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Background: Breast intraductal papilloma (IP) is mainly caused by the abnormal proliferation of ductal 
epithelial cells. Tree shrews have potential as an animal model for the study of breast tumours; however, 
little is known regarding the transcriptome and DNA methylome landscapes of breast IP in tree shrews. In 
this research, we conducted whole-genome DNA methylation and transcriptome analyses of breast IP and 
normal mammary glands in tree shrews.
Methods: DNA methylation profiles were generated from the whole-genome bisulfite sequencing and 
whole-transcriptome landscapes of IP and control groups of tree shrews through strand-specific library 
construction and RNA sequencing. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes 
functional enrichment analyses and gene set enrichment analysis were performed. Spearman’s correlation 
analysis was used to identify statistical relationships between gene expression and DNA methylation.
Results: A genome-wide perspective of the epigenetic regulation of protein-coding genes in breast IP in 
tree shrews was obtained. The methylation levels at CG sites were considerably higher than those at CHG 
or CHH sites, and were highest in gene body regions. In total, 3,486, 82 and 361 differentially methylated 
regions (DMRs) were identified in the context of CG, CHG, and CHH, respectively, and 701 differentially 
methylated genes (DMGs) were found. Further, through transcriptomic analysis, 62 differentially expressed 
genes, 50 long noncoding RNAs, and 32 circular RNAs were identified in breast IP compared to normal 
mammary glands. Correlation analysis between the DNA methylation and transcriptome data revealed 
that 25 DMGs were also differentially expressed genes, among which the expression levels of 9 genes were 
negatively correlated with methylation levels in gene body regions. Importantly, integrated analysis identified 
3 genes (PDZ domain-containing 1, ATPase plasma membrane Ca2+ transporting 4 and Lymphocyte 
cytosolic protein 1) that could serve as candidates for further study of breast IP in tree shrews.
Conclusions: This research has unearthed the comprehensive landscape of the transcriptome and DNA 
methylome of spontaneous IP in tree shrews, as well as candidate tumorigenesis related genes in IP. These 
results will contribute to the use of tree shrews in animal models of breast tumours.
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Introduction

Intraductal papilloma (IP), a benign tumour that forms 
in the breast ducts, accounts for approximately 10% of 
cases of benign breast lesions (1). IP, which is caused by 
the abnormal proliferation of ductal epithelial cells, most 
commonly affects women between the ages of 35 and 
55 years old (2). Hormones, fertility, and diet are all risk 
factors that predispose women to the development of IP (3).  
Because IP is related to atypia, ductal carcinoma in situ 
(DCIS), and carcinoma, it is classified as a high-risk 
precursor lesion and carries a 6.3% risk of malignancy (3); 
upon surgical excision, IP may be upgraded to atypical 
ductal hyperplasia or DCIS (4). However, at present, the 
mechanism of breast neoplasms is not fully understood, and 
multidimensional molecular data from IP patients have not 
been fully integrated in studies on this topic.

The results of DNA sequencing research have confirmed 
that tree shrews are closely related to primates (5). 
Consequently, tree shrews have become an increasingly 
popular experimental animal model for various human 
tumours, including lung cancer (6), hepatocellular 
carcinoma (7), and glioblastoma (8). Genome sequencing of 
Chinese tree shrews was first accomplished in 2013 and has 
provided a useful resource for functional genomic studies 
since (9). A database of the genome sequencing data of tree 
shrews has also been established (10). Most importantly, in 
terms of morphology and structure, the mammary glands 
of tree shrews are similar to those of humans (11). Based on 
these qualities, tree shrews are ideal experimental animals 
for studying the pathogenesis of mammary tumours. 
However, few studies have used tree shrews as a novel breast 
tumour animal model to examine gene expression patterns 
and the underlying function of DNA methylation in the 
tumorigenesis of spontaneous IP.

DNA methylation is one of the epigenetic changes that 
has been shown to play a key role in the pretranscriptional 
regulation and inhibition of gene expression in multiple 
mammalian genomes. The mapping of genome-wide 
DNA methylation is of great importance to understanding 
tumorigenesis (12). DNA methylation is implicated in 
many cancers, including thyroid cancer (13), non-small cell 
lung cancer (14), and gastric cancer (15), as well as in the 
development and progression of breast cancer (16). Limited 
evidence has also indicated that the aberrant methylation of 
cytosine residues is involved in the development of IP (17).  
Therefore, delineating the DNA methylation profile and 
identifying differentially methylated genes (DMGs) in IP 

would be helpful to understanding the tumorigenesis of 
papilloma from the perspective of epigenetic regulation.

It is generally believed that the abnormal reprogramming 
of the whole transcriptome, including genes, long noncoding 
RNAs (lncRNAs), and circular RNAs (circRNAs), is 
a crucial process in the occurrence and progression of 
tumours. Recently, RNA sequencing (RNA-seq) studies 
of breast cancer (18) have been conducted to inform a 
deeper understanding of the mechanisms involved, and 
research on the potential underlying molecular mechanisms 
influencing breast cancer occurrence and development has 
been performed in murine mammary tumour models (19).  
By analysing methylome and transcriptome variations 
related to the survival status of patients with breast cancer, 
we can obtain a deeper understanding of the basic biological 
process of breast cancer based on its genetic aetiology (20). 
Moreover, the results of analysis of DNA methylation and 
gene expression have demonstrated that the methylation 
level of CpGs in breast cancer tissues is significantly higher 
than that in adjacent normal tissues. Additionally, large 
numbers of CpGs exhibit a significantly higher methylation 
level than that found in nearby normal tissues, which is 
negatively correlated with gene expression (21). Thus, by 
combining methylation data and gene expression profile 
data, we can better analyse the regulatory function of 
methylation to solve existing conundrums.

At present, studies on DNA methylation and the 
transcriptome in IP are lagging behind those on malignant 
breast cancer. Therefore, in the present work, we 
carried out an integrated analysis of genome-wide DNA 
methylation levels and the whole transcriptome in breast 
IP in tree shrews. Our study provides new insights into IP 
in tree shrews, highlights candidate tumorigenesis-eliciting 
genes, and will contribute to the use of tree shrews in breast 
tumour animal models. We present the following article 
in accordance with the MDAR and ARRIVE reporting 
checklist (available at http://dx.doi.org/10.21037/atm-21-
1293).

Methods

Tissue specimens from tree shrews and their histology

Six female tree shrews were obtained from the Institute of 
Medical Biology, Chinese Academy of Medical Sciences 
(IMB-CAMS; Kunming, China). Experiments were 
performed under a project license (No.: DWSP201809003) 
granted by the animal ethics committee of IMB-CAMS, in 
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compliance with IMB-CAMS guidelines for the care and 
use of animals.

Breast tumour tissues and normal breast tissues were 
collected after euthanasia of the animals by intraperitoneal 
in jec t ion  of  pentobarbi ta l  sodium (100 mg/kg) .  
The mammary tumours were surgically removed. A 
portion of each tissue sample was dissected, fixed in a 
4% paraformaldehyde solution, embedded in paraffin, 
and stained with haematoxylin and eosin (HE) before 
histological examination by pathologists. Another portion 
of each tissue sample was immediately frozen in liquid 
nitrogen and stored at –80 ℃ for subsequent experiments.

Library construction and whole-genome bisulfite 
sequencing (WGBS)

Genomic DNA was extracted from the samples using the 
cetyltrimethylammonium bromide (CTAB) method, and 
the DNA concentration and integrity were determined with 
a NanoPhotometer® spectrophotometer (IMPLEN, CA, 
USA) and agarose gel electrophoresis, respectively. Then, 
DNA libraries were prepared for bisulfite sequencing. 
Briefly, genomic DNA was fragmented into 100–300 bp 
fragments by sonication (Covaris, Massachusetts, USA) 
and purified with a MiniElute PCR Purification Kit 
(QIAGEN, MD, USA). The DNA fragments were end-
repaired, and a single “A” nucleotide was added to the 3' 
end of the blunt fragments. Then, the genomic fragments 
were ligated to methylated sequencing adapters. Fragments 
with adapters were subjected to bisulfite conversion 
using the Methylation-Gold kit (ZYMO, CA, USA), and 
unmethylated cytosines were converted to uracils through 
sodium bisulfite treatment. Finally, the converted DNA 
fragments were amplified by polymerase chain reaction 
(PCR) and sequenced on an Illumina HiSeqTM 2500 
instrument.

Methylation level analysis

After data filtering, the acquired clean reads were mapped to 
the Tupaia chinensis (Chinese tree shrew) reference genome 
(TupChi_1.0) (GCF_000334495.1) using BSMAP software 
(v2.90) (22). A custom Perl script (23) was then applied to 
call methylated cytosines, and a correction algorithm was 
applied to the methylated cytosine results. Methylation 
levels were calculated according to the methylated cytosine 
percentage in the global genome as well as that in variant 
regions of the genome for each sequence context (CG, 

CHG, and CHH). Variant methylation patterns in variant 
genomic regions were estimated by plotting the methylation 
profiles of the flanking 2 kb regions and the gene body 
based on the average methylation level for each window.

Differentially methylated region (DMR) analysis

Methylkit software (v1.4.1) (24) was used for the analysis 
of differential DNA methylation. To investigate DMRs 
between the IP and control groups, the minimum read 
coverage to call the methylation status of a base was set to 
4. A 200-bp window was used to scan the whole genome, 
and the average DNA methylation rate was calculated in 
each window (a certain type of C). Then, the differences in 
the methylation level of each sample in each window were 
compared. The coding genes were divided into 3 regions: 
2 kb upstream, gene body, and 2 kb downstream. Then, we 
analysed the location of the DMR to determine the DMGs. 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analyses were 
performed to explore the functional enrichment of genes 
influenced by DMRs.

Strand-specific library construction and whole-
transcriptome sequencing

First, total RNA was extracted using TRIzol, and ribosomal 
RNA (rRNA) was removed to retain messenger RNAs 
(mRNAs) and non-coding RNAs (ncRNAs). The enriched 
mRNAs and ncRNAs were fragmented into short fragments 
using fragmentation buffer and then reverse-transcribed 
into complementary DNA (cDNA) with random primers. 
Second-strand cDNA was synthesized with DNA 
polymerase I, RNase H, dNTP (dUTP instead of dTTP) 
and buffer. Next, the cDNA fragments were purified with 
a QiaQuick PCR extraction kit, end-repaired, subjected 
to poly (A) addition, and ligated to Illumina sequencing 
adapters. The second-strand cDNA was then digested 
with UNG (uracil-N-glycosylase). Finally, the digested 
products were size-selected by agarose gel electrophoresis, 
and subjected to PCR amplification and sequencing on the 
Illumina HiSeqTM 4000 platform.

Alignment with rRNA and the reference genome

After the filtering of clean reads, Bowtie2 (v2.2.8) (25) was 
applied to map reads to the rRNA database (ftp://ftp.ncbi.
nlm.nih.gov/genbank/), and the rRNA mapped reads were 

ftp://ftp.ncbi.nlm.nih.gov/genbank/
ftp://ftp.ncbi.nlm.nih.gov/genbank/
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removed. The remaining reads were used for subsequent 
assembly and analysis. The removed rRNA reads were 
also mapped to TupChi_1.0 using TopHat2 (v2.1.1) (26). 
After alignment with TupChi_1.0, the reads mapped to 
the genomes were removed, and the unmapped reads 
were collected for circRNA identification. Unmapped 
reads were aligned to the reference genome with Bowtie2 
again, and the enriched unmapped reads were split into 
smaller segments, which were subsequently used to identify 
potential splice sites.

Transcript reconstruction

The reconstruction of transcripts was performed with 
Cufflinks software (27), together with TopHat2, to identify 
new genes and new splice variants of known genes. The 
reference annotation-based transcripts (RABT) program 
was preferred. To make up for the effect of low-coverage 
sequencing, Cufflinks generated faux reads based on 
reference. Finally, all reassembled fragments were aligned 
with reference genes, and similar fragments were discarded.

Identification and annotation of novel transcripts

To identify new transcripts, all reconstructed transcripts were 
aligned to TupChi_1.0. For the identification of predictable 
novel genes, the following parameters were applied: length of 
transcript >200 bp and exon number >2. To acquire protein 
functional annotations, the novel transcripts were aligned to 
the Nr, KEGG, and GO databases.

CircRNA identification and database annotation

To identify unique anchor positions within splice sites, 20-
mers were extracted from both ends of the unmapped reads 
and aligned to TupChi_1.0. Anchor reads that aligned in 
the reverse orientation (head to tail) and showed circRNA 
splicing were further subjected to find_circ (28) analysis for 
circRNA identification. Anchor alignments were extended 
until the complete read was aligned and the breakpoints 
were flanked by GU/AG splice sites. A candidate circRNA 
was called if it was supported by at least 2 unique back-
spliced reads. The identified circRNAs were also subjected 
to statistical analysis of their type and length distribution. 
Finally, the circRNAs were subjected to BLAST searches 
against circBase (29) for annotation, and those that were 
unable to be annotated were defined as novel circRNAs.

LncRNA prediction and analysis

Coding-non-coding index (CNCI) (v2) (30) and coding 
potential calculator (CPC) (31) were applied for evaluation 
of the protein-coding potential of novel transcripts 
according to default parameters. To obtain protein 
annotations, novel transcripts were also mapped to the 
SwissProt database. Those showing the intersection of 
neither protein-coding potential nor protein annotation 
results were selected as lncRNAs. To investigate the 
interaction between antisense lncRNAs and mRNAs, 
complementary correlation analysis was performed using 
RNAplex (32). The program contains the ViennaRNA 
package (33) and predicts the best base pairing according to 
thermodynamic structure on the basis of the calculation of 
minimum free energy.

Quantification of the abundance of transcripts and 
circRNAs

Transcript abundance was quantified by RSEM (RNA-Seq 
by Expectation-Maximization) (34). The fragments per 
kilobase of transcript per million mapped reads (FPKM) 
method was applied for the normalization of transcript 
expression levels. Additionally, the reads per million 
mapped reads (RPM) method was used to scale back-spliced 
junction reads for circRNA quantification.

Correlation of DNA methylation and gene expression

To identify whether the DNA methylation level in 
DMRs affects gene expression between groups, genes 
were classified according to their genomic location, 
including the ±2 kb flanking regions and gene body region. 
Spearman’s correlation analysis was used to identify the 
statistical relationships between gene expression and DNA 
methylation within the gene body and ±2 kb flanking 
regions. Rho <0 indicated a negative correlation and 
Rho >0 indicated a positive correlation. To investigate 
the underlying functions of DNA methylation which are 
responsible for differential gene expression, common genes 
between the DMR-related genes and DEGs were analysed, 
and GO and KEGG pathway enrichment analyses were 
conducted for DEGs with DMRs.

Functional enrichment analysis

GO enrichment analysis recognizes the key biological 
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functions of genes by providing all GO terms that are 
significantly enriched in genes compared to the genomic 
background, and also enables genes to be filtered according 
to their biological functions. Genes generally interact 
with each other to carry out specific biological functions. 
Pathway-based analysis contributes to further identification 
of genes’ biological functions, with KEGG being the 
primary public pathway-related database (35). All genes 
were mapped to GO terms in the GO database, gene numbers 
were calculated for each term, and the significantly enriched 
GO terms were identified. Pathway enrichment analysis 
revealed signal transduction or metabolic pathways that were 
significantly enriched in genes compared to the genomic 
background. To discern whether a set of genes enriched in 
distinct GO terms/pathways showed significant differences 
between the 2 groups, a gene set enrichment analysis (GSEA) 
was carried out using GSEA software (36). Briefly, we 
input a gene expression matrix and ranked genes by using a 
SinaltoNoise normalization program. Enrichment scores and 
P values were calculated using default parameters.

Statistical analysis

Mean ± SEM and multiple t tests for methylation levels were 
calculated using GraphPad Prism 8 (GraphPad, San Diego, 
USA). The DMRs in each sequence context (CG, CHG, 
and CHH) were identified based on the following criteria: 
for CG, CHG, CHH, and all C, the number of CG, CHG, 
CHH, and all C sites in each window needed to be ≥5, 5, 
15, and 20, respectively; the absolute value of the difference 
in the methylation ratio needed to be ≥0.25, 0.25, 0.15, and 
0.2, respectively; and Q≤0.05 was required in all cases. The 
edgeR package was used to determine the transcripts and 
circRNAs that were differentially expressed between the 2 
groups. For each comparison, we identified mRNAs with a 
fold change (FC) ≥2 and a false discovery rate (FDR) <0.05 as 
DEGs, and circRNAs/lncRNAs with a FC ≥2 and a P value 
<0.05 as differentially expressed circRNAs/lncRNAs. GO 
terms/KEGG pathways meeting the criterion that calculated 
P values were subjected to FDR correction, with a P value 
≤0.05 as the threshold, were defined as significantly enriched 
GO terms/KEGG pathways in genes.

Results

Diagnosis and pathologic identification of spontaneous 
breast IP in tree shrews

With respect to the basic pathology of tree shrew breast 

IPs, the ductal epithelium of the breast showed papillary 
hyperplasia, the nipple varied in size, and the cells 
showed no atypia, which is similar to human pathology. 
The tumours were expected to be benign (Figure 1A). In 
contrast, examination of normal tree shrew mammary 
glands showed the breast acini and ducts to have a normal 
structure, and no degeneration, necrosis, or inflammatory 
cell infiltration was observed (Figure 1B). We confirmed 
that 3 of the spontaneous mammary tumours collected from 
females in the closed colony of tree shrews were breast IPs. 
The selected tree shrews were divided into 2 groups: the 
IP group (n=3), comprising tree shrews with IPs (IP-1, IP-
2, and IP-3); and the control group (n=3), comprising tree 
shrews with healthy mammary gland tissues (control-1, 
control-2, and control-3). The results indicated that the 
selected IP tree shrews and normal tree shrews were 
appropriate for subsequent analyses.

Genome-wide DNA methylation profiling of breast IPs 
and normal mammary gland tissues of tree shrews

To investigate methylation patterns during IP development 
in tree shrews, we analysed genome-wide DNA methylation 
(DNAm) levels in tissues from the IP group and control 
group by WGBS with >99% conversion efficiency (Table S1).  
The genome of the normal mammary gland tissue sample 
(control group) presented ~4.39% methylated cytosines 
(mCs), and the IP sample presented ~4.41% mCs among 
the total sequenced C sites, reflecting the degree of genome 
methylation. The methylation levels of CG, CHH, and 
CHG (in which H is A, C, or T) sites were distinct. The 
genome-wide mC levels were detected as 88.08%±1.76% 
for CG, 2.52%±0.32% for CHG, and 9.40%±1.45% for 
CHH in the control group, and 90.19%±0.54% for CG, 
2.07%±0.04% for CHG, and 8.41%±0.19% for CHH in 
the IP group. Thus, the proportions of these contexts were 
analogous between groups (Figure 2A).

Epigenetic variation among DNA sequences, especially 
CpG DNA methylation, is an important type of variation 
that modulates gene expression under different physiological 
and pathological conditions. Our results showed that in the 
IP group, the CG methylation levels were higher, the CHG 
and CHH methylation levels were lower, and the number 
of mCG sites was increased compared with the control 
group, whereas no significant difference was found in other 
types of sites. To further compare the distribution of coding 
genes as well as the methylation levels of diverse functional 
genomic elements between the 2 groups, we analysed 

https://cdn.amegroups.cn/static/public/ATM-21-1293-supplementary.pdf
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Figure 1 Histological diagnosis of experimental samples. (A) Haematoxylin and eosin (H&E) staining results for breast intraductal 
papillomas in 3 tree shrews (magnification 400×). (B) H&E staining results for normal mammary tissue in 3 tree shrews (magnification 
400×).

the DNA methylation pattern in 3 distinct regions of 
transcriptional elements: the upstream 2k region [2,000 bp  
before the transcription start site (TSS) of the gene], 
the gene body region, and the downstream 2k region 
(2,000 bp after the transcription termination site). The 
distribution characteristics of DNA methylation levels in 
distinct functional regions can aid in the understanding of 
the characteristics of DNA methylation modifications in 
different regions at the whole-genome level.

The obtained DNA methylation profiles showed that the 
methylation level in the CG context was higher than those 
in the CHG and CHH contexts. The DNA methylation 

level in the CG context was highest in the gene body region. 
DNA methylation was moderately high in the upstream 
2K start site, decreased dramatically from the upstream 2k 
region to the TSS, increased sharply from the TSS to the 
gene body region, maintained the highest level in the gene 
body region, and then decreased slightly in the downstream 
2K region (Figure 2B).

A total of 3,486 differentially methylated CG regions, 
82 CHG regions, and 361 CHH regions were identified. In 
the CG context, 3,486 DMRs, located in 701 genes, were 
identified between the IP and control groups (Q<0.05); 
among them, 705 showed increased methylation and 2,781 

A

B

IP-1                                                          IP-2                                                            IP-3

Control-1                                                    Control-2                                                    Control-3
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showed decreased methylation in IP tissues compared with 
control tissues. The union of the DMRs of all samples 
was taken, and a heat map of the CG methylation rates of 
regions was drawn (Figure 3A). The results revealed that the 
CG methylation rates showed discrepant levels in the IP 
and control group samples.

To further elucidate the biological functions of the 
DMGs, we performed GO and KEGG pathway analyses. 
The GO term analysis revealed that the putative target genes 
of KLF5 were associated with terms such as developmental 
process  (P  ad jus t  =0 .0056)  and s ingle-organism 
developmental process (P adjust =0.0103) in the biological 
process (BP) category, binding (P=0.0063) in the molecular 
function (MF) category, and membrane (P=0.0045) 
in the cellular component (CC) category (Figure 3B).  
KEGG pathway analysis showed that 15 DMGs were 

associated with the oxytocin signalling pathway (Q=0.0027), 
and 10 DMGs were associated with the oestrogen signalling 
pathway (Q=0.0113) (Figure 3C). Taken together, these 
gene annotation results revealed that the majority of DMGs 
showing increased methylation or decreased methylation 
were mapped to the gene body region, suggesting that 
DMGs play critical roles in IP.

DEGs between the IP group and the control group

To systematically describe the transcriptome landscape of 
the IP group and the control group, whole-transcriptome 
sequencing was performed. After the removal of low-quality 
reads from each library, the clean reads were combined and 
aligned to TupChi_1.0, resulting in the identification of 
10,051 known mRNAs, 25,481 novel mRNAs, 1,022 known 

Figure 2 Genome-wide DNA methylation levels and trends. (A) The average ratio of DNA methylation types in the control and IP groups. 
Blue, orange, and grey represent methylated (m) CG, mCHG, and mCHH, respectively. (B) CG methylation levels in the gene body and 2 
kb upstream and downstream regions. The different coloured lines represent different experimental samples. Up2k, 2 kb upstream region;  
Down2k, 2 kb downstream region; TSS, transcription start site; TES, transcription termination site.
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Figure 3 Differentially methylated regions (DMRs) associated with the development of IP. (A) Heat map of CG methylation rates of DMRs 
in six samples. (B) Annotation of differential methylated genes (DMGs) with GO enrichment, classified into cellular components, molecular 
function, and biological processes according to GO term. Gene numbers are listed for each category. (C) KEGG pathway enrichment of 
DMGs. The ordinate represents the enriched pathways, and the abscissa represents the Rich factor of the corresponding pathways; the size 
of the spots represents the number of genes related to DMRs enriched in each pathway, while the color of the spot represents the corrected 
Q-value for each pathway. The Rich factors indicate the ratio of the number of DMGs mapped to a certain pathway to the total number of 
genes mapped to this pathway. Greater Rich factor means greater enrichment. 
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lncRNAs, 1,617 novel lncRNAs, and 10,602 new circRNAs 
in the IP group and the control group in total. We further 
compared the transcriptomic landscapes of the normal 
mammary gland and IP tumour tissues of tree shrews. 
A total of 39 upregulated DEGs and 23 downregulated 
DEGs were identified in IP tumours compared with normal 
mammary glands (|log2FC| ≥1 & FDR <0.05) (Figure 4A).  
Among these DEGs, the expression levels of ST14, PSMF1, 
and TNFSF11 in the IP group were more than 15-fold 
higher than those in the control group. In the control 
group, the levels of FAM192A and Psmc5 were 15-fold 
higher, respectively, than those in the IP group. 

GO analysis of the DEGs showed that TNFSF11 
participates in tumour necrosis factor-mediated signalling 
pathway and cellular response to tumour necrosis factor 
(P=0.0042); GATA-binding protein 3 (GATA3), EPHA2, 
and PTPRG are involved in regulation of epithelial cell 
migration (P=0.0072); STAG2, TEX14, PPP1R9B, and 
TPR are involved in regulation of cell cycle processes 
(P=0.0087); and TNFSF11, and EPHA2 are involved in 

epithelial cell proliferation (P=0.0091). The KEGG analysis 
revealed that ACSL1 and APOA5 participate in PPAR 
signalling pathway (P=0.0367). Furthermore, GSEA was 
utilized to analyse groups of functionally relevant genes in 
the IP group compared to the control group (Figure 4B). In 
the IP group, under the BP category, the upregulation of 
cell cycle phase- and S phase-related terms in the biological 
phase subcategory, and mitotic sister chromatid segregation 
and sister chromatid segregation in the cellular component 
organization or biogenesis subcategory was observed. 
Among the DEGs identified in the IP group, the upregulated 
genes were involved in replication and repair, including 
DNA replication, mismatch repair and nucleotide excision 
repair, as well as in cell growth and death, including the cell 
cycle. Meanwhile, the downregulated genes were involved 
in the endocrine system, including the renin secretion and 
Peroxisome proliferators-activated receptor (PPAR) signalling 
pathway (Figure S1). Overall, the enrichment analysis of GO 
terms and pathways demonstrated that many of the DEGs 
identified in the IP group are involved in tumorigenesis.
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Figure 4 Differentially expressed genes (DEGs) and gene set enrichment analysis (GSEA) in the IP group compared to the control group. 
(A) Volcano plot of DEGs (|log2FC| ≥1 & FDR <0.05) (red points represent upregulated mRNAs; green points represent downregulated 
mRNAs; and black points represent unchanged mRNAs). (B) The scatterplot of 10 IP development-related terms and pathways, that GSEA 
of up- or downregulated gene sets in the IP group compared to the control group. The ordinate represents the enriched terms/pathways, 
and the abscissa represents the normalized enrichment score (NES); the size of the spots represents the number of genes in the gene set after 
filtering out those genes not in the expression dataset, while the color of the spot represents false discovery rate (FDR). 
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The lncRNA expression profile is distinct between IP and 
normal mammary gland tissues of tree shrews

Compared with the control group, 50 differentially 
expressed lncRNAs (DElncRNAs), of which 39 were 
upregulated and 11 were downregulated, were identified in 
the IP tissue samples (|log2FC| ≥1 & P<0.05) (Figure 5A).  
In the IP group, the most significantly upregulated 
lncRNAs were TCONS_00002926, TCONS_00077528, 
XR_001369927.1, TCONS_00037489, and XR_333956.1, 
while the most significantly downregulated lncRNAs were 
TCONS_00016941, XR_334171.1, TCONS_00135842, 
TCONS_00077456, and TCONS_00094673. To reveal the 
functions of the lncRNAs, the complementary correlation 
of antisense lncRNAs and mRNAs was predicted. All 
antisense target genes of the DElncRNAs were subjected 
to GO and KEGG pathway analyses to determine their 
functions (Figure 5B,C). Various relevant GO terms in 
the BP category were observed, including blood vessel 
endothelial cell migration (P=3.99E−05), epithelial cell 
migration (P=0.0012), epithelium migration (P=0.0012), and 
negative regulation of apoptotic process (P=0.0016). KEGG 
pathway analysis revealed that Jak-STAT signalling pathway 
(P=0.0087), PPAR signalling pathway (P=0.0233), and 
oestrogen signalling pathway (P=0.0292) were associated 
with the DElncRNAs.

The 2nd function of lncRNAs, when located less than 
10 kb upstream/downstream from a gene, is to act as cis-
regulators of their neighbouring genes on the same strand. 
A large number of enriched GO terms were observed in 
the BP category, including branching morphogenesis of an 
epithelial tube (P=0.0001), serine phosphorylation of STAT 
protein (P=0.0002), negative regulation of cell growth 
(P=0.0017), and execution phase of apoptosis (P=0.0019) 
(Figure 5D). The KEGG pathway analysis revealed that 
the DElncRNAs were associated with the pathways of 
protein processing in endoplasmic reticulum (P=0.0017), 
glyoxylate and dicarboxylate metabolism (P=0.0018), 
antigen processing and presentation (P=0.0250), and NOD-
like receptor signalling (P=0.0483) (Figure 5E).

The 3rd function of lncRNAs is the trans-regulation of 
non-adjoining co-expressed genes. To determine the target 
genes of the lncRNAs, the correlation between lncRNA 
and mRNA expression was analysed, and GO function 
and KEGG pathway enrichment analyses of protein-
coding genes with an absolute correlation >0.9 were 
performed. In the BP category, they included mesenchymal 
stem cell differentiation (P=0.0032), extrinsic apoptotic 

signalling pathway (P=0.0070), recombinational repair 
(P=0.0086), and execution phase of apoptosis (P=0.0125) 
(Figure 5F). The DElncRNA trans-regulated co-expressed 
genes were significantly enriched in KEGG pathways 
including homologous recombination (P=0.0004), histidine 
metabolism (P=0.0022), and renin-angiotensin system 
(P=0.0244) (Figure 5G). These results suggested that the 
DElncRNAs might be involved in the tumorigenesis of IP 
in tree shrews via the regulation of tumorigenesis-related 
genes and signalling pathways.

The circRNA expression profile differs between IP and 
normal mammary gland tissues of tree shrews

As shown in Figure 6A, we identified 32 differentially 
expressed circRNAs (DEcircRNAs),  including 25 
upregulated circRNAs and 7 downregulated circRNAs, 
between the IP and control groups (|log2FC|≥1 & 
P<0.05). Heat map analysis of the DEcircRNAs showed 
that the IP tissues could be separated from the normal 
mammary gland tissues by the DEcircRNAs. The most 
significantly upregulated circRNAs in the IP group were 
novel_circ_004184, novel_circ_001608, novel_circ_007270, 
novel_circ_004893, and novel_circ_004886, while novel_
circ_007552, novel_circ_007844, novel_circ_002826, 
novel_circ_005946 and novel_circ_009457 were identified 
as downregulated circRNAs.

The gene of origin of a circRNA is its parental gene. 
Therefore, we carried out a functional enrichment analysis 
of parental genes to investigate the putative functions of 
DEcircRNAs. GO analysis revealed that the parental genes 
of the DEcircRNAs were enriched in the BP terms of 
branch elongation of an epithelium (P=0.0161), negative 
regulation of cell proliferation (P=0.0173), positive 
regulation of epithelial cell proliferation (P=0.0233), 
vasculogenesis (P=0.0276), and gland morphogenesis 
(P=0.0290). The PI3K-Akt signalling (P=0.0139) and Ras 
signalling (P=0.0509) pathways were identified as being 
significant in the KEGG enrichment analysis (Figure 6B, C).  
Taken together, these results suggested that these 
DEcircRNAs may affect IP tumour development by 
influencing gene expression.

Integrated analysis of the methylome and transcriptome 
data

To examine whether differences in DNA methylation could 
be the basis of the observed gene expression differences 
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Figure 5 Differentially expressed lncRNAs (DElncRNAs) associated with the development of IP. (A) Volcano plot of DElncRNAs (|log2FC| 
≥1 & P<0.05) (red points represent upregulated lncRNAs; green points represent downregulated lncRNAs; and black points represent 
unchanged lncRNAs). GO and pathway analyses of target genes of DElncRNAs. All antisense target genes of the DElncRNAs were 
subjected to enrichment analysis of GO functions (B) and KEGG pathways (C). The cis target genes were subjected to enrichment analysis 
of GO functions (D) and KEGG pathways (E). Trans-regulation target genes were subjected to enrichment analysis of GO functions (F) and 
KEGG pathways (G).
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Figure 6 Differentially expressed circRNAs (DEcircRNAs) associated with development of IP. (A) Heat map of DEcircRNAs (|log2FC| 
≥1 & P<0.05) (red columns represent upregulated circRNAs, while blue columns represent downregulated circRNAs). (B) Parental genes of 
DEcircRNAs are classified into cellular components, molecular function, and biological processes according to GO term. Gene numbers are 
listed for each category. (C) KEGG pathway enrichment of parental genes of the DEcircRNAs. The size of the circle represents the gene 
number, and the colour represents the P value. Only the top 20 enriched pathway terms are displayed.
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between tree shrews in the IP and control groups, we 
analysed the correlation between gene expression and DNA 
methylation data in the 2 groups. The results indicated 
a considerable regulatory effect of DNA methylation in 
the modulation of gene expression. In both the IP and 
control groups, the methylation levels in the upstream 2K 
(Pearson’s R =−0.0383 and −0.0192, respectively) and gene 
body (Pearson’s R =−0.0922 and −0.0737, respectively) 
were negatively correlated with expression levels. In the 
control group, the methylation levels in the downstream 2K 
regions were also negatively correlated with expression levels 
(Pearson’s R =−0.0013); however, in the IP group, a positive 
correlation was observed (Pearson’s R =0.0030) (Figure 7A,B).

In addition, DMGs and DEGs were compared through 
integrated methylomic and transcriptomic analysis, which 
revealed 25 genes with differential methylation and 
expression according to both RNA-seq (P<0.05) and WGBS 
(Q<0.05) (Figure 7C). Among these genes, the number of 
genes exhibiting DMRs in the upstream 2K, gene body, 
and downstream 2K regions was 1, 23, and 1, respectively. 
The GO analysis of the 25 genes which were both DEGs 
and DMGs showed that 15 genes showed enrichment in 
193 BP terms (P<0.05). Among these genes, ATPase plasma 
membrane Ca2+ transporting 4 (ATP2B4) was involved 
in regulation of calcium-mediated signalling (P=0.0008), 
calcium-mediated signall ing (P=0.0022),  negative 
regulation of catabolic processes (P=0.0031), and negative 
regulation of calcium-mediated signalling (P=0.0061); 
PDZ domain-containing 1 (PDZK1) was involved in 
positive regulation of transmembrane transport (P=0.0014), 
positive regulation of transport (P=0.0031), and regulation 
of transmembrane transport (P=0.0126); Lymphocyte 
cytosolic protein 1 (LCP1) was involved in regulation 
of intracellular transport (P=0.0034) and regulation of 
cellular localization (P=0.0151); and PDZK1 and LCP1 
were involved in regulation of transport (P=0.0135). The 
KEGG analysis of the 25 genes which were both DEGs and 
DMGs showed that 9 genes were enriched in 19 signalling 
pathways (P<0.05). Subsequent analysis identified 9 genes 
with an inverse relationship between the degree of DNA 
methylation and gene expression in gene body regions 
(Table 1), which were related to signal transduction and the 
endocrine system. Three differentially over-methylated and 
downregulated genes (ADCY5, ATP2B4, and CREB5) were 
associated with signal transduction pathways, including 
cAMP signalling pathway (P=3.13E−06), cGMP-PKG 
signalling pathway (P=6.76E−05), TNF signalling pathway 
(P=0.0118), and AMPK signalling pathway (P=0.0131). 

Furthermore, ADCY5 and CREB5 were involved in insulin 
secretion (P=0.0001) and oestrogen signalling pathway 
(P=0.0002) in endocrine system. Thus, we integrated the 
gene expression and DNA methylation maps and identified 
protein-coding genes with underlying changes related to 
DNA methylation in IP; the resulting alterations probably 
induce the development of breast tumours.

Discussion

In this work, we have provided an expanded overview of the 
DNA methylation levels and transcriptomic characteristics 
of 3 tumour tissue samples of spontaneous breast IP and 3 
normal mammary gland tissues from tree shrews, in which 
gene expression was analysed. Tree shrews are considered 
to have potential as an animal model for the study of 
mammary tumours, including both spontaneous and 
induced models. Daino et al. used a microarray to obtain the 
DNA methylation and expression profiles of γ-ray-induced 
mammary carcinomas in rats. They found polycomb 
repressive complex 2 (PRC2) mediated aberrant DNA 
methylation and a consequent dysregulation of downstream 
gene targets during carcinogenesis (37). In this study, we 
obtained the genomic DNA methylation profiles of normal 
mammary gland and IP tissues from tree shrews. The 
DNA methylation levels were reduced in tree shrews with 
IP compared with healthy tree shrews. Also, GATA3 was 
upregulated 12.2-fold in IP tissues compared with normal 
mammary gland tissues; however, no difference was found 
in DMRs. The different results between these 2 studies may 
be due to the differences in the experimental animals used 
and the types of mammary tumours examined.

In their study, Shao et al. (38) identified 17 Krüppel-like 
factors from Chinese tree shrews. KLF5 encodes a member 
of the zinc finger protein KLF subfamily which acts as 
transcriptional activator by binding directly to a specific 
recognition motif in the promoters of target genes, through 
which it plays roles in both promoting and suppressing cell 
proliferation. Tupaia belangeri (Tb) KLF5, which is similar 
to human Krüppel-like factor (hKLF) hKLF5, significantly 
promotes cell proliferation, playing a pro-proliferative 
and oncogenic role in breast cancer (39). These findings 
suggested that tree shrews may serve as an alternative 
animal model in breast cancer studies related to KLF5 (38). 
Although KLF family members were not included among 
the DEGs in this study, DNA methylation analysis showed 
that KLF5 displayed significant over-methylated among the 
identified DMRs.
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Figure 7 Integrative analysis between DNA methylation and transcriptome data. (A) The correlation analysis of all gene expression levels and 
DNA methylation levels in the groups. The x-axis represents the correlation between DNA methylation and gene expression levels in the IP and 
control groups; rho value >0 indicates a positive correlation, and rho value <0 indicates a negative correlation (B) Correlation analysis of distinct 
functional regions methylation level and gene expression level in the control and IP groups. The x-axis represents ranked genes by expression level. 
(C) Heat map analysis of the gene methylation and expression levels in the IP group compared to the control group. 
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To obtain more in-depth insights into the molecular 
mechanisms underlying tumorigenesis,  we carried 
out a correlation analysis of the RNA-seq and WGBS 
data. The results suggested an inverse correlation of 
PDZK1, ATP2B4, and LCP1 gene expression with DNA 
methylation between the IP and control groups. PDZK1 
encodes a PDZ domain-containing scaffolding protein (40). 
Genome-wide association study of a large cohort identified 
rs12405132 of PDZK1 as a new susceptibility locus in 
breast cancer; hence, PDZK1 is a potential interacting 
gene in breast cancer (41). In primary breast cancers, 
PDZK1 is an oestrogen-regulated gene, the overexpression 
of which is found in oestrogen receptor (ER)-positive 
breast cancers (42). PDZK1 was identified as a marker of 
oestrogen-regulated gene expression in a study examining 
the relationship between the menstrual cycle and ER-
positive breast cancer (43). Dunbier et al. further verified 
that in postmenopausal patients with primary ER-positive 
breast cancer, the expression of PDZK1 was strongly 
related to plasma oestradiol level (44). PDZK1 exhibits 
epithelial expression with a primarily cytosolic subcellular 
localization, and its expression is indirectly modulated by 
ER-α stimulation (45).

ATP2B4 encodes plasma membrane calcium ATPase 
isoform 4 (PMCA4b), which belongs to the P-type primary 
ion transport ATPase family. The ATP2B4 protein, which 
is located primarily in the plasma membrane, is expressed 
in normal breast tissue and plays a key role in the plasma 
membrane Ca2+ pump in the maintenance of mammary 
epithelial Ca2+ homeostasis (46). The PMCA4 protein is 
found in normal breast ductal epithelia; however, as reported 
by Varga et al., a variety of factors, including hormonal 
imbalances, epigenetic modifications, and impairment of 
protein trafficking may lead to a loss of PMCA4b in breast 
cancer (47). The same study showed that the regulation 
of Ca2+ signalling through increased PMCA4b expression 
may be conducive to the normal development of the breast 
epithelium. Consistent with the results of this previous 
study, we found that the expression of ATP2B4 mRNA was 
downregulated 7.3-fold in our IP group, while methylation 
was increased. In breast cancer treatment, the targeting of 
PMCA4 may enhance the effectiveness of breast cancer 
therapies which act by promoting cell death pathways (48). 
The targeted regulation of PMCA4 functionality may give 
rise to novel therapeutic methods to attenuate or facilitate 
new vessel formation in breast cancer, which is associated 
with angiogenesis (49).

LCP1 is an L-plastin protein-coding gene and a member 

of the actin-binding protein family. It is conserved during 
eukaryote evolution, and its expression is found in most 
tissues of higher eukaryotes. LCP1 plays a critical role in 
T-cell activation, and is associated with Nuclear factor 
kappa-B (NF-κB) signalling, calcium ion binding, and 
actin binding. The induction of L-plastin expression is 
concomitant with tumorigenesis in solid tissues. A negative 
effect of LCP1 on breast cancer progression has been 
evidenced, and LCP1 inhibition results in the migration, 
invasion, and proliferation of breast cancer (50). Mutations 
in LCP1 have been reported as putative cancer drivers 
on the basis of whole-exome sequencing in independent 
benzo[a]pyrene (BaP)-derived post-stasis human mammary 
epithelial cell strains (51). L-plastin is a protein that exerts 
a cell-protective effect against TNF cytotoxicity in breast 
cancer cell lines (52). The actin-binding protein LCP1/
L-PLASTIN has been verified to participate in CXCL12/
CXCR4 signalling in breast cancer cells (53).

Therefore, we concluded that PDZK1, ATP2B4, 
and LCP1 might be key regulatory genes during the 
development of spontaneous IP in tree shrews. In addition, 
the DNA methylation of these genes may be a crucial 
functional regulator of tumorigenesis. Nevertheless, the 
epigenetic mechanisms participating in the modulation of 
these genes as well as genetic regions associated with the 
development of IP require further exploration.

Conclusions

Overall, our findings systematically demonstrate the 
changes in mRNA, lncRNA, and circRNA, and facilitate 
the characterization of the genome-wide DNA methylation 
profiles of IP tissue and normal mammary gland tissue in tree 
shrews, thus providing valuable evidence for an improved 
understanding of the development of mammary tumours. 
Our results also show that DNA methylation influences 
the expression of genes associated with the development 
of spontaneous IP in tree shrews. Such analyses greatly 
improve the progress in exploring the characteristics of 
DNA methylation in the development of breast IP and 
provide new directions for the study of epigenetic markers 
and target genes in spontaneous mammary tumours.
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Table S1 Individual conversion rates of each sample

Sample Ratio

Control-1 0.99224

Control-2 0.991674

Control-3 0.99035

IP-1 0.992051

IP-2 0.992087

IP-3 0.992223

Supplementary
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Figure S1 GSEA plots showing the most enriched gene sets in the IP group and the control group.
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