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Connectome-based prediction of brain age in Rolandic epilepsy: a 
protocol for a multicenter cross-sectional study
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Background: Rolandic epilepsy (RE) is a common pediatric idiopathic partial epilepsy syndrome. Children 
with RE display varying degrees of cognitive impairment. In epilepsy, age-related neuroanatomic and 
cognitive changes differ greatly from those observed in the healthy brain, and may be defined as accelerated 
brain aging. Connectome-based predictive modeling (CPM) is a recently developed machine learning 
approach that uses whole-brain connectivity measured with neuroimaging data (“neural fingerprints”) 
to predict brain-behavior relationships. The aim of the study will be to develop and validate a CPM for 
predicting brain age in patients with RE.
Methods: A multicenter,  cross-sectional study will be conducted in 5 Chinese hospitals. A total of 100 RE 
patients (including 50 patients receiving anti-epileptic drugs and 50 drug-naïve patients) and 100 healthy 
children will be recruited to undergo a neuropsychological test using the Wechsler Intelligence Scale. 
Magnetic resonance images will also be collected. CPM will be applied to predict the brain age of children 
with RE based on brain functional connectivity.
Discussion: The findings of the study will facilitate our understanding of developmental changes in 
the brain in children with RE and could also be an important milestone in the journey toward developing 
effective early interventions for this disorder.
Trial registration: The study has been registered with Chinese Clinical Trial Registry (ChiCTR2000032984).
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Introduction 

Rolandic epilepsy (RE), also known as benign epilepsy with 
centrotemporal spikes, is the most prevalent idiopathic 
epilepsy syndrome, accounting for approximately 20% 
of epilepsy diagnoses in children aged under 15 years (1). 
There is a growing bank of evidence to show that children 
with RE have an increased rate of cognitive and learning 

disabilities compared to age-matched healthy children (2-5),  
especially in regard to reading comprehension (6,7), 
semantic language processing, discourse levels (8), attention 
span, executive functions, and memory (9-11).

In individuals with epilepsy, age-related neuroanatomic 
and cognitive changes differ considerably from those 
observed in the healthy brain, and this phenomenon has been 
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described in previous studies as accelerated brain aging (12).  
In their study, Kim et al. analyzed the relationship between 
resting-state brain network functional connectivity (FC) 
and cognitive ability in RE patients. They found that the 
enhancement of FC was closely related to a decline in 
cognitive ability in both RE patients and control subjects, 
as measured with the verbal intelligence quotient and full-
scale intelligence quotient (13). Furthermore, Li et al. 
found that decreased variability of dynamic FC density in 
the orbital frontal cortex, anterior cingulate cortex, and 
striatum of RE patients was more than likely related to 
disruption of cognitive control and language function (14). 
In a prospective study, children with RE also showed higher 
global clustering and efficiency than normal children, which 
may indicate that they have a higher development than the 
normal (15). Brain age, as an index of brain maturity (16,17), 
can be used to evaluate brain development. Resting-state 
functional magnetic resonance imaging (rs-fMRI) data can 
be easily obtained and has the potential to provide clinically-
relevant biomarkers (18), and it can also be used to assess 
individual differences in neural connectivity across multiple 
whole-brain networks (19). A number of researchers have 
successfully applied rs-fMRI to predict brain age (16,18,20,21).

In recent years, with the development of machine 
learning, the method of predicting brain age by machine 
learning based on brain imaging has aroused great interest 
among researchers. Using machine learning methods, 
an age prediction model can be established using brain 
imaging features and the chronological age of the training 
data set, after which the model can be used to estimate the 
age of individuals in the test data set. The estimated age, 
or brain age, was described by Niu et al. (22). This method 
has been successfully applied in patients with mild cognitive 
impairment (23), schizophrenia (24,25), Alzheimer’s  
d i sease  (26) ,  b ipo lar  d i sorder  (27 ,28) ,  acquired 
immunodeficiency syndrome (AIDS) (29), and type 2 
diabetes (30). To date, only 3 studies on brain age in epilepsy 
have been conducted. Pardoe et al. found that the predicted 
brain age of individuals with medically refractory epilepsy was 
on average 4.5 years higher than their chronological age (12).  
Another similar study on brain age in diverse forms of 
epilepsy reported that all included types of epilepsy had a 
trend of accelerated aging (31). Furthermore, a recent study 
of patients with temporal lobe epilepsy observed that both 
the structural and functional brain ages were increased 
compared to the chronological age (32). However, it has yet 
not been established whether children with RE display the 
same trend.

In this paper, we propose the hypothesis that children 
with RE have higher brain age than their chronological age, 
which means that they have an ‘older’ brain. To test this 
hypothesis, we will firstly use connectome-based predictive 
modeling (CPM) to predict brain age based on rs-fMRI. 
CPM, as a machine learning method, is able to predict 
brain–behavior relationships using whole-brain connectivity 
measured with neuroimaging data. In our study, we will 
develop a model based on subjects’ brain FC and age. 
The brain development of children will be evaluated by 
calculating the brain-predicted age difference (PAD = 
predicted age-chronological age).

The aim of the study will be to develop a brain-based 
model to predict brain age in patients with RE by using 
CPM, a recently developed data-driven protocol for whole-
brain FC–age predictive modeling. 

We present the following article in accordance with the 
MDAR checklist (available at http://dx.doi.org/10.21037/
atm-21-574).

Methods

Study design

A multicenter, cross-sectional study of children with RE 
will be conducted. The study has been registered with the 
Chinese Clinical Trial Registry (ChiCTR2000032984).

Study setting

The study will be performed at The Affiliated Hospital 
of Zunyi Medical University, Medical Imaging Center of 
Guizhou Province (No. 149 Dalian Road, Zunyi, Guizhou, 
China), The First Affiliated Hospital of Xi’an Jiaotong 
University (No. 277 Yanta West Road, Xi’an, Shaanxi, 
China), The First Affiliated Hospital of Henan University 
of Chinese Medicine (No. 19 Renmin Road, Zhengzhou, 
Henan, China), Chongqing University Central Hospital 
(No.1 Jiankang Road, Yuzhong District, Chongqing, 
China), and the Second Affiliated Hospital of Zunyi Medical 
University (Xinglong Road, Zunyi, Guizhou, China). The 
study will be beginning in June 2021 and is expected to be 
completed in June 2023.

Ethics and dissemination

The study will be conducted in accordance with the 
amended Declaration of Helsinki (as revised in 2013), and 
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the study protocol has been approved by the ethics board 
of The Affiliated Hospital of Zunyi Medical University 
(KLLY-2019-119), Zunyi, Guizhou. All the participants 
will be informed of the purpose of the study, and written 
informed consent must be obtained from the parents or 
guardians of each participating child before the study 
commences. Participating families will receive a summary 
of the final results of this study, which will be published in 
peer-reviewed national and international journals.

Participants

Children with RE aged 6–16 years old and meeting the 
diagnostic criteria for RE published by the Classification 
Committee of the International League Against Epilepsy 
(ILAE) in 2010 (33) will be recruited from the 5 hospitals 
mentioned above. A healthy control (HC) group matched 
by sex, age, and years of education will be recruited from 
children undergoing their annual health checkup at the 
Outpatient Clinic for General Pediatrics.

Inclusion criteria

The inclusion criteria for patients include: diagnosed as RE 
by pediatric neurologists and visited the pediatric clinic at 
1 of the above-mentioned hospitals. The inclusion criteria 
for healthy controls: no history of neuropsychiatric disease, 
craniocerebral trauma or surgery.

Exclusion criteria 

People with RE caused by a progressive brain disorder (such 
as tumor or neurodegenerative disorder) will be excluded. 
Children in the case group or in the healthy control group 
meeting any of the following criteria will also be excluded 
from the study: (I) vital organ failure; (II) contraindications 
to MRI, such as claustrophobia, or severe MRI artifacts.

Withdrawal criteria

If it is determined that a subject has not complied with the 
research procedure, or safety concerns arise in relation to the 
study, the withdrawal of the subject from the study will be 
considered by the investigator or guardian, as appropriate.

Sample size

The difficulty in predicting brain development in patients 

with RE is attributable to the lack of firsthand accessible 
data to estimate the relationship between brain MRI and 
behavioral measures. Calculations of sample size are based 
on a similar previous study which used CPM to develop 
a predictive model. Yip et al. developed a model for the 
prediction of cocaine abstinence with 53 individuals (34). 
Another study enrolled 168 healthy college students 
to develop a model to predict individual differences in 
propensity to trust (35). Based on previous studies, we 
intend to recruit 100 healthy children and 100 RE patients 
(including 50 patients receiving anti-epileptic drug therapy 
and 50 drug-naïve patients).

Data collection

Patient clinical information including demographic 
characteristics (sex, chronological age, and years of education) 
and information about epilepsy (frequency of seizures, 
duration of epilepsy, age of onset, and the number and time 
of anti-epileptic drug (AED) treatments) will be recorded. 
Both the RE patients and the healthy controls will undergo 
neuropsychological testing using the Wechsler Intelligence 
Scale for Children, 4th edition (WISC-IV), revised China 
version. Participants who fulfilling the inclusion and 
exclusion criteria will receive brain MRI scans after the 
neuropsychological testing on the same day. These data will 
be collected for the identification of potential predictive 
factors and development of predictive variables.

Study procedures

The flowchart of the study procedures is shown in Figure 1. 
After preliminary screening, subjects meeting the inclusion 
and exclusion criteria described above will undergo 
neuropsychological tests. Brain MRI scans will also be 
performed on the same day.

Acquisition of MRI images 

All participants will undergo an MRI scan lasting about  
20 minutes using GE 3.0T scanners with standard 8-channel 
head coils. The children will need to wear sponge micro-
earplugs to protect their hearing and reduce noise. The 
children will be instructed to stay still, with their eyes 
closed, and to think of nothing in particular during the MRI 
examination, while not falling asleep. To reduce motion 
artifacts, a special sponge will be used to keep the head in 
place. Sedatives will not be used for any of the subjects. The 
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Table 1 Scan parameters of the MRI sequences 

Sequence Repetition time (ms) Echo time (ms) Field of view (mm2) Slice thickness (mm) Spacing (mm) Flip angle (°)

T2WI 4,480 120 240×240 5 6.5 –

T2-FLAIR 7,500 140 240×240 3 1.5 –

3D-BRAVO 7.8 3.0 256×256 1 0 15

rs-fMRI 2,000 30 240×240 4 0 90

T2WI, T2-weighted imaging; FLAIR, fluid attenuated inversion recovery; 3D-BRAVO, three-dimensional brain volume; rs-fMRI, resting-state 
functional magnetic resonance imaging.

Figure 1 Flowchart of the study protocol. FC, functional connectivity; CA, chronological age; EAA, the most important edges associated 
with age; LOSOCV, leave-one-site-out cross-validation; RE, Rolandic epilepsy.

MRI sequences will include 3-dimensional brain volume 
(3D-BRAVO), T2-weighted imaging (T2WI), T2 fluid-
attenuated inversion recovery (T2-FLAIR) imaging, and rs-
fMRI. Scan parameters of the sequences are shown in Table 1.

Harmonization analysis

Technical variations, including differences in MRI scanners, 
acquisition protocols, and scanning parameters, tend to 
occur in images collected from multiple centers (36). These 
unwanted sources of variation are defined as site effects. 
The ComBat model will be used to remove site effects and 
to harmonize data from different scanners and sites. This 
model combines the location/scale model and empirical 
Bayes framework to adjust the mean value and variance 
across different groups (37,38).

FC

Preprocessing of all rs-fMRI data including removal of the first 
10 volumes, slice timing, realignment, normalization of the 
individual images into the space of the Montreal Neurological 
Institute (MNI), smoothing using a Gaussian kernel, 

detrending, filtering, and regressing out common nuisance 
variables will be performed with Data Processing Assistant for 
rs-fMRI Advanced Edition (http://rfmri.org/DPARSF).

Network nodes will be defined using the Shen 268-
node brain atlas, which includes the cortex, subcortex, and 
cerebellum (39). For each participant, a mean time course 
for each of the 268 nodes will be calculated by averaging the 
time course of voxels within the node at each time point. 
Network edges will be taken to represent the FC between 
each pair of nodes. The Pearson correlation coefficients of 
time courses between each pair of nodes will be computed. 
Fisher’s r-to-z transformation will be employed to create a 
268×268 symmetric FC matrix for each subject.

CPM

CPM will be executed by using previously validated 
custom MATLAB scripts (40). The steps for building the 
model are shown in Figure 1. Sum of the most important 
edges associated with age among extracted FC matrices 
and behavioral data (the chronological age) of the healthy 
participants will be input to generate a predictive model. 
Edges and the chronological age of each subject will be 
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correlated using Pearson’s correlation or partial correlation 
to determine the positive and negative predictive networks. 
Positive networks will be those in which the strength of 
the edges is significantly positively associated with the 
chronological age, and negative networks will be those in 
which the strength of the edges is significantly negatively 
associated with the chronological age.

The prediction performance of the model will be tested 
by leave-one-site-out cross-validation, which means healthy 
participants of N-1 site will be used as the training set to 
develop the model, and the brain age of the test data set 
(here is the healthy participants from the remaining site) 
will be predicted. This step will be repeated until all healthy 
subjects have a predicted value. The accuracy of the model 
will be measured by calculating the correlation between 
the predicted age and the chronological age, the amount 
of variance in age explained by the model (R2), the mean 
absolute error (MAE), and the root mean square error 
(RMSE).

The final model established using the overall healthy 
control dataset will be applied to the RE patients. 

Prediction model in RE patients

After the age-predicting model has been established, 
connectivity matrices of patients will be input into the 
model to predict the brain age of the RE patients. After 
all patients have been given their individual brain age 
value, the predicted age difference (PAD = predicted 
age-chronological age) of the brain will be obtained 
by comparing the predicted age (brain age) with the 
chronological age.

Previous structural and functional neuroimaging studies 
have verified that accumulative medication exposure can 
obviously affect brain activation and connectivity (5,41-43). 
Moreover, studies of rs-fMRI showed that the local regional 
homogeneity and white-matter FC were changed in new-
onset drug-naive RE patients, but were normal in the 
medicated group, indicating that antiepileptic drugs could 
reverse abnormal FC and even achieve a normalized level 
(43,44). In this trial, we will divide participants into a new-
onset drug-naïve group and an antiepileptic medication 
group, and will predict the brain age of the 2 groups 
separately.

Confidentiality

The original data of this study will be preserved uniformly 

by The Affiliated Hospital of Zunyi Medical University, 
China. Patient information will not be disclosed unless 
required by law. The publication of anonymous research 
data will only be used for scientific purposes.

Study status

The study is currently in the preparation phase. 

Discussion

Our study will connect clinical information with brain rs-
fMRI to develop a predictive model for the prediction of 
brain age in children with RE in order to evaluate their 
brain development.

There are some strengths to the study. Firstly, it will 
use CPM, an advanced machine learning method for 
establishing models capable of predicting brain–behavior 
relationships from FC data using the cross-validation 
method (40). Compared with other predictive models, 
CPM develops models using the most associated features 
(edges) selected throughout the whole brain. Differed from 
IQ and other clinical indicators, which were affected easily 
by subjective factors, the chronological age of the subjects 
was correctly calculated according to their date of birth. 
Furthermore, since the subjects of our study are all children, 
they will not be asked to perform specific tasks during the 
acquisition of rs-fMRI images, and will simply be instructed 
to remain still with their eyes closed, which may ensure the 
quality of the images. Also, all participants in the study can 
undergo MRI examination without sedatives, which will 
eliminate the effect of sedatives on the results.

As the study is being conducted across multiple sites, to 
ensure the consistency of the imaging data and feasibility 
of the process, an individualized examination procedure, 
including the same MRI scan parameters, has been designed 
for subjects and will be carried out in the 5 participating 
centers. Moreover, the neuropsychological testing is already 
widely applied in clinical practice.

Brain activation and connectivity can be affected by 
cumulative exposure to medication (5,41-43). Antiepileptic 
treatment may be a confounding factor of brain FC, and 
thus could affect the study results. To address this problem, 
we will divide the RE patients into a new-onset drug-
naïve group and an antiepileptic medication group and will 
analyze the results separately. 

Previous imaging studies of RE have mainly focused 
on the changes in brain structure and function, and their 
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relationship with cognition. A longitudinal study based on 
graph theory suggested that children with RE may have a 
higher level of development than normal children, along 
with regional configuration deviating from normality. 
However, there is no relevant research to prove whether 
brain development in children with RE have divergence 
from normal developmental trajectory. In our proposed 
study, the association of children’s brain FC and their 
behavioral characteristics will be examined, and the specific 
changes in brain development will be described.

It must be specified that our proposed research 
has certain limitations. Our protocol, like most other 
neuroimaging studies on RE currently, is a cross-sectional 
study. Our study will only compare the brain development 
of children with RE with that of healthy children in order 
to explore whether children with RE have advanced or 
delayed brain development than normal children. In order 
to study whether the brains of patients with RE experience 
accelerated aging, the study could serve as a foundation 
for conducting a longitudinal follow-up study of the study 
subjects.
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