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Background: Hepatocellular carcinoma (HCC) often has an insidious onset and rapid progression. 
Often, when the disease is first diagnosed, the opportune time for surgical intervention has already lapsed. 
In addition, the effects of systemic treatment is relatively unsatisfactory. Metabolic reprogramming is one 
of the hallmarks of cancer. This study aimed to identify a set of genes related to metabolism to construct a 
predictive model for the prognosis of HCC. 
Methods: The transcriptomic and clinical data of 352 HCC patients were obtained from The Cancer 
Genome Atlas (TCGA) Liver Hepatocellular Carcinoma (LIHC) dataset and divided into a training cohort 
(n=212) and a testing cohort (n=140) at a ratio of 6:4. Univariate Cox regression analysis and the LASSO Cox 
regression model were used to identify 5 genes to establish a risk score for predicting the prognosis of HCC 
patients. Subsequently, the molecular characteristics of the model were assessed and the ability of the model 
to predict the tumor immune microenvironment and patient response to immunotherapy and chemotherapy 
was also examined. 
Results: The risk score model was constructed based on the five genes, methyltransferase-like protein 6 
(METTL6), RNA polymerase III subunit G (POLR3G), phosphoribosyl pyrophosphate amidotransferase 
(PPAT), SET Domain Bifurcated 2 (SETDB2), and suppressor of variegation 3-9 homolog 2 (SUV39H2). 
The Kaplan-Meier survival analysis and time-dependent receiver operating characteristic (ROC) curves 
demonstrated that high-risk patients had a poorer overall survival (OS) compared to low-risk patients. he 
nomogram score had a better predictive ability compared to the common factors. Our results finally showed 
that high-risk cases were associated with cell proliferation and cell cycle related gene sets, high tumor protein 
P53 (TP53) mutation rate, suppressive immunity and increased sensitivity to cisplatin, gemcitabine and 
docetaxel. Meanwhile, low-risk cases were associated with cell cycle and immune response related pathways, 
low TP53 mutation rate, active immunity and more benefit from immunotherapy.
Conclusions: This study provided novel insights into the role of metabolism-related genes in HCC, and 
demonstrated that our model could be a promising prognostic biomarker for distinguishing the molecular 
and immune characteristics and inferring the potential response to chemotherapy and immunotherapy.
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Introduction

Hepatocellular carcinoma (HCC) accounts for 75–85% 
of all primary liver cancers. It is one of the most common 
malignant solid tumors in the world and the fourth leading 
cause of cancer-related deaths, with a 5-year survival rate 
of less than 20% (1,2). Although a small number of early-
stage liver cancers can be treated by liver resection or liver 
transplantation, most liver cancer patients are in the middle 
to advanced stages of the disease at the time of diagnosis 
and often cannot be treated despite careful monitoring (3).  
Therefore, it is crucial to develop reliable prognostic 
tools that can predict clinical outcomes and assist in the 
decision-making process regarding observations, surgery, 
medications, and conservative treatments.

Reprogramming of cell metabolism and changes in 
bioenergetics have become characteristic signs of cancer (4).  
Cancer cells increase aerobic glycolysis, glutamine 
decomposition, and fat synthesis to meet their abnormal 
needs for proliferation and survival (5). It is now believed 
that the internal metabolism of cancer cells helps support 
the growth and metastasis of malignant tumors and 
affects the phenotype of malignant tumors. Cell energy 
reprogramming in the tumor microenvironment (TME) 
usually inevitably affects cells of the immune system (6). 
Consumption of glucose by tumors metabolically limits 
T cells, thereby promoting tumor progression (7). Lipid 
metabolism components constitute the main part of the daily 
diet and have a proven role in immune cell induction (8).  
Increasing evidence have shown that immunity and 
metabolism are key factors that are closely intertwined.

With the increasing application of bioinformatics analysis 
in the diagnosis and prognosis of malignancies, some 
researchers have linked metabolomics with genomics to 
analyze related metabolites (9). Although some liver cancer 
prognostic models based on metabolism-related genes 
have been established (10), it remains to be established 
whether the relevant indicators can also simultaneously 
predict the tumor immune microenvironment and the 
effects of immunotherapy in patients with liver cancer. The 
existing models have some limitations. Too many genes are 
required to construct a model, and its clinical practicality is 
not high (11). To this end, based on cancer genomics and 
bioinformatics, this study established a prognostic risk score 

based on metabolism-related genes. The prognostic value 
of the model was shown through Kaplan-Meier survival 
analysis, time-dependent receiver operating characteristic 
(ROC) curves, and nomograms. CIBERSORT was used 
to evaluate the relationship between the prognostic model 
and the tumor immune microenvironment. In addition, 
the study also analyzed the potential predictive value of 
the model in terms of tumor mutation burden (TMB), 
immunotherapy efficacy, and chemotherapeutic sensitivity. 
We present the following article in accordance with the 
TRIPOD reporting checklist (available at http://dx.doi.
org/10.21037/atm-21-927).

Methods

Data collection and processing

The transcriptomic and clinical data of 352 HCC patients 
were obtained from The Cancer Genome Atlas (TCGA) 
Liver Hepatocellular Carcinoma (LIHC) database (https://
portal.gdc.cancer.gov/). All data were background corrected 
prior to integration. The original data were normalized to 
quartiles, and then log2 conversion was performed to obtain 
the expression value of the normal distribution. 

In this study, the clinical variables were age, gender, 
T stage, histological grade, survival status, and survival 
time. Cases of intrahepatic cholangiocarcinoma, normal 
tissue, and data sets with incomplete survival information 
were excluded from this study. Subsequently, patients were 
divided into a training cohort (n=212) and a testing cohort 
(n=140) at a ratio of 6:4. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013) (12).

Extraction of metabolism-related genes

All genes related to metabolism in this study were obtained 
from the “Kyoto Encyclopedia of Genes and Genomes” 
(KEGG), accessed on November 10, 2020. After analyzing 
the entire sample genome and the intersection with the 
metabolism genome, 1,466 genes related to metabolism 
were identified in the transcriptome data. The expression 
levels of these genes were extracted from each case for 
further analysis.
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Construction of the metabolism-related signature

Patients who were followed up for more than 1 month were 
included in the survival analysis. The “survival” package was 
used to perform univariate Cox regression analysis to screen 
for survival-related metabolic genes in the training cohort. 
The LASSO-Cox regression model was then performed 
for variable screening and complexity adjustment to screen 
potential genes to establish the metabolic gene signature (13). 
The penalty value parameter was determined after a 100-fold 
cross-validation using the “glmnet” package (14). 

Finally, a formula was developed using the gene signature 
constructed above. Risk score = expression of a gene [1] 
× corresponding coefficient [1] + expression of a gene [2] 
× corresponding coefficient [2] + expression of gene [n] 
×corresponding coefficient [n].

The best critical value was determined using the R 
packages (“survival” and “survminer”) and a double-sided 
log-rank test. According to the threshold, patients were 
divided into high-risk and low-risk cohorts. Kaplan-Meier 
survival curves and log-rank tests were used to compare the 
differences in survival between high-risk and low-risk groups. 
The R package “survivalROC” was used to plot the time-
dependent ROC curve to determine the prognostic value of 
the signature with OSin HCC patients (15). The predictive 
value of the prognostic gene signature was further studied 
in the testing cohort and the entire cohort. The nomogram 
(“rms” package), calibration curve (“rms” package) (16), and 
decision curve analysis (DCA) were used to assess the clinical 
utility and accuracy of the prognostic model.

Comprehensive analysis of molecular characteristics 

To assess the potential differences in biological functions 
between the high- and low-risk groups, GSEA software 
(https://www.gsea-msigdb.org/gsea/login.jsp) was used on 
the basis of Hallmarks gene set (“h.all.v7.0.symbols.gmt”). 
Gene mutation information was downloaded from the 
cBioPortal database (HTTP://www.cbioportal.org/).

The tumor mutational burden (TMB) is an emerging 
therapeutic measure of sensitivity to immunotherapy and 
the TMB scores of the HCC patients in the TCGA cohort 
were calculated as previously described (17).

Estimation of tumor-infiltrating immune cells

The tumor immune microenvironment in the high- and 
low-risk groups were compared using two independent tools, 

CIBERSORT (HTTPS://cibersort.stanford.edu/) (18)  
and ImmuCellAI2 (http://bioinfo.life.hust.edu.cn/web/
ImmuCellAI/) (19). Differences in the relative proportions 
of 22 types of immune cells and the clinicopathologic 
features between the high- and low-risk groups were 
compared in a landscape map.

Chemotherapeutic and Immunotherapeutic response 
prediction

The chemotherapeutic response of each sample was assessed 
by determining the half-maximal inhibitory concentration 
(IC50) via the R package “pRRophetic” based on the GDSC 
(Genomics of Drug Sensitivity in Cancer) database (https://
www.cancerrxgene.org/) (20). Four chemotherapeutic 
drugs, cisplatin, gemcitabine, sorafenib, and docetaxel, were 
selected in this study. The TIDE algorithm (http://tide.
dfci.harvard.edu/) and subclass mapping (SubMap; https://
cloud.genepattern.org/gp/) were used to predict the clinical 
responses to two immune checkpoint inhibitors, including 
anti-PD1 and anti-CTLA4, as previously described (21). 
A Bonferroni-corrected P value <0.05 was considered 
statistically significant.

Statistical analysis

All statistical analyses were performed using the Software R 
version 3.6.0 (http://www.r-project.org). Wilcoxon tests were 
used to compare continuous variables, and chi-square tests 
were used to compare categorical variables. Differences in 
risk scores between various clinicopathological parameters 
were analyzed by the Student’s t-test. OS was defined as 
the time from the date of diagnosis to death from any 
cause. Significant differences in Kaplan-Meier curves were 
examined using the log-rank test. All statistical tests were 
two-sided, and P<0.05 was considered statistically significant.

Results

Construction of the five-gene risk score model

After excluding cases of intrahepatic cholangiocarcinoma, 
cases of normal tissue, and cases without survival 
information, a total of 352 patients were included in this 
study. Subsequently, the patients were randomly divided 
into a training cohort (n=212) and a testing cohort (n=140) 
at a ratio of 6:4. The univariate Cox regression analysis was 
adopted in the training cohort for screening survival-related 

HTTPS://cibersort.stanford.edu/
http://bioinfo.life.hust.edu.cn/web/ImmuCellAI/
http://bioinfo.life.hust.edu.cn/web/ImmuCellAI/
https://www.cancerrxgene.org/
https://www.cancerrxgene.org/
https://cloud.genepattern.org/gp/
https://cloud.genepattern.org/gp/
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Figure 1 Construction of a five-gene risk score model in the training cohort. (A) A Forrest plot of the univariate and multivariate Cox 
regression analysis. (B) The LASSO coefficient of the five metabolism-related genes. (C) The 100-fold cross-validation for variable screening 
and complexity adjustment in the Lasso Cox regression model. The two dashed vertical lines mark the optimal values by using minimum 
criteria and 1-SE. (D) The distribution of risk scores, the survival status, and the heatmap of gene expression profiles in the training cohort.

metabolic genes. A total of 19 metabolic genes (P<0.05) 
were analyzed (Figure 1A). 

The LASSO algorithm was then used to decrease 
overfitting and the metabolism-related genes were narrowed 
down to 5 genes, namely, METTL6, POLR3G, PPAT, 
SETDB2 and SUV39H2. These 5 genes were used for 
constructing the following risk score model (Figure 1B,C): 
risk score = METTL6 × (0.336) + POLR3G × (0.614) + 
PPAT × (0.252) + SETDB2 × (−0.91) + SUV39H2× (0.338).

Each patient was then scored on the basis of this model. 
The best cut-off value that differentiated HCC patients into 
high- and low-risk groups was determined to be −1.063. 

The distribution of risk scores, the survival status, and the 
heatmap of the 5 prognostic genes are displayed in Figure 1D.

The association of the overall survival with the risk scores

As shown in the Kaplan-Meier survival curves in Figure 2A, 
high-risk patients showed significantly poorer OS compared 
to low-risk patients in the training cohort (P<0.0001). 
Similar results were observed in both the testing cohort and 
the entire cohort (Figure 2B). Time-dependent ROC curves 
showed that area under the curve (AUC) for the 1-, 3-, and 
5-year OS of the training cohort, the testing cohort, and 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649605/figure/f0010/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649605/figure/f0015/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649605/figure/f0015/
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Figure 2 The association of the overall survival with a risk score. (A,B) Kaplan-Meier (KM) survival curves for the overall survival of the risk 
score model. (C,D,E). The time-dependent receiver operating characteristic (ROC) curves for 1-, 3-, and 5-year overall survival predictions 
by the risk score model in the training, testing, and entire cohort.

the entire cohort were 0.72, 0.761, and 0.764 (Figure 2C); 
0.817, 0.703, and 0.677 (Figure 2D); and 0.75, 0.737, and 
0.705 (Figure 2E), respectively. In conclusion, the five-gene 
signature model performed well in terms of OS prediction 
in patients with HCC.

The risk score model is significantly correlated with disease 
progression

The potential relationships between the risk score model 
and the different clinicopathological characteristics were 
investigated. Considering the entire cohort, the risk score 
was significantly higher in HCC patients with advanced 
histological grade and advanced T stage (all P<0.001,  
Figure 3A). However, gender and age groups did not affect 
the risk scores (Figure 3A) . Subgroup survival analyses 
revealed that patients in the high-risk group have a poorer 
prognosis, irrespective of whether they had stage I/II (P<0.05;  
Figure 3B) or stage III/IV tumors (P<0.05; Figure 3C). These 

results demonstrated that the risk score model was statistically 
related to clinicopathological characteristics, and the higher 
the score, the poorer the clinical-pathological status.

Development and evaluation of the nomogram

To further confirm the model’s predictive power and 
quantify its accuracy, the risk score and four clinical variables, 
including age, gender, T stage, and grade, were further 
integrated into the nomogram. This was then used to predict 
the 1-, 3-, and 5-year OS (Figure 4A). The calibration curves 
of the 5-gene prognostic nomogram demonstrated excellent 
consistency between actual observations and predicted 
values (Figure 4B). The decision curve analysis (DCA) was 
adopted for comparing the net clinical benefit between the 
nomogram and the conventional staging system. As shown 
in Figure 4C, the prognostic nomogram demonstrated a 
higher net benefit for predicting 2-, 3-, and 5-year OS 
compared to the T staging method.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649605/figure/f0015/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649605/figure/f0015/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649605/figure/f0015/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649605/figure/f0015/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649605/figure/f0015/
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Figure 3 The risk score model is significantly correlated with disease progression.(A) Relationship between the risk score and different 
clinicopathological characteristics in the entire cohort. Statistics: Independent-sample t-test, ***P<0.001; ****P<0.0001; ns, P≥0.05. (B) 
Kaplan-Meier curves for overall survival between high/low-risk groups in patients with I/II stage cancer; (C) Kaplan-Meier curves for overall 
survival in high/low-risk groups in patients with III/IV stage cancer.

Molecular characteristics of patients in the different 
subgroups

GSEA software was used to find the differences between 
the high- and low-risk groups in the Hallmark pathway. 
The results showed that in the high-risk group, the top 
five pathways were all associated with cell proliferation, 
including G2M checkpoints, E2F targets, DNA repair, 
MYC targets V1, and MYC targets V2. While the top five 
pathways in the low-risk group were DNA repair, MYC 
targets V1, MYC targets V2, interferon alpha response, and 
mTOR complex 1 (MTORC1) signaling.

Somatic mutation and clonal selection can lead to cancer 
development (22). Therefore, gene mutations in the high- 
and low-risk groups were analyzed and the top ten genes 

with the highest mutation rates were identified (Figure 5). 
The mutation rates of TP53, titin (TTN), catenin beta 1 
(CTNNB1), and mucin 16 (MUC16) were greater than or 
equal to 15% in HCC patients in both the high- and low-risk 
groups. Additionally, TP53 mutations were the most enriched 
in the high-risk group and significantly more prevalent 
compared to that in the low-risk group (41% vs. 19%). 

Recent studies have described certain associations 
between the genomic landscape and antitumor immunity. 
Since the tumor mutational burden (TMB) has been 
regarded as a promising biomarker for immune checkpoint 
inhibitors (23), the relationship between risk scores and the 
TMB was analzyed. As shown in Figure S1, patients in the 
high-risk group displayed higher tumor mutational load 
compared to patients in the low-risk group (P=0.013).

https://cdn.amegroups.cn/static/public/ATM-21-927-Supplementary.pdf
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Figure 4 Construction of the nomogram. (A) A nomogram for predicting 1-, 3-, and 5-year overall survival (OS) by integrating the risk 
score, age, gender, grade, and T stage. (B) Calibration curves for 3-year OS. The dashed line signifies perfect prediction and the solid line 
represents the actual predicted value. (C) The decision curve analysis (DCA) for 2-, 3-, and 5-year OS.

Immune characteristics of patients in the high- and low-
risk groups

To further investigate HCC tumor heterogeneity, the 
tumor-infiltrating immune cells in the high- and low-risk 
groups were studied using two independent tools. The 
immune characteristics of 352 HCC samples were identified 
according to their gene expression data by using the 
CIBERSORT algorithm. The clinicopathologic features 
and the relative proportions of 22 different types of immune 
cells expressed in the high- and low-risk groups were then 
compared using a landscape map (Figure 6A). It can be seen 
from Figure 6A that M0 macrophages were more enriched 
in the high-risk group, while CD8 T cells and CD4 memory 
resting T cells were more abundant in the low-risk group. 
To more robustly and accurately evaluate the abundance of 
immune cells in the TME between the different subgroups, 
further analysis was performed using ImmuCellAI (19). As 
shown in Figure 6B, patients in the high-risk group were 
significantly correlated with a higher proportion of B cells, 
dendritic cells (DCs), neutrophils, natural regulatory T cells 

(nTreg), effector memory T (Tem) cells, and T regulatory 
type 1 (Tr1) cells. Conversely, patients in the low-risk group 
showed higher levels of CD4 T cells, naïve CD4 T cells, 
mucosal associated invariant T (MAIT) cells, natural killer 
(NK) cells, cytotoxic T (TC) cells, central memory T (Tcm) 
cells, and T follicular helper (Tfh) cells. These results 
indicated that our risk score model was significantly related 
to immune scores and may help to predict the immune 
microenvironment.

Chemotherapeutic and immunotherapeutic sensitivities of 
patients in the high- and low-risk groups

For patients with advanced unresectable HCC, systemic 
therapy may reduce the tumor burden and prolong 
their life. This study evaluated the response of patients 
in the high- and low-risk groups to four chemotherapy 
drugs, including cisplatin, gemcitabine, sorafenib, and 
docetaxel. With the exception of sorafenib, the other three 
chemotherapy drugs all showed significant differences in 
IC50 values between liver cancer patients in the high- and 
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Figure 5 Molecular characteristics of patients in the high- and low-risk groups. (A) Gene set enrichment analysis of the top five pathways 
significantly enriched in the high-risk group. (B) Gene set enrichment analysis of the top five pathways significantly enriched in the low-
risk group. (C) Significantly mutated genes (SMGs) in HCC patients in the high- and low-risk groups. The mutated genes are sorted by 
mutation rate (row, top 10). The samples are arranged to highlight the mutual exclusivity between mutations. The percentage of mutations 
is shown on the right, and the total number of mutations is shown on the top. Color coding indicates the type of mutation.

low-risk groups, with high-risk patients showing increased 
sensitivity to all three chemotherapy agents (Figure 7A).

Recently, it has been reported that some immune 
checkpoint inhibitors, such as the anti-programmed cell 
death protein 1 (PD-1)/programmed death ligand-1 (PD-

L1) antibody (24) and the anti-cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) antibody (25), are promising 
therapeutic strategies for advanced HCC patients. 
Therefore, the clinical response of HCC patients to the 
PD-1 inhibitor and the CTLA-4 inhibitor was assessed. 
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B
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Figure 6 Immune characteristics of patients in the high- and low-risk groups. (A) Risk-scores and the proportions of different cells in the 
tumor microenvironment (TME) for 352 patients in the entire cohort. Age, gender, grade, T stage, and survival status are displayed as 
annotations. (B) The proportions of 24 infiltrated immune cells in the high- and low-risk groups. P values (*P<0.05) were calculated using 
Wilcoxon test. DC, dendritic cells; iTreg, induced regulatory T cells; nTreg, natural regulatory T cells; MAIT, mucosal associated invariant 
T cells; NK, natural killer cells; NKT, natural killer T cells; Tc, cytotoxic T cells; Tcm, central memory T cells; Tem, effector memory T 
cells; Tex, exhausted T cells; Tfh, T follicular helper cells; Tgd, Gamma delta T cells; Th1, T helper 1 cells; Th2, T helper 2 cells; Th17, T 
helper 17 cells; Tr1, Type 1 regulatory T cells.

Although not statistically significant, patients in the low-
risk group showed higher sensitivity to anti-PD-1 therapy 
(nominal P value =0.05, Bonferroni-corrected P value =0.46; 
Figure 7B).

Discussion

The incidence of liver cancer has increased significantly 

in the past two decades, and the mortality rate is not  
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Figure 7 The sensitivities of patients in the high- and low-risk group to immunotherapy and chemotherapy. (A) The differential sensitivities 
to chemotherapy in the high- and low-risk groups. (B) The differential responses to anti-CTLA4 and anti-PD-1 immunotherapy in patients 
in the high- and low-risk groups. CTLA4, cytotoxic T-lymphocyte-associated protein 4; PD-1, programmed cell death protein 1. 
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optimal (2). Therefore, identification of effective biomarkers 
for constructing good prognostic models to predict HCC 
patient survival is urgently needed. With the in-depth 
studies of metabolomics, the role of metabolism in cancer 
progression has received increasing attention (26).

This study identified a robust risk score model comprised 
of five genes, METTL6, POLR3G, PPAT, SETDB2, and 
SUV39H2, based on the TCGA-LIHC dataset. All these 
genes have been shown to be related to tumor growth and 
metastasis in previous studies (27-31). METTL6 belongs 
to the methyltransferase superfamily and can regulate 
pluripotency and promote tumor cell growth (27). Up-
regulation of METTL6 on the cell surface can increase 
cisplatin sensitivity in the lung cancer cells (32). POLR3G 
is highly expressed in transitional cell carcinoma tissues 
compared with normal bladder tissues. Higher POLR3G 
expression is linked to lower OS (28). PPAT expression is 
one of the strongest markers for poor prognosis in small cell 
lung cancer (29). SUV39H2 promotes colorectal cancer cell 
proliferation and metastasis through the SLIT1 promoter 
tri-methylation (31). SETDB2 may contribute to gastric 
cancer progression (30). Consistent with above analysis, our 
study demonstrated that high-risk patients had significantly 
poorer OS The model developed in this study was 

statistically related to clinicopathological characteristics, and 
the higher the score, the poorer the clinical-pathological 
status. The risk scores, age, gender, and TNM stage were 
incorporated into a nomogram and a score was obtained for 
each patient. The results of the ROC and DCA confirmed 
the superiority of the nomogram for clinical judgment and 
prediction compared with the conventional staging system 
(P<0.05).

GSEA analysis was performed to investigate the 
biological processes in the two groups of patients. It 
revealed that the top upregulated HALLMARK gene 
sets in patients in the high-risk group were primarily 
associated with cell cycle-related pathways, which form 
the canonical signaling pathways involved in the initiation, 
invasion, and metastasis of tumor cells. In addition to the 
three common signal pathways, “DNA-Repair”, “Myc-
Targets-V1”, and “Myc-Targets-V2”, two other significantly 
enriched immune-related pathways were identified in 
patients in the low-risk group. The mechanistic target of 
rapamycin (mTOR) signaling pathway is closely related to 
immune and inflammatory effects and plays an important 
role in regulating T cell development, activation and 
differentiation. Activation of the mTOR signaling pathway 
is crucial for maintaining the function of T cells (33).  
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Interferon alpha can stimulate IFN-γ production by NK 
cells (34), and it contributes to developing a CD4+ and 
CD8+ dependent adaptive immune response (35) and 
modulates the Th1/Th2 balance towards Th1 (36). These 
results suggested that the difference in survival between 
the high- and low-risk groups may be closely related to the 
tumor immune microenvironment.

Therefore, the differences in the tumor-infiltrating 
immune cells between the two groups were examined. 
It was reported that the increase of T cells and NK cells 
in the tumor was related to the good prognosis of HCC, 
while the increase of Treg in the tumor was linked to the 
poor clinical outcome (37). The results demonstrated 
that neutrophils, nTreg cells, and Tr1 cells were markedly 
enriched in the high-risk group. Tr1 and nTreg cells 
participate in the immunoevasion of certain tumors and 
exerts immunosuppressive effects (38). Tumors stimulate 
neutrophils to promote tumor migration, invasion, and 
metastasis (39). In contrast, several antitumor cells, such 
as MAIT, NK, TC, and Tcm cells that are critical to 
killing cancer cells and eradicating tumors (40), showed 
higher infiltration in the tumor tissues of the low-risk 
group. Although the TMB values of high-risk patients 
were significantly higher than that of low-risk patients, no 
advantage of immunotherapy was observed in the high-risk 
groups. The lack of tumor T cell infiltration is one of the 
main causes of the resistance to immunotherapy (41). The 
immune cell infiltration patterns above may help to explain 
this phenomenon. Chemotherapy is one of the important 
treatments for advanced liver cancer. Interestingly, high-
risk patients with HCC were more sensitive to cisplatin, 
gemcitabine, and docetaxel compared to low-risk patients.

Since our model reduces the need for whole-genome 
sequencing, it may be more cost-effective for routine use. 
However, several limitations should be considered. First, 
our research only focused on the mRNA sequencing data 
from TCGA. The sample size was small, and the study 
merely observed a trend that patients in the low-risk group 
were likely to be more sensitive to anti-PD-1 therapy. 
Future work will need to further explore other public 
databases to externally verify the prognostic value of the 
model in a more independent cohort. Second, as this is a 
retrospective study, there may be potential bias associated 
with the imbalance of clinicopathological characteristics. 
Further multicenter prospective studies are urgently 
needed. Third, this model was constructed through data 
mining and functional experiments are necessary to confirm 
its clinical value in patients with HCC.

In summary, for the first time, this study identified a 
5-gene risk signature related to metabolism which can be 
used independently to predict the prognosis of patients with 
HCC. This signature may provide guidance for targeted 
therapies and may act as a potential biomarker in patients 
with HCC.
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Figure S1 Total mutational burden (TMB) scores of hepatocellular 
carcinoma (HCC) patients in the high-and low-risk groups.
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