of the most common chronic liver disorders, 
with a worldwide prevalence of 25.2% (46) and an Asian 
prevalence of 29.6% (47). Furthermore, the fibrosis 
progression proportion and HCC incidence were found to 
be 40.76% and 0.44 per 1,000 person-years, respectively (46), 
while the risk ratios of liver-specific and overall mortality of 
NAFLD were reported to be 1.94 and 1.05, respectively (46).

Lipotoxicity plays a crucial role in the pathogenesis 
of NASH through macrophage-associated inflammatory 
responses, activation of proapoptotic signaling, and 
angiogenesis (48,49). It may induce lysosomal dysfunction 
in hepatocytes, then further increase exosome release, 
causing M1 polarization and macrophage-induced 
inflammation in an miR-122-5p-dependent (50) or miR-
192-5p-dependent manner (51). Moreover, palmitic acid 
(PA) treated (52) or cholesterol-induced hepatocytes (50) 
were found to display a significant increase in exosome 
production, showing distinctive miRNA expression patterns. 
Thus, reducing lipid deposition and inhibiting the release 
of exosomes may ameliorate the liver inflammation caused 
by lipotoxicity. Meanwhile, hepatocytes stimulated by lipids 
were also demonstrated to release EVs containing TNF-
related apoptosis-inducing ligand (TRAIL) (53) and C-X-C 
motif ligand 10 (CXCL10) (54), which induced macrophage 
chemotaxis and inflammation phenotype activation. These 
two effects might be blocked by CXCL10-neutralizing 
antisera, mixed lineage kinase 3 (MLK3) inhibitor (54), 
or rho-associated, coiled-coil-containing protein kinase 1 
(ROCK1) inhibitor, fasudil (53).

NASH is characterized by neutrophil infiltration around 
lipotoxic hepatocytes, which is thought to result in the liver 
inflammation and injury (55). However, recent research (55)  
has indicated that inflammation and fibrosis could be 
ameliorated by the communication between neutrophils 
and hepatocytes through low-density lipoprotein receptor 
(LDLR)-dependent miR-223-enriched EV transfer. 
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Furthermore, Watanabe et al. (56) confirmed that small 
extracellular vesicles (sEVs) derived from adipose tissue-
derived MSCs (AD-MSCs) could attenuate inflammation 
and inhibit liver fibrosis in a rapid NASH fibrosis model 
(Figure 1, C). Consequently, exosomes and their cargo are 
significant to the pathogenesis of NAFLD, but may also be 
attractive therapeutic tools for treating liver diseases. In the 
future, making full use of exosomes may provide scientists 
with novel strategies for the treatment of nonalcoholic liver 
disease.

Hepatocellular carcinoma

HCC, the most common type of liver cancer, is a major 
global public health issue of concern. Chronic HBV 
and HCV infections are generally considered to be risk 
factors for HCC, and account for 56% and 20% of cases, 
respectively (57,58). Only a small portion of HCC patients 
who have underlying basic chronic liver diseases and cirrhosis 
may be rescued by resection or liver transplantation (59)  
due to insufficient donors, financial considerations, 
and other factors. The survival of advanced HCC still 
remains poor because of insensitivity or drug resistance to 
chemotherapy (60). Consequently, it is necessary to explore 
a new treatment for HCC. Exosomes are extremely useful 
for the horizontal delivery of multiple RNAs and protein 
molecules to adjacent or distant cells via paracrine and 
autocrine forms, and are implicated in the mechanisms of 
the occurrence and progression of HCC tumor, including 

angiogenesis, epithelial-mesenchymal transition (EMT), 
immune escape, and chemotherapy drug resistance (61,62). 
He et al. (61) conducted proteomic analysis and RNA 
sequencing of the cargo in HCC-derived and immortalized 
hepatocyte-derived exosomes. The results showed exosomes 
carried many protumorigenic proteins and RNAs, such as 
caveolins, RRAS, CLND3e, and S100A4. Exosome-enriched 
pathogenic genes derived from hepatoma cells could 
significantly enhance the migration and invasion of normal 
hepatocytes by triggering mitogen-activated protein kinase 
(MAPK) and phosphatidylinositol 3 kinase (PI3K)/protein 
kinase B (AKT) signaling pathways, as well as increasing 
secretion of active matrix metalloproteinases-2 (MMP-2) 
and matrix metalloproteinases-9 (MMP-9) (61). Exosomes 
may exert hepatoma inhibitory effects by the overexpression 
of a key regulator of exosome biogenesis-vacuolar protein 
sorting 4 homolog A (Vps4A) to inactivate PI3K/AKT 
pathway and utilize exosomes to modulate the secretion and 
uptake of miRNAs (63). Hepatoma cell-secreted exosomal  
miR-210 (64) and miR-155 (65) may promote tumor 
angiogenesis of endothelial cells and elevate the proliferation 
of HCC cells. Conversely, repression or knockdown of 
these two miRNAs may have the opposite effect, inhibiting 
angiogenic activity in HCC (64,65). Furthermore, 
knockdown of phosphatase and tensin homolog deleted on 
chromosome 10 (PTEN) may attenuate the proliferation 
of HCC cells treated with the exosomal miR-155 (66). 
Earlier studies (7) showed that exosomes could transfer RNA 
between cells, acting as a good adjuster to diseases (Table 1). 

Table 1 The roles of exosomal small RNA in HCC therapy

Small RNA Function Mechanism Reference

miR-335-5p Inhibit proliferation and invasion, increase 
apoptosis

Shuttle between hepatoma cells and HSCs, downregulate 
mRNA targets for miR-335

(67)

circ-0051443 Promote apoptosis Arrest the cell cycle in the G0/G1 phase (68)

miR-490 Suppress metastasis Mast cells stimulated by HCV-E2 secrete exosomes to block 
the ERK1/2 pathway

(6)

miR-142, miR-223 Hamper proliferation Affect posttranscriptional regulation of proteins (69)

miR-26a Repress proliferation and migration Target HepG2 cells through scavenger receptor class B 
1-Apo-a1 complex

(14)

miR-320a Inhibit proliferation and metastasis Bind to PBX3 and inhibit the activation of the MAPK pathway (70)

miR-24, miR-223, 
miR-31  

Inhibit proliferation and promote apoptosis  Downregulate target proteins involved in cell proliferation (13)

HCC, hepatocellular carcinoma; HSC, hepatic stellate cell; HCV-E2, hepatitis C virus E2 envelope glycoprotein; ERK1/2, extracellular  
signal-regulated kinase 1/2; PBX3, pre-B-cell leukemia homeobox 3; MAPK, mitogen-activated protein kinase.
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Wang et al. (67) demonstrated in vivo and in vitro that miR-
335-5p could be delivered by exosomes to hepatoma cells, 
so as to inhibit their proliferation and invasion and increase 
apoptosis (Figure 1, D). Meanwhile, Chen et al. (68) showed 
that when exosomal circular RNA (circRNA)-0051443 was 
transmitted to hepatoma cells, the cell cycle ceased. 

Moreover, immunocyte-derived exosomes can exert a great 
influence on antitumor immune responses (6). For example, 
mast cells stimulated by HCV-E2 envelope glycoprotein 
(HCV-E2) are capable of secreting numerous exosomes rich 
in miR-490, which can be transferred into hepatoma cells and 
suppress their metastasis through blocking the extracellular 
signal-regulated kinase 1/2 (ERK1/2) pathway (6). MiR-142 
and miR-223 expressed in macrophages can be transferred by 
exosomes to affect posttranscriptional regulation of proteins 
in HCC cells which hampers the proliferation of these 
cancer cells (69). Dendritic cells (DCs) play a key role in both 
innate and adaptive immune responses, and their maturation 
and activation can be disturbed by the HCC-induced 
tumor microenvironment (71). Tumor-derived exosomes 
can activate DCs, stimulate the proliferation of immature 
T cells, and induce T cells to differentiate into antigen-
specific cytotoxic T lymphocytes (CTLs), thus increasing 
antineoplastic efficacy (72,73) (Figure 1, D). Rao et al. 
reported that the tumor immune microenvironment in HCC 
mice was significantly improved upon application of HCC-
derived exosome-pulsed DCs. The number of T cells and 
the level of interferon gamma (IFN-γ) increased, while IL-
10 and TGF-β decreased, which eventually resulted in tumor 
growth inhibition and a strong immune response (74). They 
also found that the exosomes released by alpha-fetoprotein 
(AFP)-expressing DCs had antitumor properties similar to 
those of HCC-derived exosome-pulsed DCs, thus providing 
a cell-free vehicle for tumor immunotherapy (75).

Accumulating evidence has shown that cancer cells 
can release exosomes to promote carcinogenesis and the 
resistance or insensitivity to multiple chemotherapeutic 
drugs, and thus a greater research focus has been placed on 
exosome-based drug delivery to inhibit cancer development 
through interference techniques (76). For instance, some 
studies have found that the exposure of HCC cells to 
sorafenib increased long intergenic noncoding RNA-
VLDLR (linc-VLDLR) and long noncoding RNA 
ROR (lncRNA ROR) expression in cells and EVs. RNA 
interference-mediated knockdown of these two lncRNAs 
increased chemotherapy-induced cytotoxicity and apoptosis, 
leading to enhanced chemosensitivity on HCC (77,78). 
Some preclinical findings have suggested that exosome-

mediated drug delivery has good prospects in cancer 
treatment. For example, engineered exosomes packed with 
miR-26a were shown to selectively target HepG2 cells 
through scavenger receptor class B 1-Apo-a1 complex, 
so as to repress cell proliferation and migration (14). 
Furthermore, when miR-320a-enriched exosomes were 
injected into rats via the caudal vein, it was observed that 
the proliferation and metastasis of hepatoma cells were 
effectively inhibited via binding to the downstream target 
pre-B-cell leukemia homeobox 3 (PBX3) (70), further 
inhibiting the activation of the MAPK pathway (70). MiR-
24, miR-223, and miR-31 delivered by exosomes can also 
restrain the growth and invasion of HCC and increase 
apoptosis, exerting potential antitumor activity in vivo (13).

These preclinical experiments have clarified the functions 
of exosomes and their cargo in the inhibition of HCC 
progression. Due to the advantages of low immunogenicity 
and toxicity, and the natural release or uptake by tumor 
cells (76,79), exosomes are expected to become an attractive 
therapeutic strategy for the treatment of HCC in the future.

MSC-derived exosomes

MSCs are multipotent stromal cells possessing various 
biological functions, such as self-renewal, multilineage 
differentiation, and anti-inflammation (80,81). Recently, 
use of MSC-derived exosomes functioning as potent 
therapeutic vehicles has become a promising strategy for 
various diseases (80,81) (Table 2). Jiang et al. found that 
human umbilical cord MSC (UC-MSC)-derived exosomes 
might alleviate acute liver injury and fibrosis induced by 
carbon tetrachloride (CCl4) in mouse models via antioxidant 
potentials (82). MiR-455-3p-containing exosomes released 
by UC-MSCs stimulated with IL-6 could suppress 
macrophage activation and reduce cytokine production by 
targeting PI3K signaling in a chemical liver injury animal 
model, and consequently ameliorate liver histology and 
retrieve function (83) (Figure 1, E). Furthermore, Rong 
et al. applied other exosomes derived from human bone 
marrow MSCs (BM-MSCs) in the treatment of liver 
fibrosis induced by CCl4. The results showed fibrosis 
amelioration and HSC activation was inhibited via Wnt/
β-catenin pathway (85) (Figure 1, E). BM-MSC-derived 
exosomes may also attenuate the hepatic inflammatory 
response and reduce the release of inflammatory cytokines 
from macrophages in autoimmune hepatitis, which may be 
associated with the expression levels of miR-223-3p and 
STAT3 in macrophages (89).
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Acute liver failure (ALF) is a fatal illness with high  
mortal i ty,  which can only be control led by l iver 
transplantation and artificial liver therapy (90). However, 
various constraints including ischemia/reperfusion (I/R) 
injury have prompted researchers to explore alternative 
treatments. MSC exosomes have shown the potential to 
prolong or save lives. Studies have demonstrated that 
TNF-alpha pretreatment of UC-MSC-derived exosomes 
(T-Exo) and adipose tissue-derived MSC exosomes 
(AMSC-exo) decreased serum ALT, aspartate transaminase 
(AST), and proinflammatory cytokine level, inhibited 
activation of nucleotide-binding and oligomerization 
domain-like receptor 3 (NLRP3) in macrophages, and 
reduced pathological liver damage caused by ALF (84,91). 
Furthermore, anti-inflammatory-related miR-299-3p 
packaged into exosomes is upregulated by TNF-alpha-
stimulated MSCs, which exerts a therapeutic effect (84); 
meanwhile, miR-17 is elevated in AMSC-exo through 
suppressing thioredoxin-interacting protein/nucleotide-
binding and oligomerization domain-like receptor protein 
3 (TXNIP/NLRP3) signaling pathway (91). In addition 
to having anti-inflammation effects, BM-MSC exosomes 
applied in ALF may also significantly decrease the levels of 
cleaved caspase-3 and Bax, and upregulate the expression 
of Bcl-2, which can attenuate hepatocyte apoptosis and 
promote autophagy (86).

I/R injury, including inflammation, necrosis, and 
apoptosis, is the main problem in liver transplantation (92). 
MiR-20a secreted by MSC exosomes can bind to the 3' 
untranslated region (3' UTR) of Fas and Beclin-I to regulate 

the gene expression involving apoptosis and autophagy (93). 
Furthermore, BM-MSC-differentiated hepatocyte-like cell 
exosomes (MSC-Heps-exo) may alleviate hepatic I/R injury 
effectively and reduce hepatocyte apoptosis and the levels 
of liver enzyme in vivo and in vitro (92). Lai et al. (87) found 
BM-MSC-exo could also inhibit Th17 cells and induce 
regulatory T cells (Tregs) to reduce injury and ameliorate 
the survival of chronic graft-versus-host disease (cGVHD). 
In addition, studies (94) have demonstrated that fetal liver 
MSC-derived exosomes suppress proliferation, activation, 
and cytotoxicity of NK cells via TGF-β/Smad2/3 signaling 
in allogeneic reactions, and that applying anti-TGF-β 
antibody may restore NK cell function. Therefore, using 
MSC-derived exosomes to ameliorate I/R injury shows 
considerable promise.

Currently, the application of MSCs exosomes in liver 
cancer has become a key goal of clinical research, and 
a large number of related studies have been conducted. 
Jiang et al. (82) administered UC-MSC-derived exosomes 
into CCl4-induced liver tumor in vivo. They found these 
exosomes could provide more antioxidant effects than 
bifendate treatment and exerted hepatoprotective effects, 
subsequently restraining the growth of tumors (82). 
Exosomes from adipose-derived mesenchymal stem cells 
(AD-MSCs) could promote NK cells to exert antitumor 
roles on rat HCC, thereby facilitating low-grade tumor 
differentiation and inhibiting tumor growth (95) (Figure 1, E). 
Accumulating evidence has indicated that miR-122 has the 
property of promoting the chemosensitivity of HCC cells. 
Hence, Lou et al. chose AD-MSC exosomes as biological 

Table 2 The therapeutic effect of MSC-derived exosomes in liver diseases

Origin Disease Function Reference

UC-MSCs Acute liver injury and fibrosis Antioxidant potentials (82)

UC-MSCs Chemical liver injury Suppress macrophage activation and reduce cytokine production (83)

UC-MSCs ALF Inhibit NLRP3 activation in macrophage and decrease proinflammatory cytokines 
level

(84)

BM-MSCs Liver fibrosis induced by CCl4 Inhibit HSC activation via Wnt/β-Catenin pathway (85)

BM-MSCs ALF Decrease the levels of cleaved caspase 3 and Bax, upregulate the expression of 
Bcl-2

(86)

BM-MSCs I/R injury Inhibit Th17 cells and induce Treg cells (87)

AD-MSCs HCC Improve the sensitivity of chemotherapeutic drugs (88)

MSC, mesenchymal stem cell; UC-MSC, umbilical cord mesenchymal stem cell; BM-MSC, bone marrow mesenchymal stem cell;  
AD-MSC, adipose-derived mesenchymal stem cell; ALF, acute liver failure; NLRP3, nucleotide-binding and oligomerization domain-like 
receptor 3; CCl4, carbon tetrachloride; I/R injury, ischemia/reperfusion injury; HCC, hepatocellular carcinoma; HSC, hepatic stellate cell.
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vehicles for miR-122 delivery. The results showed that 
miR-122-transfected AMSCs successfully mediated miR-
122 transmission between AMSCs and HCC cells, thereby 
inducing tumor cells to be sensitive to chemotherapeutic 
drugs (88). Meanwhile, injecting MSC-derived exosomes 
containing miR-122 into tumor could effectively enhance 
the antitumor efficacy of sorafenib (88) (Figure 1, E). 
Collectively, MSC-exos are being increasingly considered 
as attractive candidates to control disease progression and 
improve liver function.

Conclusions 

With more evidence being generated from preclinical and 
animal experiments, researchers have begun to draw the 
blueprint for the clinical application of exosomes and their 
cargo in the treatment of liver diseases. Although the above 
results are encouraging, there are still many problems that 
remain to be solved. The establishment of standard methods 
to isolate and identify the types and sources of valuable 
exosomes is the first step. The quality and sufficient quantity 
of these exosomes need to be ensured in order to optimize 
the therapeutic functions of exosomes during treatment. 
Secondly, the mechanisms by which exosomes are released 
by cells and recognized and fused by target cells need to 
be fully understood. Thirdly, comprehensive examination 
of the genes and protein functions carried by exosomes are 
needed, as some molecules demonstrate therapeutic effects, 
while others do not, or may even be deleterious. Once the 
properties of these molecules are grasped, valuable traits 
may be exploited, while others can be discarded. Research 
on exosomes have opened a door to discovering the 
mechanisms underlying the occurrence and development 
of various liver diseases, and providing a new drug vehicle 
with low immunogenicity and high biocompatibility. There 
is still a long way to go before clinical application can be 
actualized, and more experimental evidence is needed to 
support future clinical research.
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