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Intercellular transmission of endoplasmic reticulum stress through 
gap junction targeted by microRNAs as a key step of diabetic 
kidney diseases?
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Diabetic kidney disease (DKD) is a type of renal diseases 
caused by Diabetes Mellitus (1-4). Renal fibrosis and 
hypertrophy by accumulated extracellular matrix (ECM) 
proteins in glomerular and tubular compartments, as 
well as podocyte dysfunction and related albuminuria 
are major features of DKD. Metabolic changes such as 
mitochondrial dysfunction, oxidative stress, endoplasmic 
reticulum stress (ERS) and loss of autophagy in renal cells 
are also associated with progressive DKD (4-7). Non-
coding RNAs including microRNAs (miRNAs) and long-
non-coding RNAs (lncRNAs) are now very attractive 
regulators of gene expression because of their no protein-
coding potential and because miRNAs regulate cellular 
functions and pathophysiological conditions related to 
human disease including DKD by down-regulating their 
specific targets (4,8-11). 

A recent report by Li et al. showed that miR-30 family 
members (miR-30s) directly target connexin 43 (Cx43) (12), 
a Gap junction protein which mediates cell-cell transmission 
of ions, signaling molecules, metabolites and nucleic acids 
(13,14). The decrease of miR-30s induces Cx43 which 
enhances ERS-related caspase12 and apoptosis in cultured 
podocytes treated with high glucose conditions (HG) and 
in kidneys from diabetic rats (Figure 1A). Silencing of Cx43 
by siRNAs inhibited ERS and apoptosis induced by HG 
in podocytes. Cx43 has been suggested as molecular target 
of kidney diseases and activates ERS (15-18). The authors 

also showed that adeno-associated virus (AAV)-mediated 
induction of miR-30s ameliorated kidney injury in diabetic 
rats, suggesting that miR-30s/Cx43/ERS axis may be a new 
potential target for DKD. 

On the other hand, another recent paper reported that 
ERS can be transmitted from cell to cell through Cx43 
and spreading ERS may cause liver diseases and problems 
such as insulin resistance (19). Therefore, global spread 
of ERS through Gap junction (Cx43) may also contribute 
to the injury and death of podocytes (and even other renal 
glomerular cells) (Figure 1B). Thus, the event is not simply 
happening in single cells but local ERS in single cells may 
be spread into multiple adjacent cells and cause global 
increase of ERS in kidney glomeruli (not only in podocytes) 
and eventually lead to kidney injury (Figure 2). 

Although the molecular mechanisms of miR-30s 
reduction by HG in podocytes are not clear (12), Gap 
junction may also explain how miR-30s levels were reduced, 
because transmission of miR-30s from healthy cells to 
stressed cells may dilute the intracellular concentration of 
miR-30s (Figure 1B). While miRNAs usually control target 
gene expression (8), endogenous RNAs also control miRNAs 
by target RNA-directed miRNA degradation (TDMD)  
(20-22). Recent reports have demonstrated the strong 
evidence of TDMD (22-25) and miR-30s have been reported 
as one of such miRNAs subjected to TDMD (25). Although 
it is depending on the members, at least miR-30b/c  
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are regulated by target RNA (Serpin1) (25). Therefore, 
miR-30s may also be regulated by the other target RNAs 
such as Cx43 mRNA which is potentially transmitted from 
stressed cells to destroy miR-30s in healthy cells. 

Identifying new therapeutic targets for DKD is crucial 

now. As shown in the recent study (12), intercellular 
transmission of ERS through Gap Junction targeted by 
miR-30s may be a new key step of DKD. miRNA studies 
provided us numerous unexpected discoveries. Controlling 
such miRNAs using the knowledge obtained from the study 

Figure 1 Mechanisms of ERS activation and cell-cell transmission via Cx43. (A) A model for the pathogenesis of DKD through miR-30/
Cx43/ERS. (B) Possible intercellular transmission of ERS (also Caspase12, Cx43, miR-30s and others) between stressed cells and healthy 
cells through Cx43. Please read the main text for more details. ERS, endoplasmic reticulum stress; Cx43, connexin 43; DKD, diabetic kidney 
disease; miR-30s, miR-30 family members.
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Figure 2 ERS spread from stressed single cells to multiple adjacent cells through Cx43. (A) Healthy or non-disease conditions. Even if one 
stressed cell exists, other cells are not affected (healthy). (B) Spreading ERS from single cell (center) to adjacent multiple cells through Cx43 
increased in diabetic conditions. Please read the main text for more details. ERS, endoplasmic reticulum stress; Cx43, connexin 43.
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on RNA biogenesis might provide new effective ways to 
treat or prevent the disease progression in the future. 
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