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Abstract: Molecular imaging (MI) is a science that uses imaging methods to reflect the changes of 
molecular level in living state and conduct qualitative and quantitative studies on its biological behaviors in 
imaging. Optical molecular imaging (OMI) and nuclear medical imaging are two key research fields of MI. 
OMI technology refers to the optical information generated by the imaging target (such as tumors) due to 
drug intervention and other reasons. By collecting the optical information, researchers can track the motion 
trajectory of the imaging target at the molecular level. Owing to its high specificity and sensitivity, OMI 
has been widely used in preclinical research and clinical surgery. Nuclear medical imaging mainly detects 
ionizing radiation emitted by radioactive substances. It can provide molecular information for early diagnosis, 
effective treatment and basic research of diseases, which has become one of the frontiers and hot topics in 
the field of medicine in the world today. Both OMI and nuclear medical imaging technology require a lot 
of data processing and analysis. In recent years, artificial intelligence technology, especially neural network-
based machine learning (ML) technology, has been widely used in MI because of its powerful data processing 
capability. It provides a feasible strategy to deal with large and complex data for the requirement of MI. In 
this review, we will focus on the applications of ML methods in OMI and nuclear medical imaging.
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Section 1: Introduction

The term of molecular imaging (MI) first came into use in 
the late 1990s, which applied various imaging techniques 
to display the changes of specific molecules in vivo and to 
conduct qualitative and quantitative studies on their biological 
behaviors at the level of tissue, cell and sub-cell (1). Compared 
with traditional medical imaging equipment, MI can effectively 
use specific molecular probes to monitor the process of tumor 

development at the molecular level in real time, laying a 
technical foundation for early detection, accurate diagnosis and 
effective treatment of diseases (2-4).

MI integrates molecular biochemistry, data processing, 
nanotechnology, image processing and other technologies 
to pursue high imaging specificity, sensitivity and 
resolution (5). Thus, MI is not a single or isolated 
technological innovation, but an integration and evolution 
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of multidisciplinary technologies. MI modalities can be 
roughly categorized into three groups: classical anatomical 
imaging modalities [such as magnetic resonance imaging 
(MRI), X-ray computed tomography (CT), ultrasound 
imaging (USI), etc.], optical molecular imaging (OMI) 
modalities (such as bioluminescence imaging, fluorescence 
imaging, photoacoustic imaging, etc.), and nuclear medical 
imaging modalities [such as positron emission tomography 
(PET) and single photon emission computed tomography 
(SPECT)] (6,7). The classical anatomical imaging modalities 
have the longest history in equipment development, image 
processing and analysis, as well as biological and medical 
applications. A large number of literatures have reviewed 
the progress of these modalities in the field of MI (8-11). 
Therefore, the content of this paper mainly focuses on OMI 
and nuclear medical imaging technologies.

OMI becomes a new hot spot in medical imaging studies 
in recent years and has been widely applied in preclinical 
and clinical research. It uses molecular probes to label 
the target organism. Under certain external conditions, 
molecular probes emit fluorescence in the visible or 
near infrared spectrum, which can be detected by highly 
sensitive optical cameras. Then, the position and intensity 
of the fluorescent light source can be acquired to visualize 
the physiological activity information at the molecular 
and/or cellular level of the organism. Owing to the high 
sensitivity, no radiation, low cost, dynamic observation, 
and intuitive imaging, OMI has been widely used in tumor 
detection, drug development, surgical navigation, and 
many other fields (12-15). Furthermore, in order to obtain 
the three-dimensional (3D) information of the observed 
object, a variety of modern tomography techniques have 
been developed, such as the optical scattering tomography 
(OST) and photoacoustic tomography (PAT) (16-19). The 
corresponding imaging methods and hardware systems of 
OMI have also developed significantly.

Imaging diagnosis is an important part of clinical 
medicine, and nuclear medicine is playing an increasingly 
important role in imaging diagnosis. Nuclear medicine 
relies on radionuclides for imaging, including PET and 
SPECT. PET relies on positron-emitting nuclides for 
imaging, mainly including 18F, 68Ga, etc., while SPECT 
relies on single-photon-emitting nuclides and 99mTc is 
mainly used in clinical applications. Since PET and SPECT 
are important functional imaging methods with high 
sensitivity and specificity, they have been applied to tumors, 
central nervous system (CNS) and cardiovascular system 
(20-25). With the continuous development and progress of 

MI, PET and SPECT as important parts of MI have also 
made considerable progress in recent years.

Because of the rapid development of medical imaging 
technologies and the continuous expansion of medical 
data, the demand of accurate, automated and quantitative 
approaches for image processing and analysis becomes more 
and more urgent. Eventually, artificial intelligence (AI) has 
been widely applied in the field of MI. AI is a computer 
science that depends on the biological or physical coding. 
Furthermore, through human interventions, AI endows 
computer with a new respond in a similar way to human 
intelligence (26). Machine learning (ML) technology 
based on deep neural network (DNN), also known as 
deep learning (DL) method, is an important embodiment 
of AI (26). In recent years, benefiting from the rapid 
development of computer technology, the DL method is 
widely used to process large-scale and high-dimensional 
data. Owing to the powerful feature extraction and data 
processing performance, AI has been widely used in pattern 
recognition (27-31), natural language processing (32,33), 
network information security (34,35) and many other fields.

At present, the major applications of ML in MI can be 
divided into three parts: ML based imaging reconstruction 
(36-38), ML aided disease diagnosis (39,40), and intelligent 
target delineation (41,42). In the remainder of this article, 
we will introduce the relevant application of ML algorithms. 
Section 2 and 3 present the application of ML in OMI and 
nuclear medical imaging, respectively. In the section 4, we 
discuss some critical challenges and perspectives.

Section 2: Application of ML in OMI

In this section, we mainly introduce the recent applications 
of ML in fluorescence image-guided surgery (FIGS), OST, 
and PAT, which includes preclinical studies and clinical 
practices.

FIGS

As a highly sensitive and real-time intraoperative imaging 
technique, FIGS can assist operators to accurately and 
effectively locate and remove the malignant lesions in 
various kinds of clinical practices (Figure 1) (43-46). FIGS 
relies on fluorescence light produced by near-infrared 
(NIR) fluorescent contrast agents, which is strongly 
scattered and adsorbed by soft tissues, leading to limited 
but useful imaging depth. Because the optical scattering 
and absorption significantly affect imaging quality in FIGS, 
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how to achieve better quality imaging of complex tissues in 
real-time remains a huge challenge (46-49). In recent years, 
many groups have been working on this issue. In terms of 
hardware, various imaging systems have been developed for 
intraoperative FIGS, including systems designed for open 
and endoscopic surgeries, as well as systems utilizing NIR-
II signals (optical spectrum: 1,000–1,700 nm) (46,50-53). 
Besides those effects, the improvement of software with 
new imaging algorithms can further mitigate the physical 
limitations in hardware systems. One of the representative 
methods is the ML-based strategy, which has proven to be 
capable of enhancing the overall imaging quality frame-by-
frame in intraoperative FIGS.

To improve imaging quality, ML is mainly used in image 
enhancement and image registration. Zhang et al. (47) 
proposed an image post-processing method by employing 
the generative adversarial network (GAN) to achieve image 
enhancement as shown in Figure 2A. In their study, a total 
gradient loss was presented for network training and a 
finetuning training procedure was applied into the network 
architecture. Therefore, the problem of fake texture caused 
by traditional neural networks was overcome and further 
enhancing the image resolution (Figure 2B). Ravì et al. (54) 
developed a synthetic data generation method conquer the 
lack of ground-truth data. This synthetic data was applied 
to train exemplar-based DNNs and obtained convincing 
super-resolution fluorescence image. Unger et al. (55) 
proposed a hybrid histological registration method to 
achieve accurate registration of autofluorescence imaging 
data with ex vivo histological images, which is meaning for 
evaluation of tumor margin.

It is significant to determine the type and boundary of 
lesions accurately and quickly during the surgery, however, 

this is limited by the subjective consciousness of the 
operator and the delay of conventional surgical pathology. 
Therefore, in recent years, ML technology has been widely 
applied to intraoperative lesion analysis, which is expected 
to overcome the judgment errors caused by individuals 
and speed up the surgical pathology process by relying on 
automated technical analysis. Various groups performed 
quantitative analysis of fluorescence imaging of surgical 
specimens to determine tumor boundaries based on some 
traditional ML classifiers (SVM, random forest and so 
on) (56-58) (Figure 3A). These studies have achieved high 
accuracy, specificity and sensitivity (>90%), therefore 
holding potential for clinical surgery. In addition, there are 
also many researchers working on in vivo lesion analysis 
during the surgery. Using confocal laser endomicroscopy 
(CLE) imaging, Kamen et al. (59) proposed a ML-based 
algorithm to distinguish two types of brain tumors: 
glioblastoma and meningioma. They extracted the features 
of CLE images and using encoding schemes. Then 
SVM was used as a classifier and achieved an accuracy of 
more than 83% (Figure 3B). Li et al. (60) then proposed 
a video classification framework based on DL to classify 
glioblastoma and meningioma (Figure 3C). Under this 
framework, CNN was used to extract the features of each 
frame in the probe-based confocal laser endomicroscopy 
(pCLE) video, and then the RNN was used to fuse all 
the features. The results demonstrated that the proposed 
method improved the classification performance and 
achieved accuracy equal to 99.49%.

OST

As a multimodal imaging technology, OST combines two-

Figure 1 Intraoperative fluorescence imaging of a patient with melanoma (43). (A,B) The colour and NIR fluorescence imaging, 
respectively. The arrows refer to the sentinel lymph nodes. (C) The merged image of the two (NIR fluorescence in lime green).
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dimensional (2D) body surface fluorescence information 
with high-resolution structural imaging technology 
(MRI or CT). With the help of mathematical models, 
OST can accurately reconstruct the three-dimensional 
(3D) distribution of the internal light source from the 
fluorescence distribution on the surface (Figure 4), such 
as bioluminescence tomography (BLT) and fluorescence 
molecular tomography (FMT) (15,61,63). Compared with 
2D fluorescence imaging, OST provides tomographic 
information and can quantify the 3D distribution of light 
source in the bodies, which is of great significance in 
preclinical research.

Most of conventional OST reconstruction algorithms 
are based on a photon propagation model of radiation 
transfer equation (RTE). Owing to the high complexity of 
RTE, a simplified low-order approximation model diffusion 

approximation equation (DE) is used to describe the photon 
propagation in biological tissues (64-66). Based on the 
finite element method, the distribution of fluorescence on 
the surface and internal light source is modeled as a linear 
relationship: AX = b. The reverse problem is to solve the 
light distribution X. However, OST suffers from the ill-
posedness owing to the scattering effect, which influences 
the reconstruction accuracy (15,66,67). Therefore, various 
reconstruction strategies have been proposed to improve 
the reconstruction accuracy, such as regularization methods 
(L2, L1, LP) (17,68,69), Bayesian sparse based methods (62), 
matching pursuit algorithms (70,71), and guided methods 
utilizing the prior information of tumor segmentation 
(16,72). Nevertheless, the reconstruction performance of 
these model-based methods are still limited by ill-posedness 
and the model error caused by the simplified photon 

Figure 2 Image enhancement based on ML method (47). (A) The improved GAN-based network. (B) Enhanced resolution results at the 
ICG injection site in the pulmonary lymph node.
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Figure 3 The applications of ML-algorithm in image classification of lesions. (A) Clinical research design of surgical specimen imaging (57). (B) A 
SVM method was used to perform classification of CLE images in (59). (C) A CNN-RNN framework was utilized to perform classification 
of pCLE images in (60,61).
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propagation model (37,73).
In recent years, many ML-based methods have been 

proposed to address the limitations of conventional model-
based reconstruction algorithms. Gao et al. (37) developed 
a data-driven strategy based on the multi-layer perceptron 
(MLP) to achieve accurate location reconstruction in 
BLT as shown in Figure 5A. They utilized a Monte Carlo 
simulating method to collect training data. The error 
between the reconstructed light source and the real light 
source was used to train the network. As an extension, 
Meng et al. (73) connected a local connection sub-network 
based on the K-nearest neighbor (KNN-LC) over the 
fully connected network (FCN) and further improved the 
morphology reconstruction in FMT (Figure 5B). Further, 
owing to the large number of parameters required and 
the large amount of redundant information extracted for 
FCN, many researchers hope to apply convolutional neural 
network (CNN) to OST reconstruction. However, owing 
to the spatial topological structure of 3D mesh, CNN 
cannot be directly used for OST reconstruction. To address 
this problem, Li et al. (74) utilized graph convolution 
networks (GCN) in FMT reconstruction, which reduced 
the training parameters and achieved relatively rapid 
reconstruction. Moreover, Guo et al. (36) proposed a 3D 
deep encoder–decoder network to obtain the distribution 

of internal light source directly from 2D fluorescence 
image (Figure 5C). They collected 24 regular phantom 
surface 2D projection images from 0 to 360 degrees. Every 
image was resized to 64×64, thereby, the input format of 
the network was 64×64×24. And the output was 64×64×16. 
This strategy achieved FMT reconstruction directly from 
2D fluorescence images that the limitations caused by finite 
element mesh could be avoided.

These ML-based methods address the model error 
caused by the photon propagation model and the ill-
posedness caused by the inverse problem. However, there 
are still many limitations to be overcome in the practical 
application. One major limitation is that there is no unified 
public database for OST reconstruction. The training data 
are generated by simulations with individual differences, 
so it is lack of credibility. Furthermore, there is a lack of 
in vivo data. Thereby, a public database or a standard and 
effective data collection framework is urgently needed.

PAT

PAT is an emerging and noninvasive hybrid biomedical 
imaging technology that can be used to reveal the optical 
absorption characteristics of tissues (75-77). In PAT, pulsed 
laser is used to illuminate the biological tissues. Some of 

2D fluorescence image

CT data

Image of OST

Figure 4 Optical scattering tomography. The 3D distribution of internal light source was obtained by combining 2D surface fluorescence 
information with 3D CT data© [2020] IEEE. Reprinted, with permission, from (62).



Annals of Translational Medicine, Vol 9, No 9 May 2021 Page 7 of 20

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(9):825 | http://dx.doi.org/10.21037/atm-20-5877

⦰

⦰

Wil

Inpuy Layer Output LayerHidden 1

R
eL

U

R
eL

U

D
ro

po
ut

– P
=

20
%

D
ro

po
ut

– P
=

20
%

R
eL

U

Hidden 1

Wjk

W4o

X

Fully Connection

Locally Connection

feature code

Convolution+BatchNorm+ReLU+MaxPooling

64×64×24

3D–Encoder

filters (f)=32 
kernel (k)=3

f=64 
k=3

f=64 
k=3

f=32 
k=3

f=16 
k=3

f=128 
k=3

f=128 
k=3

f=256 
k=3

f=256 
k=3

3D–Decoder

64×64×16

Upsampling + Convolution +BatchNorm + ReLU

1024
fc

location
other

size

Standard Mesh

KNN

Coarse Result

Final Result

R
es

id
ua

l L
ea

rn
in

g

Surface Photon 

Intensity

B1 B4 Bout

X

A

B

C
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with permission from (36). The Optical Society.
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the absorbed light energy will be converted into thermal 
energy, causing nearby tissues to expand thermally, resulting 
in ultrasonic waves. The ultrasonic waves are measured by 
ultrasonic transducers and used for image reconstruction 
(78,79). The principle of PAT is shown in Figure 6. Since 
the optical absorption characteristics of biological tissues 
can reflect the hemoglobin concentration and molecular 
structure, PAT has great application potential in preclinical 
and clinical researches (80-82).

In the past decade, many researchers have made extensive 
efforts to improve the image reconstruction quality of PAT. 
In the field of conventional reconstruction algorithm, linear 
reconstruction algorithm is a simple and direct method 
which achieves the reconstruction from signal to image by 
solving a linear transformation. Furthermore, filtered back-
projection (FBP) and time reversal method are two major 
types in linear reconstruction algorithms (83-87). Owing 
to their easy implementation and rapid reconstruction, 
they are widely applied in PAT reconstruction. However, 
the linear reconstruction algorithm will lead to many 
reconstructed artifacts in downsampled and limited-
view data reconstruction (88,89). Another widely used 
conventional algorithm is model-based method, which 
relies on the photoacoustic forward propagation model 
(18,88,90-92). Model-based method is based on an iterative 
optimization framework with regularization prior. However, 
these methods are greatly affected by the noise caused by 
the photoacoustic signal acquisition, especially under the 
condition of downsampling, thereby the reconstruction 
results of these methods are limited (61,93).

In recent years, the ML-based methods have been 
proposed in PAT reconstruction to address the limitations 
of conventional reconstruction algorithms. The ML-based 
method can be divided into two parts, one of which relies on 
the conventional reconstruction algorithm and the other does 
not. For the first class, there are two main implementations: 

firstly, a U-Net network is used as a post-processing network 
to improve the coarse PAT images that are reconstructed by 
conventional reconstruction algorithms (79,94) (Figure 7A). 
Owing to the strong denoising ability of U-Net, this kind 
of algorithm is effective in eliminating image artifacts and 
denoising. Secondly, a neural network is utilized to simulate 
each iteration of conventional iterative algorithms. This 
strategy was first proposed by Hauptmann et al. (19). They 
designed a DNN to represent the iteration framework and 
introduced the gradient information of the photoacoustic data 
(Figure 7B). Boink et al. designed a CNN network based on 
partially learned algorithm to simultaneously achieve image 
reconstruction and segmentation of PAT (96). Compared 
with the strategy of using U-Net for post-processing network, 
the reconstruction results are further improved by the 
iterative network. These methods rely on conventional linear 
reconstruction algorithms to provide an initial value, and 
therefore, the reconstruction results are not stable enough. 
To address this limitation, it is necessary to achieve the direct 
reconstruction independent of conventional reconstruction 
methods. Waibel et al. first attempted to use CNN network to 
achieve this direct reconstruction, however, the results were 
not as good as the above strategies (97). Recently, Tong et al. 
proposed a DL network to improve the image quality directly 
from signal to image (95). They designed a Feature Projection 
Network (FPnet) to achieve domain transformation, and 
then a U-Net was used to further improve the image quality  
(Figure 7C). Their method is superior to some of the cutting-
edge methods available.

Although the performance of the ML-based approach is 
superior to that of conventional algorithms, there are also 
limitations needed to be addressed. At present, most ML-
based algorithms rely on conventional algorithms to provide 
an initial value, which makes this method not a real end-
to-end DL algorithm. Besides, in the case of full view and 
dense sampling, the ML-based method does not have great 

Optical illumination Acoustic wave Reconstruction

Figure 6 Imaging principle of photoacoustic tomography (79).
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advantages over the conventional method.

Section 3: Application of ML in nuclear medical 
imaging

In the past five years, the application of ML in clinical 
medicine, especially in nuclear medicine, has received 
increasing attention (98). With the rapid development in 
nuclear medicine and ML, the connection between ML and 
medical imaging is getting closer and closer (99,100). Image 
diagnosis is an important part of clinical work in nuclear 
medicine. During the diagnosis process, radiologist need to 
read a large number of image data and ML has made great 
progress in the reconstruction of CT, SPECT and PET 
(101,102). At the same time, ML is very helpful in assisting 
radiologists to diagnose and treat diseases (103-105).

Application of ML in PET

PET is an important part of nuclear medicine. The 
development of PET/CT has significantly improved the 
sensitivity and specificity of imaging diagnose and it is also 
of great significance in disease treatment and prognosis.

The combination of ML and imaging has been widely 
used in the detection and diagnosis of tumors (103). The 
diagnosis of lung nodules is an important part of the daily 
work of radiologists and how to diagnose the lung nodules is 
a tedious and complicated process. To date ML demonstrates 
remarkable and significant progress in pulmonary nodules 
detection and diagnosis (106-109). Nuclear medicine 
imaging needs to rely on radionuclides. 18F-FDG is the most 
commonly used radionuclide, but its imaging in the brain 
has limitations because of high background in normal brain. 
A variety of imaging agents based on the nervous system 
have been developed especially for CNS tumors. 18F-FET, a 
specific brain tumor imaging agent, significantly reduced the 
background of the normal brain, and improved the contrast 
of tumor. The combined application of CNN and 18F-FET 
PET/CT for the diagnosis of gliomas has obviously increased 
the sensitivity, specificity, positive predictive value and negative 
predictive value (110) (Figure 8). 11C-Choline PET/MRI has 
been shown to improve the diagnostic accuracy of primary 
prostate cancer. The application of PET/MR with ML 
algorithm has been tried to diagnose local prostate cancer (111). 
With the development of ML and new molecular probes, 
DNN has been used in 68Ga-PSMA imaging and made a better 
performance in the diagnosis of bone metastasis and lymph 
node metastasis from prostate cancer (112,113). Automated 

PET/CT segmentation trained with CNN was also used in 
the prostate cancer lesion uptake which was in association 
with overall survival (114,115). While PET/CT performs a 
whole body scan at one time, it can accurately detect systemic 
diseases, such as leukemia, lymphoma, multiple myeloma, 
etc. and then provide precision medicine (115-117). Nuclear 
alteration is a distinguished feature of many types of cancers 
and it is also an important evidence for pathological diagnosis. 
Recent studies based on ML approaches could automatically 
analyze data related to nuclear changes to assist diagnosis 
decision (118,119).

With the continuous research and development of 
molecular probes, PET combined with ML which plays 
an important role in the diagnosis of CNS tumor as 
mentioned above can also be applied to many other aspects 
of the nervous system. Alzheimer’s disease (AD) is the most 
prevalent form of age-related dementia that poses challenges 
to global health care systems (120). Many different types of 
molecular probes and different ML algorithms have been 
applied to the diagnosis of AD, cognitive impairment (MCI) 
and brain amyloid burden (121-128). Recently a ML model 
trained only by normal brain PET data was established and 
it could assist experts to identify and locate the abnormal 
patterns of PET images (129).

18F-FDG PET is also a common used mean of cardiac 
examination and it plays a fundamental role in diagnosis of 
cardiac sarcoidosis (CS) (25,130). A method based on deep 
convolutional neural network (DCNN) was proposed for 
CS classification (131).

The effective treatment and prognosis of the disease are 
the most concerned issues for patients, and ML can be used 
to guide the treatment plan, evaluate the tumor stage and 
predict the prognosis of the disease.

Radiotherapy and chemotherapy are important means of 
tumor treatment. PET/CT and other imaging modality can 
assist in the delineation of the target areas of radiotherapy and 
effectively monitor the tumor objective response rate (ORR) 
and metastasis (104,105,132,133). Stereotactic body radiation 
therapy (SBRT) which can precisely locate the tumor position 
and deliver a high dose to a tumor per fraction rather than to 
the surrounding normal tissue, is a promising technique for 
the treatment of cancer (134). Usually gross tumor volumes 
(GTVs) regions are manually delineated by radiation 
oncologist before the treatment and ML can be employed to 
help radiation oncologists to delineate GTV regions (135,136) 
(Figure 9). Lymph node metastasis and distant metastasis are 
the significant prognostic factor for cancer patients and the 
ability to predict them precisely is necessary for treatment 
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optimization. With the assist of ML, PET/CT can accurately 
predict the staging and grading of tumors (137,138).

With the development of ML, some models have been 
established that can successfully predict and assess the 
response of chemoradiotherapy treatment in oncological 
patients (139-142). Although the diagnosis and treatment 
of the disease are critical to the patient, the survival rate 
of the tumor is the patient’s utmost concern. ML using 
in vivo, ex vivo, and patient features has made progress in 
predicting survival in 11C-MET-positive glioma patients (143)  
(Figure 10).

Recently, treatment strategies for AD are focusing on 
slowing cognitive decline. For the purpose of effective 
treatment of AD, it is important to identify subjects who 
are most likely to exhibit rapid cognitive decline (144,145). 
By applying CNN to FDG and AV-45 PET, a CNN-based 
method that could successfully predict cognitive decline was 
proposed (146). Several other in-depth learning algorithms 
combined with PET imaging were developed to predict 

cognitive performance and AD and it was very beneficial to 
the early treatment of patients (147-149).

Application of ML in SPECT

SPECT is one of the earliest nuclear medicine imaging 
equipment used in clinical applications. With the help of 
ML, SPECT has made great progress in the application of 
CNS and cardiovascular system.

Parkinson disease (PD) is the most common neurological 
disorder disease with characteristic movement difficulty 
like tremor, stiffness and slowness. Dopamine transporter 
SPECT/CT has been proven to improve the diagnostic 
accuracy of Parkinson disease (150). The application of ML 
in SPECT makes PD’s diagnosis faster and helps physicians 
further improve the accuracy of diagnosis (151-153). For 
example, Prashanth et al. proposed that the support vector 
machine (SVM) classifier was applied to the recognition 
of PD. As shown in Figure 11, the accuracy could reach 

Case 2

FCM framework

DSC=0.81

DSC=0.88

DSC=0.89 DSC=0.66 DSC=0.62

DSC=0.88DSC=0.36

DSC=0.83 DSC=0.83

ANN framework SVM framework

Case 9

Case 16

Solid 

Homogeneous 

Irregular 

Vascular

GGO 

Regular

Part solid GGO 

Regular

GTV contours determined by radiation oncologists (red line) 

Estimated GTV contours (blue line)

Figure 9 A comparison of results of the three pixel-based ML framework in terms of tumor CT imaging characteristics (136). FCM, 
fuzzy-c-means clustering method; ANN, artificial neural network; SVM, support vector machine; GGO, ground glass opacity; DSC, Dice 
similarity coefficient. 
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97.29% (151).
Radionuclide myocardial perfusion imaging (MPI) 

which usually uses 99mTc-labeled tracers to map the relative 
distribution of myocardial blood flow (MBF) both at rest 
and with stress is the most commonly used detection 
method for heart disease (154,155). MPI has been used 
in the diagnosis of coronary artery disease (CAD) which 
is the leading cause of mortality worldwide and the 
artificial neural network (ANN) can help experts to detect 
myocardial perfusion defects and ischemia (156-159). 
Usually manual adjustment is required to accurately locate 
the position of mitral valve plane (VP) in the left ventricle 
of heart and Betancur et al. developed a ML method for 
fully automatic VP positioning in MPI without the need for 
expert intervention (160). One thousand patients underwent 
rest/stress SPECT MPI and the diagnostic performance 
of AI reporting system that generated a structured natural 
language report was comparable to the experts (161).

Heart-related diseases are one of the diseases with the 

highest fatality rate in China, and accurate prediction of 
related diseases and their risks is of great significance to 
treatment and prognosis. ML in combination with myocardial 
perfusion SPECT (MPS) has been developing rapidly and this 
approach is also applied to the prediction of cardiovascular 
diseases. Arsanjani et al. established a ML algorithm to predict 
early revascularization which was comparable to or better than 
the experienced experts (162). Trained with 1,638 patients 
(67% males) without known CAD, DL with MPI made better 
performance in the prediction of per-patient and per-vessel 
CAD compared with current clinical methods in 2018 (163). 
By integrating clinical and imaging data, ML could predict 
adverse cardiac events (MACE) risk in patients underwent 
SPECT MPI (164). With the aid of AI, the situation is 
changing that disease can be judged only by experts’ clinical 
experience.

Section 4: Challenges and perspectives

Although ML has achieved a significant breakthrough 
in clinical and preclinical applications, it still faces great 
challenges in theoretical research and clinical trials. 
Firstly, as we all know, ML-based algorithm as data-driven 
technology is greatly influenced by the amount of data. 
Compared with natural images, it is difficult for medical 
images to obtain enough data to build ML models. To 
overcome the limitation of clinical application data, building 
virtual or simulated data sets may be a practical and feasible 
solution in the short term. Future studies should focus on 
constantly improving the data volume, or developing ML 
technology based on small data sets. Secondly, although 
the application of ML can increase the reconstruction 
quality of OST, PAT, PET, etc., there are many concerns 
that ML will introduce more artifacts, which will affect 
the interpretation of images. What specific artifacts will be 
introduced into ML, and there is still a lack of research in 

Figure 10 Performance Values of Predictive Models Evaluated 
in MC Cross-Validation. (*M36EP is presented separately, as it 
is independent from image binning configurations) (143). SEN, 
sensitivity; SPEC, specificity; ACC, accuracy; PPV, positive 
predictive value; NPV, negative predictive value; M36IEP, 
model based on a combination of in vivo, ex vivo, and clinical 
patient information; M36IP, model based on in vivo and patient 
information only; M36I, model based on in vivo information only. 

Performance 

measures
SVM

Boosted 

Trees

Random 

Forests

Naïve  

Bayes

Accuracy 97.29±0.11 96.76±0.23 96.90±0.17 96.88±0.09

Sensitivity 97.37±0.10 97.09±0.25 97.18±0.23 96.43±0.14

Specificity 97.18±0.22 96.29±0.42 96.49±0.32 96.47±0.16

AUC 99.26±0.06 99.16±0.12 99.08±0.11 98.99±0.07

Figure 11 Performance measures obtained for the classifier used 
in the text (151).
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this area. Thirdly, owing to the uninterpretability of neural 
networks, it is difficult to describe the imaging mechanisms 
of various imaging techniques, which is urgently needed to 
be overcome of neural networks. Further attempts should 
be made to explain the working principle of ML in different 
application scenarios through the visualization of model 
features and other methods. Lastly, the clinical diagnosis 
and other applications of ML assisted nuclear medical 
imaging are mostly retrospective data, lacking the validation 
of prospective multicentric clinical trials. This will need to 
be supplemented in the future.

Under the background of AI industrial revolution, 
imaging physicians should face the opportunity more 
objectively and positively. At present, AI technology is still 
in the initial stage, and it is more about a single image task 
to propose a solution, which is far away from the clinical 
work scene. The development of AI cannot be separated 
from doctors, and the work of doctors in the future cannot 
be separated from AI. Medical services assisted by machines 
will be the optimal solution in the path of diagnosis and 
treatment in the future.
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