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Background: Lens opacity seriously affects the visual development of infants. Slit-illumination images 
play an irreplaceable role in lens opacity detection; however, these images exhibited varied phenotypes with 
severe heterogeneity and complexity, particularly among pediatric cataracts. Therefore, it is urgently needed 
to explore an effective computer-aided method to automatically diagnose heterogeneous lens opacity and to 
provide appropriate treatment recommendations in a timely manner.
Methods: We integrated three different deep learning networks and a cost-sensitive method into an 
ensemble learning architecture, and then proposed an effective model called CCNN-Ensemble [ensemble 
of cost-sensitive convolutional neural networks (CNNs)] for automatic lens opacity detection. A total of 470 
slit-illumination images of pediatric cataracts were used for training and comparison between the CCNN-
Ensemble model and conventional methods. Finally, we used two external datasets (132 independent test 
images and 79 Internet-based images) to further evaluate the model’s generalizability and effectiveness.
Results: Experimental results and comparative analyses demonstrated that the proposed method was 
superior to conventional approaches and provided clinically meaningful performance in terms of three 
grading indices of lens opacity: area (specificity and sensitivity; 92.00% and 92.31%), density (93.85% and 
91.43%) and opacity location (95.25% and 89.29%). Furthermore, the comparable performance on the 
independent testing dataset and the internet-based images verified the effectiveness and generalizability 
of the model. Finally, we developed and implemented a website-based automatic diagnosis software for 
pediatric cataract grading diagnosis in ophthalmology clinics.
Conclusions: The CCNN-Ensemble method demonstrates higher specificity and sensitivity than 
conventional methods on multi-source datasets. This study provides a practical strategy for heterogeneous 
lens opacity diagnosis and has the potential to be applied to the analysis of other medical images.
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Introduction

Optical imaging technologies play a vital role in the 
clinical diagnosis and treatment of ophthalmology (1,2). 
Computational vision approaches for automatic diagnosis 
of lens opacity have greatly improved the efficiency of 
ophthalmologists and the entire treatment chain, providing 
real benefits for patients (3-6). In our previous studies, we 
applied artificial intelligence methods to detect cataract 
and then graded lens opacity based on diffuse-light ocular 
images (7-9). However, the lens opacity grading is solely 
based on diffuse-light images, which may not be precise as 
the lens is a three-dimensional object (10-12). The common 
slit-illumination image offers another effective diagnosis 
medium and provides an essential supplement to these 
diffuse-light images (13,14). Therefore, the development 
of computer vision techniques for slit-illumination images 
will move the automatic diagnosis of ophthalmic diseases 
towards a more comprehensive and intelligent strategy.

At present, the existing computer-aided diagnosis 
methods generally focus on senile cataracts using slit-
illumination images (3-5,15). Thresholding localization 
and support vector regression methods were used to 
grade the nuclear cataract (16). Recursive convolutional 
neural networks (CNNs) and support vector regression 
methods were implemented to enable automatic learning of 
features for evaluating the severity of nuclear cataracts (17). 
However, the phenotypes of senile cataracts are relatively 
simple and fairly homogeneous. The study of such senile 
cataracts alone will not be sufficient for the development 
of a computer-aided diagnosis system for lens opacity in 
complex clinical scenarios. Practical clinical applications 
need the ability to diagnose heterogeneous lens opacities 
with high recognition rates (18-20). It is therefore essential 
to develop an efficient, feasible, and automatic diagnostic 
system to address heterogeneous slit-illumination images. 

The pediatric cataract is a typical lens opacity disease 
that suffers from severe heterogeneity and complex 
phenotypes (21-23). Large-scale slit-illumination images 
of pediatric cataracts were collected from the long-term 
Childhood Cataract Program of the Chinese Ministry of 
Health (CCPMOH) project (24), which covered a wide 
variety of lens opacities. In addition, the imbalance between 

the categories is an inevitable problem in pediatric cataract 
diagnosis (21,25), where the number of positive samples 
is relatively smaller than the number of negative samples. 
This can easily cause the classifiers to produce a higher 
false-negative rate. Therefore, these datasets represent 
an ideal medium for the exploration of the appropriate 
computational vision methods required to adapt to complex 
clinical application scenarios. 

Recently, CNNs (26-28) and ensemble learning methods 
(29-32) based on CNNs showed great promise in the 
automatic diagnosis of extensive diseases based on medical 
images, among which, the voting, averaging, and batch 
random selection were common ensemble techniques. To 
develop an effective and efficient computer vision method 
for analysis of these heterogeneous slit-illumination images, 
we integrated three deep CNNs with different structures 
(AlexNet, GoogLeNet and ResNet50) (26-28) and a cost-
sensitive algorithm (33,34) into an ensemble learning 
framework and created the CCNN-Ensemble model 
(ensemble of cost-sensitive CNNs). The three CNNs with 
their different structures were used to improve both the 
overall recognition rate and stability of the model. The 
cost-sensitive algorithm was used to address the imbalanced 
dataset problem and thus significantly reduce the model’s 
false-negative rate. We performed detailed experiments to 
compare the performance of the CCNN-Ensemble method 
with that of conventional methods in three grading indices 
of lens opacity. We also used two external datasets (an 
independent testing dataset and an Internet-based dataset) 
to validate the method’s versatility and stability. Finally, 
potential computer-aided diagnostic software was developed 
and deployed for use by ophthalmologists and their patients 
in clinical applications. 

We present the following article in accordance with 
the STARD reporting checklist (available at http://dx.doi.
org/10.21037/atm-20-6635).

Methods

Dataset

The slit-illumination datasets consist of the following three 
parts: the training and validation dataset, the independent 
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testing dataset, and the Internet-based dataset. A total of 
470 training and validation datasets were derived from the 
routine examinations between June 2015 and February 
2020 at Zhongshan Ophthalmic Center of Sun Yat-sen 
University (Figure 1A) (24). 132 independent testing images 
were selected randomly in advance from the Zhongshan 

Ophthalmic Center; 79 Internet-based images were 
collected using a keyword search (including words such as 
congenital cataract, infant, and pediatric) of the Baidu and 
Google search engines. In total, there were 470 individuals 
in the training and validation datasets and 132 individuals in 
the independent testing dataset. All individuals underwent 

Figure 1 Dataset preparation and performance evaluation of multiple methods. (A) Dataset labelling and preprocessing. Four hundred 
and seventy training and validation samples and 132 independent test samples were derived from samples provided by the Zhongshan 
Ophthalmic Center of Sun Yat-sen University; 79 Internet-based samples were collected using the Baidu and Google search engines. Each 
image was independently graded and labeled by three senior ophthalmologists; subsequently, the images were cropped automatically using 
twice-applied Canny detection and Hough transformation. (B) Model comparison and evaluation. The training and validation dataset was 
used to train and evaluate the performances of the different methods and select the best model. Independent testing and Internet-based 
datasets were also used to evaluate the stability and generalizability of the CCNN-Ensemble method. WT, wavelet transformation; LBP, 
local binary pattern; SIFT, scale-invariant feature transform; COTE, color and texture features; Adaboost, adaptive boosting ensemble 
learning; Ave-Ensemble, ensemble learning of three different CNNs (AlexNet, GoogLeNet, and ResNet50) with an averaging technique; 
Ave-BRS-3ResNet, ensemble learning of three ResNet50 architectures with batch random selection and averaging techniques; CCNN-
Ensemble, ensemble learning of cost-sensitive convolutional neural networks.
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the examination of slit lamp-adapted anterior segmental 
photography (BX900; Haag-Streit AG, Koniz, Switzerland). 
The slit-beam width was settled in a narrow range (1 to 
2 mm). The age of the subjects in training, validation, 
and independent testing datasets is 18.96±10.61 months 
(mean ± SD). The study was approved by the Ethics 
Committee of Zhongshan Ophthalmic Center of Sun Yat-
sen University (NO.: 2017KYPJ096) and adhered to the 
tenets of the Declaration of Helsinki (as revised in 2013). 
Written informed consent was obtained from all the study 
participants’ parents or legal guardians.

There are no special pixel requirements for the 
enrolled images provided that the lens area of the image is 
retained. To ensure grade labeling accuracy, three senior 
ophthalmologists jointly determine the grade of each image 
and comprehensively evaluate its severities in terms of three 
lens lesion indices (opacity area, density, and location) (7,9). 
An opacity area that covers more than half of the pupil is 
defined as extensive; otherwise, it is defined as limited. An 
opacity density that completely blocks the light is labelled 
as dense; otherwise, it is defined as transparent. An opacity 
location that fully covers the visual axis of the pupil is called 
central; otherwise, it is called peripheral. The collected 
datasets covered a variety of pediatric cataracts, which were 
divided into limited and extensive categories for the area, 
dense and transparent categories for density, and central 
and peripheral categories for location, as shown in Table 1.

Preprocessing and model evaluation

We preprocessed all labeled datasets using twice-applied 
Canny detection and Hough transformation (35,36) to 
acquire the lens region of interest and eliminate surrounding 
noise zones such as the eyelids and the sclera (Figure 1A). 
The detailed procedures and methods of automatic lens 
cropping are consistent with our previous research (7,9). 
The localized images were subsequently resized to a size of 
256×256 pixels and were then input into the computational 
vision models. Using these training and validation datasets, 

we performed a five-fold cross-validation procedure to 
compare and evaluate the performances of the different 
models (Figure 1B). Four representative handcrafted 
features (WT: wavelet transformation; LBP: local binary 
pattern; SIFT: scale-invariant feature transform; and 
COTE: color and texture features) (8,9,37-39) were selected 
and combined with support vector machine (SVM) and 
adaptive boosting (Adaboost) classifiers for performance 
comparison. In addition, three single-classifier CNNs 
(AlexNet, GoogLeNet, and ResNet50) and two common 
ensemble learning methods (Ave-Ensemble and Ave-BRS-
3ResNet) based on CNNs were performed to compare 
with CCNN-Ensemble. The Ave-Ensemble represents 
an ensemble learning with an averaging technique, which 
calculates the averages of the probabilities for AlexNet, 
GoogLeNet, and ResNet50 to obtain the final classification 
result. The Ave-BRS-3ResNet denotes the ensemble 
learning of three ResNet50 architectures with batch random 
selection and averaging techniques. After the selection of 
the optimal CCNN-Ensemble model, we further verified its 
effectiveness and stability using the two external datasets (the 
independent testing dataset and the Internet-based dataset).

Statistical analysis

To provide a full assessment of the superiority of the 
CCNN-Ensemble method when compared with the 
conventional methods, we calculated several evaluation 
metrics, including accuracy, sensitivity, specificity, F1-
measure, and G-mean, as follows.

( ) ( )Accuracy TP TN TP FN TN FP= + + + + 	 [1]

( ) ( )Sensitivity Recall TP TP FN= + 	 [2]

( )Specificity TN TN FP= + 	 [3]

( )Precision TP TP FP= + 	 [4]

2* *1- Recall PrecisionF measure
Recall Precision

=
+ 	

[5]

Table 1 Distributions of slit-illumination datasets in terms of three grading indices

Datasets Total number
Opacity area Opacity density Opacity location

Limited Extensive Transparent Dense Peripheral Central

Training and validation datasets 470 275 195 260 210 274 196

Independent testing dataset 132 91 41 104 28 100 32

Internet-based dataset 79 19 60 18 61 16 63
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- *TP TNG mean
TP FN TN FP

=
+ + 	 [6]

where TP, FP, TN, and FN denote the numbers of true 
positives, false positives, true negatives, and false negatives, 
respectively. Accuracy, sensitivity, and specificity are the 
most commonly used evaluation measures. The F1-measure 
and G-mean (40) indicators simultaneously consider 
the accuracies of both classes and can thus effectively 
measure the recognition abilities of models in the case 
of an imbalanced dataset. Additionally, three more vital 
objective measures—the receiver operating characteristic 
curve (ROC), the area under the ROC curve (AUC), 
and the precision recall curve (PR)—were used for visual 
comparison and analysis. Five-fold cross-validation was 
applied to calculate the mean and standard deviation of 
the above evaluation metrics. All statistical analyses were 
conducted using python 3.7.8.

Overall framework of CCNN-Ensemble

As shown in Figure 2, the overall diagnosis framework of 

the CCNN-Ensemble consists primarily of three deep 
CNN models (GoogLeNet, AlexNet, and ResNet50), a 
cost-sensitive adjustment layer, ensemble learning, dataset 
augmentation technology, and transfer learning. The three 
heterogeneous CNN models, as classifiers, were employed 
to construct the ensemble learning framework to enhance 
the recognition rates of the algorithms. The cost-sensitive 
adjustment layer was used to manage the imbalanced 
dataset problem, and the dataset augmentation and transfer 
learning processes were adopted to overcome the overfitting 
problem and accelerate model convergence. The technical 
details are described below. 

Ensemble learning of multiple heterogeneous CNNs

We used three heterogeneous CNNs (AlexNet, GoogLeNet 
and ResNet50) to form the ensemble learning framework 
(Figure 2). The AlexNet CNN, which was proposed by 
Krizhevsky (26), performed image classification and won 
first prize in the ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) in 2012, mainly used convolutional 
layers, overlapping pooling, nonsaturating rectified linear 

AlexNet GoogLeNet ResNet50 Cost sensitive

Automatic lens
localization

Fully-connected
layers 

Ensemble
learning layer 

Cost-sensitive 
adjustment layer

Convolutional and 
pooling layers 

Softmax

Optimizing cost- 
sensitive weight

Figure 2 Framework of the CCNN-Ensemble method. The preprocessed images were input into three parallel deep learning CNNs 
(AlexNet, GoogLeNet, and ResNet50) with different network structures for feature extraction and classification; a unified ensemble learning 
of CNNs was then used to improve the recognition rate of the classifier. The cost-sensitive layer was used to adjust the costs of the positive 
and negative samples in the loss function to address the imbalanced dataset problem. CNN, convolutional neural network; AlexNet, eight-
layer Alex CNN; GoogLeNet, 22-layer inception CNN developed by Google researchers; ResNet50, 50-layer residual CNN.
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units (ReLUs) and three fully-connected layers to construct 
an eight-layer CNN. Subsequently, a number of variants 
CNNs were proposed to enhance its recognition rate and 
incorporated many emerging technologies. In particular, a 
22-layer inception deep network was achieved by Google 
researchers (27) that were based on the Hebbian principle, 
an intuition of multi-scale processing, filter aggregation, 
average pooling, and auxiliary classifier technologies. 
Kaiming He then used the residual connection scheme, 
batch normalization, and scale operations to establish 
a 50-layer ultra-deep residual CNN (ResNet50) (28). 
Because the above CNNs implemented different principles 
and techniques, their network structures show distinct 
heterogeneity, and this can effectively improve the 
recognition rate of the ensemble learning model. 

In order to adequately utilize the advantages of the three 
CNNs, we implemented a two-stage ensemble learning 
scheme. Specifically, in the first stage, starting with the 
initial parameters of models pre-trained on the ImageNet 
dataset, three CNNs with different structures were trained 
using transfer learning, respectively. Thus, the optimal 
parameters of each CNN were obtained. In the second 
stage, the Softmax functions of the three CNNs were 
removed, the high-level features of the CNNs were merged 
into the same cost-sensitive Softmax classification function 
to construct a unified ensemble CNN. The learning rate 
of the feature extraction layers was set to one-tenth of the 
ensemble learning layer. The transfer learning method was 
adopted to fully train the ensemble learning layer and fine-
tune the previous feature extraction layers. Through the 
above two-stage ensemble learning scheme, three different 
types of CNNs can complement their shortcomings, 
which is beneficial to improve the overall performance of 
intelligent diagnosis for pediatric cataract.

Transfer learning

Because the number of medical images is very small, the 
fully-trained deep learning system cannot adequately 
optimize the millions of trainable parameters from scratch 
and this can easily lead to overfitting. Transfer learning 
(41,42) is a critical technology for application to such 
small datasets that allows the model to be trained from a 
better starting point and uses the color, texture, and shape 
characteristics that have been learned from natural images. 
Fine-tuning allowed the final trained CNN model to 
obtain the unique features of the ophthalmic images and 

also overcame the overfitting problem. Additionally, data 
augmentation methods, including transformed images and 
horizontal reflections (26,43), were adopted to accelerate 
the convergence of the models. 

Cost-sensitive method and optimization process 

To address the imbalanced dataset problem of the slit-
illumination images effectively, the cost-sensitive approach 
(33,34,44) was adopted to adjust the cost-sensitive weight 
of the positive samples in the loss function (Figure 2). 
Specifically, we discriminatively determined the cost of 
misclassification of the different classes and assigned a larger 
cost-sensitive weight to the positive class. For one iterative 
training stage, n samples were selected at random to form 
a training dataset {[x(1), y(1)], [x(2), y(2)],...,[x(n), y(n)]}, where 

( )i lx R∈  and ( ) {1,..., }iy k∈ . Here, x(i) denotes the features 
of the i-th sample and y(i) is the category label. The cost-
sensitive loss function can be expressed as shown in Eq. [7].

{ } { }
( )

( )

( ) ( ) 2

1 1 1 1
1

1( ) *   *log
2

T i
j

T i
s

xn k k m
i i

ijk x
i j i j

s

eF I y j CS y positive class
n e

θ

θ

λθ θ
= = = =

=

 
 = − = = +
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∑

{ } { }
( )

( )

( ) ( ) 2

1 1 1 1
1

1( ) *   *log
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T i
j

T i
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xn k k m
i i

ijk x
i j i j

s

eF I y j CS y positive class
n e

θ

θ

λθ θ
= = = =

=

 
 = − = = +
  
∑∑ ∑∑

∑

	 [7]

where n, m, k and θ denote the number of training samples, 
the number of input neurons, the number of classes, and 
trainable parameters, respectively. I {y(i) = j} represents the 
indicator function (I {y(i) is equal to j} =1 and I {y(i) is not equal 
to j} =0) while CS {y(i) = positive class} is the cost-sensitive 
weight function (CS {y(i) is the positive class lable} = C and 
CS {y(i) is the negative class lable} =1). Using a grid-search 
procedure, we determined that the value of the effective 
cost-sensitive weight parameter C was within the interval 

[4–6]. 2

1 12

k m

ij
i j

λ θ
= =
∑∑  is a weight decay term that is applied to 

penalize the larger trainable weights. To obtain the optimal 
trainable weights θ* (see Eq. [8]), we needed to minimize 
F(θ) using mini-batch gradient descent (Mini-batch-GD) 
(45) as shown in Eq. [9]. 

arg min ( )F
θ

θ θ∗ = 	 [8]

{ }( ) ( ) ( ) ( ) ( )

1

1( )  * *( { } ( | ; ))
j

n
i i i i i

j
i

F PW y positive class x I y j p y j x
nθ θ θ λθ

=

 ∇ = − = = − = + ∑

{ }( ) ( ) ( ) ( ) ( )

1

1( )  * *( { } ( | ; ))
j

n
i i i i i

j
i

F PW y positive class x I y j p y j x
nθ θ θ λθ

=

 ∇ = − = = − = + ∑
	

[9]
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Visualization heatmaps

To verify the reasonability and effectiveness of the CCNN-
Ensemble, the Gradient-weighted Class Activation 
Mapping (Grad-CAM) (46) visualization technique was 
employed to generate the heatmaps for highlighting the 
disease-related regions on which the diagnosis model 
focused most. The Grad-CAM is an explainable technique 
for CNN-based models, which utilized the gradients of 
any target concept flowing into last convolutional layer to 
produce a localization map highlighting remarkable regions 
in an image for predicting the concept. 

Experimental environment

In this study, we implemented dataset preprocessing, 
automatic lens region of interest (ROI) localization, 
conventional feature extraction, the SVM and Adaboost 
classifiers, and uniform dataset partitioning for cross-
validation using MATLAB R2014a (8,9). The training, 
validation, and testing procedures of three single-classifier 
CNNs (AlexNet, GoogleNet, and ResNet50) and three 
ensemble learning methods were all performed in parallel 
using eight Nvidia Titan X graphics processing units (GPUs) 
based on the Caffe toolbox (47) in the Ubuntu 16.4 OS. 
For a fair comparison, after automatically cropping the 
lens region, all images were resized to 256×256 pixels and 
input into the three single-classifier CNNs and ensemble 
learning methods. The initial learning rate was set at 
0.001 and successively reduced by one tenth of the original 
value after every 500 iterations; a total of 2,000 iterations 
were performed. We set the mini-batch size to 32 on one 
GPU and used eight GPUs; we thus acquired a total of 
256 samples in every iteration and calculated the average 
value of these samples to update the trainable parameters. 
Appropriate settings for these parameters can ensure 
better performance and rapid convergence for the CCNN-
Ensemble method.

Results

To achieve an effective solution to assist in the diagnosis 
of pediatric cataracts using slit-illumination images, we 
explored five different models, including four conventional 
features, four Adaboost ensemble methods, three single-
classifier CNNs, two conventional ensemble learning based 
on CNNs, and the CCNN-Ensemble method. First, we 

trained and compared the performances of these methods 
on the training and validation datasets to obtain the optimal 
CCNN-Ensemble method. Then, we used two external 
datasets to provide further evaluation of the robustness and 
the clinical effectiveness of the CCNN-Ensemble. Finally, 
we developed and deployed cloud-based software to serve 
patients that were located in remote areas. 

Performance comparison of CCNN-Ensemble with 
conventional features and Adaboost ensemble methods

After application of the five-fold cross-validation (48), 
we compared the performances of the nine intelligent 
algorithms for the lens opacity in terms of the three grading 
indices (opacity area, density, and location). We calculated 
three main indicators—accuracy (ACC), specificity (SPE), 
and sensitivity (SEN) (Figure 3)— along with more detailed 
test results with means and standard deviations (Table 2 and 
Tables S1,S2). First, when using the conventional feature 
methods, both the ACC and SEN indicators are low; for 
example, the SEN of the LBP method is less than 70% 
for all grading indices. Second, after the application of the 
Adaboost ensemble learning methods, the SEN indicator 
is greatly improved, whereas the value of the SPE indicator 
is reduced. As a result, the ACC is almost equal to the 
performance of the conventional feature methods (Figure 3).  
Notably, the SEN of the SIFT method increased from 
76.41% to 84.62%, whereas the SPE decreased from 
76.73% to 65.45% for opacity area grading (Figure 3 and 
Table 2); the SEN of the LBP method increased from 
68.88% to 81.10%, whereas the SPE again decreased from 
80.27% to 73.34% for opacity location grading (Figure 3 
and Table S2). The comparison results for the other feature 
methods and the Adaboost ensemble learning methods are 
also similar. Third, the CCNN-Ensemble method provided 
significantly improved recognition rates for all grading 
indices (Figure 3). All the average ACCs were maintained 
at 92% or more, while both the SPE and the SEN were 
satisfactory for the grading opacity area (92.00% and 
92.31%), the opacity density (93.85% and 91.43%), and the 
opacity location (95.25% and 89.29%). Similarly, the F1-
measure, G-mean, and AUC indicators also showed values 
of more than 90% (Table 2 and Tables S1,S2). 

Additionally, we used the ROC and PR curves to 
compare the performances of the above methods (Figure 4, 
Figures S1,S2). The ROC curve of the CCNN-Ensemble 
is close to the upper-left area of the graph and the PR 

https://cdn.amegroups.cn/static/public/ATM-20-6635-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-20-6635-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-20-6635-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-20-6635-supplementary.pdf
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curve shows a similar performance. All the AUC indicators 
were maintained at more than 0.969 for the three grading 
indices. This indicates that the CCNN-Ensemble method 
is superior to conventional features and Adaboost ensemble 
learning methods.

Performance comparison of CCNN-Ensemble with single-
classifier CNNs and conventional ensemble learning based 
on CNNs

To further verify the superiority of the CCNN-Ensemble 
method, we conducted comparative experiments including 

Figure 3 Performance comparisons of the different methods for the three grading indices. Performance comparisons of conventional 
features, Adaboost ensemble learning, and CCNN-Ensemble methods for the lens opacity area, opacity density, and opacity location, 
respectively. The sensitivity of Adaboost ensemble learning methods is greatly improved over the conventional feature methods, whereas 
their specificity indicator is reduced and the accuracy has no significant improvement. The CCNN-Ensemble method outperforms other 
conventional features and Adaboost ensemble approaches and offers exceptional accuracy, specificity, and sensitivity in terms of three grading 
indices of lens opacity: area (92.13%, 92.00%, and 92.31%), density (92.77%, 93.85%, and 91.43%) and location (92.76%, 95.25%, and 
89.29%). ACC, accuracy; SPE, specificity; SEN, sensitivity; WT, wavelet transformation; LBP, local binary pattern; SIFT, scale-invariant 
feature transform; COTE, color and texture features; Ada, adaptive boosting ensemble learning; WT-Ada, adaptive boosting ensemble 
learning with wavelet transformation feature; CCNN-Ensemble, ensemble learning of cost-sensitive convolutional neural networks.
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three ensemble learning methods (Ave-Ensemble, Ave-BRS-
3ResNet, and CCNN-Ensemble) and three single-classifier 
CNNs (AlexNet, GoogLeNet, and ResNet50). Detailed 
results of three grading indices of lens opacity (opacity 
area, density, and localization) were shown in Table 3  
and Supplementary Tables S3,S4. From the results of 
opacity area grading, we had three meaningful conclusions. 

First, the performance of three ensemble learning methods 
was superior to those of the three single-classifier CNNs. 
Compared with the best single-classifier ResNet50, the 
accuracy, specificity, and sensitivity of the CCNN-Ensemble 
were improved by 3.45%, 2.54%, and 4.62%, respectively. 
Second, the performance of the Ave-Ensemble and the Ave-
BRS-3ResNet is comparable. Third, the performance of 

Table 2 Performance comparison of CCNN-Ensemble with conventional features and Adaboost ensemble methods in opacity area grading

Method ACC (%) SPE (%) SEN (%) F1_M (%) G_M (%) AUC (%)

WT 80.21 (3.33)§ 87.27 (5.45) 70.26 (2.92) 74.73 (3.50) 78.26 (2.86) 87.47 (2.87)

WT-Adaboost 81.28 (2.77) 83.27 (3.25) 78.46 (5.90) 77.61 (3.59) 80.76 (3.13) 89.68 (2.54)

LBP 75.11 (4.09) 80.73 (4.56) 67.18 (5.85) 69.11 (5.09) 73.59 (4.26) 83.45 (3.82)

LBP- Adaboost 76.17 (4.36) 73.82 (5.08) 79.49 (5.13) 73.48 (4.69) 76.56 (4.36) 83.69 (3.38)

SIFT 76.60 (4.32) 76.73 (8.76) 76.41 (5.56) 73.12 (3.56) 76.35 (3.90) 85.66 (4.05)

SIFT- Adaboost 73.40 (3.98) 65.45 (6.03) 84.62 (4.80) 72.56 (3.67) 74.33 (3.94) 85.61 (4.15)

COTX 79.79 (7.52) 86.18 (10.5) 70.77 (7.82) 74.62 (8.54) 77.93 (7.02) 87.22 (5.22)

COTX- Adaboost 84.68 (4.02) 88.73 (6.48) 78.97 (7.78) 81.01 (4.92) 83.53 (4.34) 91.07 (2.85)

CCNN-Ensemble 92.13 (1.21) 92.00 (2.07) 92.31 (2.56) 90.68 (1.42) 92.14 (1.25) 97.76 (0.81)
§, mean (standard deviation). ACC, accuracy; SPE, specificity; SEN, sensitivity; F1_M, F1-measure; G_M, G-mean; AUC, area under the 
receiver operating characteristic curve; WT, wavelet transformation; LBP, local binary pattern; SIFT, scale-invariant feature transform; 
COTE, color and texture features; Adaboost, adaptive boosting ensemble learning; CCNN-Ensemble, ensemble learning of cost-sensitive 
convolutional neural networks.

Figure 4 ROC and PR curves for the different methods in opacity area grading. (A) ROC curves and AUC values for the CCNN-Ensemble 
method and four comparison methods: WT-Ada, SIFT-Ada, LBP-Ada, and COTE-Ada. (B) PR curves for the CCNN-Ensemble method 
and the four comparison methods. WT, wavelet transformation; LBP, local binary pattern; SIFT, scale-invariant feature transform; 
COTE, color and texture features; Ada, adaptive boosting ensemble learning; WT-Ada, adaptive boosting ensemble learning with wavelet 
transformation feature; CCNN-Ensemble, ensemble learning of cost-sensitive convolutional neural networks; ROC, receiver operating 
characteristic curve; AUC, area under the ROC curve; PR, precision recall curve.
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the CCNN-Ensemble was superior to those of the Ave-
Ensemble and the Ave-BRS-3ResNet methods. It was 
worth to note that the sensitivity of the CCNN-Ensemble 
was improved by 3.08% when compared to that of the Ave-
Ensemble method. Similar conclusions were obtained on 
the grading of opacity density and location (Tables S3,S4).

Performance in independent testing dataset

To ensure an adequate investigation of the generalizability 
and the effectiveness of the CCNN-Ensemble method, we 
used an independent testing dataset for further validation 
of the proposed method. A total of 132 slit-illumination 
images were selected randomly in advance from the 
Zhongshan Ophthalmic Center (details are given in the 
Methods section). Using the expert group’s decisions for 
reference, we presented detailed quantitative evaluation 
results (as shown in Table 4) and performance comparison 

(Figure 5A). We also reported the ROC and PR curves 
for the three grading indices: opacity area, density, and 
location (Figure 5A). The experimental results indicated 
that the performance of the CCNN-Ensemble method on 
the independent testing dataset is almost equal to that of 
the validation dataset, with the ACC and the SPE being 
maintained at more than 93% and 94%, respectively, and 
the SEN values are 90.24%, 89.29% and 90.63% for the 
opacity grading area, density, and location, respectively.

Performance in Internet-based dataset

In addition, we also collected 79 slit-illumination images from 
the Internet (details are given in the Methods section). While 
the quality of these images varied significantly, the CCNN-
Ensemble was still able to detect the appropriate cases with 
a higher recognition rate. In the same manner, we obtained 
detailed prediction results (given in Table 4), intuitive 

Table 4 Quantitative evaluation of the CCNN-Ensemble method using two external datasets

External Datasets Grading ACC (%) SPE (%) SEN (%) F1_M (%) G_M (%) AUC (%)

Independent testing 
dataset

Opacity area 94.70 96.70 90.24 91.36 93.42 96.94

Opacity density 93.18 94.23 89.29 84.75 91.72 97.70

Opacity location 93.18 94.00 90.63 86.57 92.30 98.13

Internet-based 
dataset

Opacity area 89.87 89.47 90.00 93.10 89.74 94.65

Opacity density 88.61 88.89 88.52 92.31 88.71 95.63

Opacity location 87.34 87.50 87.30 91.67 87.40 93.06

ACC, accuracy; SPE, specificity; SEN, sensitivity; F1_M, F1-measure; G_M, G-mean; AUC, area under the receiver operating characteristic 
curve; CCNN-Ensemble, ensemble learning of cost-sensitive convolutional neural networks.

Table 3 Performance comparison of CCNN-Ensemble with single-classifier CNNs and conventional ensemble learning methods based on 
CNNs in opacity area grading

Method ACC (%) SPE (%) SEN (%) F1_M (%) G_M (%) AUC

AlexNet 87.48 (2.94)§ 88.64 (3.15) 86.15 (3.64) 85.25 (3.12) 86.16 (3.14) 90.41 (2.46)

GoogLeNet 88.16 (2.63) 89.30 (2.49) 86.67 (5.25) 85.75 (3.20) 87.94 (2.94) 92.84 (2.04)

ResNet50 88.68 (1.25) 89.46 (3.27) 87.69 (2.74) 86.40 (1.43) 88.54 (1.91) 93.60 (1.83)

Ave-Ensemble 90.28 (1.61) 90.46 (2.40) 89.23 (2.65) 87.89 (1.67) 89.83 (1.41) 94.87 (1.72)

Ave-BRS-3ResNet 89.50 (1.84) 90.12 (2.68) 88.72 (2.92) 87.38 (1.94) 89.39 (1.58) 94.02 (1.93)

CCNN-Ensemble 92.13 (1.21) 92.00 (2.07) 92.31 (2.56) 90.68 (1.42) 92.14 (1.25) 97.76 (0.81)
§, mean (standard deviation). ACC, accuracy; SPE, specificity; SEN, sensitivity; F1_M, F1-measure; G_M, G-mean; AUC, area under the 
receiver operating characteristic curve; CNN, convolutional neural network; Ave-Ensemble, ensemble learning of three different CNNs (AlexNet, 
GoogLeNet and ResNet50) with an averaging technique; Ave-BRS-3ResNet, ensemble learning of three ResNet50 architectures with batch 
random selection and averaging techniques; CCNN-Ensemble, ensemble learning of cost-sensitive convolutional neural networks; 

https://cdn.amegroups.cn/static/public/ATM-20-6635-supplementary.pdf
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Figure 5 Performance analysis results for the CCNN-Ensemble on two external datasets. (A) The performance comparison, ROC curves, 
and PR curves of the CCNN-Ensemble method for lens opacity area, density, and location grading on the independent testing dataset. (B) 
The performance comparison, ROC curves, and PR curves for lens opacity area, density, and location grading on Internet-based dataset. 
The model performances are satisfactory when applied to the two external datasets, independent test images: area (94.70%, 96.70%, and 
90.24%), density (93.18%, 94.23%, and 89.29%) and location (93.18%, 94.00%, and 90.63%); internet-based images: area (89.87%, 
89.47%, and 90.00%), density (88.61%, 88.89%, and 88.52%) and location (87.34%, 87.50%, and 87.30%), indicating that the model is 
universal and effective. ACC, accuracy; SPE, specificity; SEN, sensitivity; ROC, receiver operating characteristic curve; AUC, area under 
the ROC curve; PR, precision recall curve.
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comparison graphs for the main indicators (ACC, SPE, 
and SEN), the ROC curve, and the PR curve (Figure 5B).  
Specifically, the CCNN-Ensemble method also offered 
satisfactory accuracy, specificity, and sensitivity in terms 
of opacity area (89.87%, 89.47%, and 90.00%), opacity 
density (88.61%, 88.89%, and 88.52%), and opacity location 
(87.34%, 87.50%, and 87.30%), respectively.

Interpretability analysis of CCNN-Ensemble for opacity 
area grading

Using the Grad-CAM technique, three heatmaps were 
obtained simultaneously via the CCNN-Ensemble, 
which were associated with the Alexnet, GoogLeNet, and 
ResNet50, respectively. In the independent testing dataset, 
four representative slit-illumination images of opacity area 
grading and their heatmaps are displayed in Figure 6. The 
highlighted colors in the heatmap indicate the opacity areas 
on which the network was based to make a decision.

Web-based software

To serve both patients and ophthalmologists located in 
remote areas, we developed and deployed an automatic 
diagnosis software based on cloud service (http://www.cc-
cruiser.com:5007/SignIn), which included user registration, 
an image upload module, a prediction module, regular re-
examinations, sample downloads, and instructions. For 
evaluation and trial, we provided a test user (ws) and its 
password (ws) of the diagnosis software. Before using the 
website for diagnosis, the users needed to submit personal 
information including age, gender, and telephone number to 
complete the registration process. This registration process 
allowed the doctor to contact patients who were diagnosed 
with serious conditions, and also prevented the illegal 
use of our software. After registration, either the patient 
or the ophthalmologist can upload the slit-illumination 
images for diagnosis; the software can then perform 
image preprocessing, make three grading predictions, and 
provide a final treatment recommendation. Our software 
can diagnose multiple images simultaneously. A total of 30 
sample images were available for download, and our e-mail 
address and telephone number were also provided for all 
registered patients.

Discussion

The inferior performance of conventional feature methods 

when applied to diagnosis using the slit-illumination 
images is mainly attributed to the following two causes. 
First, the conventional feature methods use handcrafted 
descriptors to represent the original images, which are 
completely reliant on the designer’s experience and operator 
techniques, and which cannot learn statistical features from 
the existing large dataset. Second, the conventional feature 
methods and the SVM classifier do not take the problem 
of the imbalanced dataset into account, and this results in 
the final predictions being biased towards the majority class 
and ignoring the minority class (i.e., the positive samples). 
Therefore, these methods lead to inferior overall accuracy 
and lower sensitivity.

The Adaboost ensemble learning methods led to 
moderate improvement of the recognition rates when 
compared with the conventional feature methods because 
they train and apply multiple classifiers jointly to determine 
the final grading results. Simultaneously, an under-
sampling method is incorporated into Adaboost to address 
the imbalanced dataset. Therefore, the sensitivity of the 
methods is greatly enhanced, but this improvement leads to 
the reduction of the specificity. The overall accuracy rate is 
almost equal to that obtained when using the conventional 
feature methods alone.

The CCNN-Ensemble method is significantly superior 
to the above methods in terms of all grading indices, 
which was attributed to the following four improvements. 
First, the CCNN-Ensemble method does not need to 
design any feature descriptor manually because it learns 
high-level and statistical features directly from the 
original images. Second, we use three different CNNs 
for ensemble learning, so that they can learn the different 
characteristics from three different perspectives to enable 
joint determination of the final prediction. This ensemble 
of multiple CNN technologies is beneficial in enhancing 
the overall performance. Third, the cost-sensitive approach 
is integrated into the CCNN-Ensemble method and takes 
greater account of the minority class to ensure that the 
sensitivity indicator is valid for the imbalanced dataset. 
In addition, transfer learning is applied to our model to 
enable fine-tuning of the trainable parameters from a better 
starting point, thus making it easier to jump out from 
the local minimum. As a result, the higher accuracy and 
specificity performances are maintained while the sensitivity 
is also greatly enhanced.

The performance of three ensemble learning methods 
was superior to those of the three single-classifier CNNs. 
The reason is that multiple classifiers in the ensemble 

http://www.cc-cruiser.com:5007/SignIn
http://www.cc-cruiser.com:5007/SignIn


Annals of Translational Medicine, Vol 9, No 7 April 2021 Page 13 of 16

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(7):550 | http://dx.doi.org/10.21037/atm-20-6635

learning methods are complementary to each other and 
their advantages are fully utilized, thereby improving the 
performance of a single classifier. Compared with the 

conventional ensemble learning methods, the CCNN-
Ensemble method combines three heterogeneous CNNs, 
and performs a two-stage transfer learning to fully optimize 

Figure 6 The representative heatmaps of CCNN-Ensemble in opacity area grading using Grad-CAM. (A) The original slit-illumination 
images. (B,C,D) The visualization heatmaps generated from Alexnet, GoogLeNet, and ResNet50 in the CCNN-Ensemble method. The 
upper two rows indicate negative samples with limited opacity area, and the lower two rows represent positive samples with extensive opacity 
area. Grad-CAM, Gradient-weighted Class Activation Mapping.
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the parameters of the three networks, thereby further 
enhancing the performance of ensemble learning. In 
addition, by analyzing the heatmap shown in Figure 6,  
it finds that all these three classifiers can capture the location 
of lens opacity, although the highlighted areas are slightly 
different. The Grad-CAM technique further corroborates the 
effectiveness of the proposed diagnosis system. Interpretability 
analysis of heatmap provides strong evidence for the 
acceptance of our CCNN-Ensemble in ophthalmic clinics.

The CCNN-Ensemble method also demonstrated 
better performance on two external datasets, and their 
recognition rates were almost equal to that of the validation 
dataset. This indicates that the proposed approach is 
insensitive to different data sources, and its generalizability 
and robustness are better than those of the conventional 
methods. These experimental conclusions provide sufficient 
evidence to justify the application of the CCNN-Ensemble 
method in complex clinical scenarios.

Based on our proposed method, automated diagnostic 
software was developed and deployed to serve patients and 
ophthalmologists remotely in the form of a cloud service, 
which provided important clinical value for pediatric 
cataract diagnosis. By accessing our automatic diagnostic 
software remotely, any patient can upload slit-illumination 
images and can then quickly obtain prediction results and 
an appropriate treatment recommendation. Therefore, 
this remotely-aided diagnosis method avoided doctors 
from performing tedious examinations and helped patients 
located in remote areas. In addition, this work can also 
provide a teaching role for junior doctors.

However, several limitations of this study should be 
mentioned. First, multiple CNNs with different structures 
are integrated into the architecture. Although the strategy 
of ensemble learning significantly improves the accuracy, it 
is slightly less cost-effective due to the high requirement of 
the computing resource than a single CNN model. Second, 
our model is solely based on the slit-illumination image, 
which is insufficient to identify the lens opacity in occasional 
situations. Combining the electronic medical records and 
other optical images may provide valuable supplements for 
the comprehensive assessment of lens opacity. Third, the 
robustness and stability of our method are required to be 
verified before the further generalization of other medical 
situations. Despite the above limitations, this study provides 
a practical strategy for heterogeneous lens opacity diagnosis 
with promising performance validated in multi-source 
datasets. Further studies with the integration of electronic 
medical records and more optical images will pave the way 

for the wide-range clinical application of our work. 

Conclusions

In this paper, we proposed a feasible and automated CCNN-
Ensemble method for the effective diagnosis of pediatric 
cataracts using heterogeneous slit-illumination images. We 
integrated three deep CNNs and cost-sensitive technology 
to construct an ensemble learning method that could 
identify the severity of lens opacity based on three grading 
indices. The experimental results and comparison analyses 
verified that the proposed method is superior to other 
conventional methods. The performance of the CCNN-
Ensemble method on two external datasets indicated its 
improved robustness and generalizability. Finally, a set of 
cloud-based automatic diagnostic software was produced for 
use by both patients and ophthalmologists. This research 
could provide a helpful reference for the analysis of other 
medical images and will help to promote the use of artificial 
intelligence techniques in clinical applications.
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Supplementary

Figure S1 ROC and PR curves for the different methods in opacity density grading. (A) ROC curves and AUC values for the CCNN-
Ensemble method and four comparison methods: WT-Ada, SIFT-Ada, LBP-Ada, and COTE-Ada. (B) PR curves for the CCNN-Ensemble 
method and the four comparative methods. ROC, receiver operating characteristic curve; AUC, area under the ROC curve; PR, precision-
recall curve; CCNN-Ensemble, ensemble learning of cost-sensitive convolutional neural networks; Ada, adaptive boosting ensemble 
learning; WT, wavelet transformation; LBP, local binary pattern; SIFT, scale-invariant feature transform; COTE, color and texture features.

A B

Figure S2 ROC and PR curves for the different methods in opacity location grading. (A) ROC curves and AUC values for the CCNN-
Ensemble method and four comparison methods: WT-Ada, SIFT-Ada, LBP-Ada, and COTE-Ada. (B) PR curves for the CCNN-Ensemble 
method and the four comparison methods. ROC, receiver operating characteristic curve; AUC, area under the ROC curve; PR, precision-
recall curve; CCNN-Ensemble, ensemble learning of cost-sensitive convolutional neural networks; Ada, adaptive boosting ensemble 
learning; WT, wavelet transformation; LBP, local binary pattern; SIFT, scale-invariant feature transform; COTE, color and texture features; 
WT-Ada, adaptive boosting ensemble learning with wavelet transformation feature.
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Table S1 Performance comparison of CCNN-Ensemble with conventional features and Adaboost ensemble methods in the opacity density 
grading

Method ACC (%) SPE (%) SEN (%) F1_M (%) G_M (%) AUC (%)

WT 84.04 (3.28) § 89.62 (3.22) 77.14 (3.98) 81.20 (3.83) 83.13 (3.36) 90.05 (1.69)

WT- AdaBoost 83.83 (3.56) 86.92 (2.51) 80.00 (5.48) 81.50 (4.31) 83.37 (3.79) 90.33 (1.92)

LBP 74.47 (2.61) 81.54 (4.63) 65.71 (3.61) 69.70 (2.78) 73.14 (2.46) 81.38 (4.09)

LBP- AdaBoost 75.74 (4.41) 76.54 (6.58) 74.76 (6.43) 73.35 (4.54) 75.52 (4.34) 82.30 (4.17)

SIFT 74.47 (4.12) 69.62 (5.83) 80.48 (4.26) 73.83 (3.93) 74.79 (4.07) 83.73 (1.96)

SIFT- AdaBoost 66.38 (2.87) 46.92 (6.46) 90.48 (3.37) 70.66 (1.79) 64.99 (3.67) 83.91 (1.92)

COTX 84.26 (4.72) 86.54 (9.52) 81.43 (3.91) 82.38 (4.25) 83.78 (4.25) 89.78 (4.50)

COTX- AdaBoost 84.26 (2.95) 86.15 (4.17) 81.90 (4.64) 82.29 (3.31) 83.95 (3.01) 92.06 (2.74)

CCNN-Ensemble 92.77 (1.39) 93.85 (1.61) 91.43 (2.71) 91.86 (1.62) 92.62 (1.47) 98.01 (0.85)
§, Mean (Standard Deviation). ACC, accuracy; SPE, specificity; SEN, sensitivity; F1_M, F1-measure; G_M, G-mean; AUC, area under the 
receiver operating characteristic curve; WT, wavelet transformation; LBP, local binary pattern; SIFT, scale-invariant feature transform; 
COTE, color and texture features; Adaboost, adaptive boosting ensemble learning; CCNN-Ensemble, ensemble learning of cost-sensitive 
convolutional neural networks.

Table S2 Performance comparison of CCNN-Ensemble with conventional features and Adaboost ensemble methods in the opacity location 
grading

Method ACC (%) SPE (%) SEN (%) F_M (%) G_M (%) AUC (%)

WT 81.06 (2.81) § 89.04 (2.34) 69.91 (5.46) 75.42 (3.85) 78.85 (3.29) 89.34 (2.69)

WT- AdaBoost 83.60 (3.53) 85.75 (3.82) 80.62 (6.42) 80.35 (4.38) 83.08 (3.79) 90.56 (3.41)

LBP 75.52 (4.67) 80.27 (4.85) 68.88 (10.4) 69.90 (6.35) 74.15 (5.35) 81.70 (5.64)

LBP- AdaBoost 76.58 (3.73) 73.34 (5.21) 81.10 (9.03) 74.16 (4.56) 76.94 (3.92) 82.81 (6.18)

SIFT 77.47 (4.44) 76.30 (9.90) 79.05 (8.06) 74.56 (4.09) 77.32 (4.14) 85.46 (3.47)

SIFT- AdaBoost 68.72 (1.31) 55.11 (5.66) 87.76 (5.84) 70.03 (1.14) 69.34 (1.83) 85.08 (3.40)

COTX 81.05 (5.04) 90.12 (6.46) 68.33 (13.2) 74.52 (8.88) 78.00 (7.37) 90.18 (3.58)

COTX- AdaBoost 85.52 (5.79) 91.21 (5.00) 77.58 (8.07) 81.68 (7.32) 84.07 (6.16) 91.62 (3.48)

CCNN-Ensemble 92.76 (2.06) 95.25 (2.08) 89.29 (3.30) 91.14 (2.53) 92.21 (2.19) 97.29 (1.36)
§, Mean (Standard Deviation). ACC, accuracy; SPE, specificity; SEN, sensitivity; F1_M, F1-measure; G_M, G-mean; AUC, area under the 
receiver operating characteristic curve; WT, wavelet transformation; LBP, local binary pattern; SIFT, scale-invariant feature transform; 
COTE, color and texture features; Adaboost, adaptive boosting ensemble learning; CCNN-Ensemble, ensemble learning of cost-sensitive 
convolutional neural networks.
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Table S3 Performance comparison of CCNN-Ensemble with single-classifier CNNs and conventional ensemble learning methods based on 
CNNs in opacity density grading

Method ACC (%) SPE (%) SEN (%) F1_M (%) G_M (%) AUC (%)

AlexNet 88.09 (2.65) § 88.85 (3.16) 87.14 (4.64) 86.34 (3.71) 87.95 (2.76) 93.16 (2.32)

GoogLeNet 88.94 (2.68) 89.62 (2.92) 88.10 (4.45) 87.65 (2.73) 88.80 (2.58) 94.55 (2.04)

ResNet50 89.57 (2.75) 90.38 (2.36) 88.57 (4.88) 88.32 (2.28) 89.44 (2.95) 95.46 (1.92)

Ave-Ensemble 90.43 (1.86) 91.15 (2.01) 89.26 (2.80) 89.26 (2.12) 90.29 (2.42) 96.41 (1.64)

Ave-BRS-3ResNet 90.00 (2.33) 90.77 (2.24) 89.05 (3.26) 88.80 (2.30) 89.86 (2.56) 96.23 (1.83)

CCNN-Ensemble 92.77 (1.39) 93.85 (1.61) 91.43 (2.71) 91.86 (1.62) 92.62 (1.47) 98.01 (0.85)
§, Mean (Standard Deviation). ACC, accuracy; SPE, specificity; SEN, sensitivity; F1_M, F1-measure; G_M, G-mean; AUC, area under the 
receiver operating characteristic curve; Ave-Ensemble, ensemble learning of three different CNNs (AlexNet, GoogLeNet and ResNet50) 
with an averaging technique; Ave-BRS-3ResNet, ensemble learning of three ResNet50 architectures with batch random selection and 
averaging techniques; CCNN-Ensemble, ensemble learning of cost-sensitive convolutional neural networks.

Table S4 Performance comparison of CCNN-Ensemble with single-classifier CNNs and conventional ensemble learning methods based on 
CNNs in opacity location grading

Method ACC (%) SPE (%) SEN (%) F1_M (%) G_M (%) AUC (%)

AlexNet 88.30 (2.78) 90.88 (4.37) 84.71 (3.55) 85.81 (3.05) 87.71 (2.57) 90.71 (3.23)

GoogLeNet 88.72 (2.54) 91.25 (3.28) 85.21 (3.27) 86.30 (3.72) 88.15 (2.38) 92.24 (3.02)

ResNet50 89.58 (2.02) 91.61 (3.12) 86.76 (2.89) 87.43 (2.29) 89.11 (2.01) 93.70 (2.63)

Ave-Ensemble 90.64 (1.45) 92.70 (1.98) 87.77 (2.01) 88.66 (1.14) 90.19 (1.24) 94.83 (1.64)

Ave-BRS-3ResNet 90.21 (1.68) 92.34 (2.21) 87.26 (2.47) 88.14 (1.34) 89.74 (1.52) 94.05 (1.95)

CCNN-Ensemble 92.76 (2.06) 95.25 (2.08) 89.29 (3.30) 91.14 (2.53) 92.21 (2.19) 97.29 (1.36)
§, Mean (Standard Deviation). ACC, accuracy; SPE, specificity; SEN, sensitivity; F1_M, F1-measure; G_M, G-mean; AUC, area under the 
receiver operating characteristic curve; Ave-Ensemble, ensemble learning of three different CNNs (AlexNet, GoogLeNet and ResNet50) 
with averaging technique; Ave-BRS-3ResNet, ensemble learning of three ResNet50 architectures with batch random selection and 
averaging techniques; CCNN-Ensemble, ensemble learning of cost-sensitive convolutional neural networks.
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