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Background: To establish and validate a prediction model for pancreatic neuroendocrine neoplasms 
(pNENs) recurrence after radical surgery with preoperative computed tomography (CT) images. 
Methods: We retrospectively collected data from 74 patients with pathologically confirmed pNENs (internal 
group: 56 patients, Hospital I; external validation group: 18 patients, Hospital II). Using the internal group, 
models were trained with CT findings evaluated by radiologists, radiomics, and deep learning radiomics 
(DLR) to predict 5-year pNEN recurrence. Radiomics and DLR models were established for arterial (A), 
venous (V), and arterial and venous (A&V) contrast phases. The model with the optimal performance was 
further combined with clinical information, and all patients were divided into high- and low-risk groups to 
analyze survival with the Kaplan-Meier method. 
Results: In the internal group, the areas under the curves (AUCs) of DLR-A, DLR-V, and DLR-A&V 
models were 0.80, 0.58, and 0.72, respectively. The corresponding radiomics AUCs were 0.74, 0.68, and 0.70. 
The AUC of the CT findings model was 0.53. The DLR-A model represented the optimum; added clinical 
information improved the AUC from 0.80 to 0.83. In the validation group, the AUCs of DLR-A, DLR-V, 
and DLR-A&V models were 0.77, 0.48, and 0.64, respectively, and those of radiomics-A, radiomics-V, and 
radiomics-A&V models were 0.56, 0.52, and 0.56, respectively. The AUC of the CT findings model was 
0.52. In the validation group, the comparison between the DLR-A and the random models showed a trend 
of significant difference (P=0.058). Recurrence-free survival differed significantly between high- and low-risk 
groups (P=0.003). 
Conclusions: Using DLR, we successfully established a preoperative recurrence prediction model for 
pNEN patients after radical surgery. This allows a risk evaluation of pNEN recurrence, optimizing clinical 
decision-making.
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Introduction

Pancreatic neuroendocrine neoplasms (pNENs) are tumors 
with complex biological behaviors (1,2). R0 surgical resection 
is the first-line therapy for non-metastatic neuroendocrine 
neoplasms, but its postoperative recurrence is variable and 
difficult to predict, with 5-year recurrence rates ranging from 
5% to 80% (3-6). If the probability of a pNEN recurrence 
(including local recurrence and distant metastasis) could 
be accurately predicted before surgery, the preoperative 
surgical plan could be optimized, and the management of the 
postoperative follow-up and intervention could be arranged 
in advance. This strategy can minimize the recurrence 
probability and reduce the adverse impact of postoperative 
tumor recurrence, thus improving the prognosis of patients (7).  
Specifically, for patients with low recurrence risk, the 
frequency of surveillance can be reduced and a relatively 
longer monitoring interval can be set (8). For patients at high 
risk of recurrence, surgical margins should be expanded, and 
lymph node dissection should be more thorough in their 
preoperative surgical plan. Likewise, emphasis should be 
placed on postoperative follow-up and combined treatment 
in these patients. 

Some studies reported methods for recurrence prediction 
in pNENs (1,9). Pathological parameters including the Ki-
67 index of postoperative specimens or preoperative biopsy 
were used to predict the prognosis of pNEN patients 
(10,11). However, these studies were either based on 
indicators obtained after surgery or from fractional tissue, 
and the predictive performance was unsatisfactory with 
sensitivity (SEN) values of less than 40% including the Ki-
67 index. Thus, these approaches cannot effectively guide 
preoperative management.

Computed tomography (CT) is commonly used for 
the diagnosis of pancreatic diseases with high diagnostic 
accuracy (ACC) in pNENs. Several studies (12-14) 
have shown that CT findings such as tumor size, tumor 
vascularity, and CT value can be used to predict the 
prognosis preoperatively. A CT ratio (the CT value of 
the tumor divided by that of non-tumorous pancreatic 
parenchyma) <0.85 and tumor size ≥3.0 cm were shown 
to be independent prognostic factors associated with the 
disease-free survival of patients with pNEN (14). However, 
these studies are all based on indicators evaluated by 
radiologists with inevitable subjectivity and measurement 
errors. In addition, such studies are generally limited, 
because relevant indicators are only for factor analysis 
but not used for the establishment and validation of more 
practical prediction models.

Radiomics has achieved great success in medical image 
analysis. Image features with strong identification power 
can be automatically analyzed with high throughput and 
extracted by computers for auxiliary diagnosis or therapy 
response prediction. In research, radiomics has been 
a commonly used method to predict the prognosis of 
patients, and medical image analysis technology based on 
deep learning brings more opportunities and challenges 
for prognosis prediction. Wang et al. (15) achieved 18F- 
fluorodeoxyglucose (FDG) positron emission tomography 
(PET)/CT image-based prediction of lymph node metastasis 
in non-small cell lung cancer with deep learning. Using 
deep learning techniques, another group (16) established 
a 3-year recurrence prediction model for patients with 
ovarian cancer based on CT images. Chen et al. (17) used 
enhanced CT images and other predictors (tumor location, 
size, and other information) to establish the ResNet model 
that predicts the 3- and 5-year recurrence-free survival 
(RFS) rates for gastrointestinal stromal tumor patients with 
area under the curve (AUC) values of more than 0.90. A 
newly developed method called deep learning radiomics 
(DLR) (18,19) can extract quantitative and high-throughput 
features from medical images by pretrained artificial neural 
networks. This approach is different from the radiomics 
method that extracts explicitly designed features, and DLR 
has been proved a promising tool for computer-aided tumor 
prognosis prediction. It has been successfully applied to 
many clinical problems, such as predicting the stages of liver 
fibrosis (18) and predicting axillary lymph node metastasis 
in early-stage breast cancer (20). 

To our knowledge, no study has assessed the recurrence 
prediction in pNEN patients based on radiomics or DLR 
techniques yet. This study aimed to establish and validate 
a recurrence prediction model for pNEN patients after 
radical surgery based on their preoperative CT images 
using CT findings evaluated by radiologists, radiomics, and 
DLR. We present the following article in accordance with 
the STROBE reporting checklist (available at http://dx.doi.
org/10.21037/atm-21-25).

Methods

Study design

The study design is shown in Figure 1. We separately 
extracted features for training models based on the data 
from Hospital I (the First Affiliated Hospital of Sun Yat-
Sen University, internal group) in three ways, namely, CT 
findings were evaluated by radiologists, radiomics, and DLR. 
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http://dx.doi.org/10.21037/atm-21-25


Annals of Translational Medicine, Vol 9, No 10 May 2021 Page 3 of 13

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(10):833 | http://dx.doi.org/10.21037/atm-21-25

Figure 1 Flow chart of the study design. Computed tomography (CT) images were obtained in the unenhanced, arterial, and venous phases. 
Data from Hospital I were used to establish the prediction models (radiologist assessment, radiomics, and deep learning radiomics). Then, 
the external group from Hospital II was used to validate the prediction models. After the optimal prediction model had been selected, 
clinical indicators were added to observe changes in the predictive performance of this optimal model. In addition, an optimum model-based 
risk stratification model was established to explore its survival predictive potential.

Internal group
(Hospital I)

Prediction models 

CT findings

Radiomics

37 intensity features
106 texture features

External group
(Hospital II)

Validation

Deep learning radiomics

Features

Primary lesion 
and pancreas

Hepatobiliary 
system

Portal 
system

Lymph 
node

Clinical parameters

Neuroendocrine 
symptoms

Training and  
cross-validation

The optimal prediction 
model based on 

preoperative CT images

Risk 
stratification

Total 74 patients 
from Hospital I & II

High-risk group

Low-risk group

Survival analysisThe clinical-imaging prediction model

Age Sex

CT images

Training and 
cross-validation

Among them, radiomics and DLR were both used to extract 
features from images in the arterial, venous, and arterial & 
venous phases. In the second step, the models were validated. 
After cross-validation was completed using the internal 
group, an external validation was performed with CT images 
from Hospital II (Sun Yat-sen University Cancer Center, 
independent external group). Afterward, clinical indicators 
were added to the optimal model, and cross-validation was 
again performed on the data from Hospital I to observe the 
impact of clinical indicators on the predictive performance 
of the optimal model. In the last step, we constructed an 
optimum model-based risk stratification model to explore its 
survival predictive potential. 

Acquisition of patient data

Patient selection and clinical data
This study was conducted in strict accordance with the 

principles of the Declaration of Helsinki (as revised in 
2013). This retrospective study was approved by the 
Institutional Review Board of the First Affiliated Hospital 
of Sun Yat-sen University (No.: 2018-181), and written 
informed consent was waived by the Institutional Review 
Board. All patients had pNENs, that were pathologically 
confirmed after radical surgery from Hospital I and Hospital 
II, between 2010 and 2018 and did not receive any drugs or 
surgical treatment at the time of (or before) CT imaging. 
Patients with one of the following four conditions were 
excluded from the study population: (I) distant metastases 
had been detected in their first examination; (II) another 
concomitant malignancy was diagnosed; (III) a multiple 
endocrine neoplasia syndrome was confirmed; and (IV) not 
all CT images were available. The data filtering process 
is shown in Figure 2 and the data inclusion and exclusion 
criteria of the two medical centers were consistent. 

This study included three clinical parameters: age, sex, and 
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Figure 2 Data filtering procedure. pNEN, pancreatic neuroendocrine neoplasm; MEN, multiple endocrine neoplasia; CT, computed 
tomography.

Hospital I: 231 patients with pathologically proven pNENs
Hospital II: 121 patients with pathologically proven pNENs

Hospital I: 56 patients with 10 local relapse or distant metastasis (5-year cut-off)
Hospital II: 18 patients with 9 local relapse or distant metastasis (5-year cut-off)

Hospital I: 87 patients with distant metastasis when first examination
Hospital II: 53 patients with distant metastasis when first examination

Hospital I: 9 patients with other malignant tumor or MEN syndrome
Hospital II: 6 patients with other malignant tumor or MEN syndrome

Hospital I: 79 patients without available CT images
Hospital II: 44 patients without available CT images

Excluded

Excluded

Excluded

neuroendocrine symptoms. Neuroendocrine symptoms were 
defined as relevant symptoms typically caused by excessive 
secretion of hormones in patients with corresponding 
elevated hormone levels detected in blood samples. Patients 
were followed up from the date of surgery to May 24, 2019. 
A medical imaging examination [ultrasound/CT/magnetic 
resonance imaging (MRI)] was performed at least once every 
6 months in the first year, and once every six months or 1 year 
according to tumor pathological grade after 1 year (G1: once 
every year, G2/3 or neuroendocrine carcinoma: once every  
6 months). PET-CTs with 68Ga-labeled somatostatin analogues 
and 18F-labeled FDG were used to examine suspected cases 
of recurrence. The date of recurrence (including local 
recurrence and distant metastasis) was defined as the time of 
recurrence detected by cross-sectional imaging (CT/MRI) 
during the follow-up. The neoplasm grew at the primary site  
or other organ confirmed by PET-CT or biopsy was defined 
as local recurrence or distant metastasis.

For pNEN patients with postoperative recurrence, 
the 5-year RFS was defined as the time from the date of 
surgery to the date of the first detection of a postoperative 
recurrence. For patients without postoperative recurrence, 
the RFS was defined as the time from the date of surgery to 
the date of the latest follow-up.

CT image acquisition
CT scans were performed in Hospital I using a 64-slice spiral 

CT scanner (Aquilion 64; Canon Medical Systems). The 
scanning parameters were as follows: 0.5-mm slice thickness, 
0.5-mm slice interval, 200-mAs tube current, and 120-kVp 
tube voltage. An iodinated contrast agent (Ultravist 300; 
Bayer Schering, Berlin) was administered intravenously at a 
rate of 3 mL/s via a high-pressure syringe after pre-contrast 
imaging followed by a saline chaser bolus (40 mL) at the 
same rate. The arterial and venous phases were obtained at 
35 and 65 s after contrast injection, respectively. 

In Hospital II, the CT images were captured using a 
128-slice spiral CT system (Discovery CT750 HD; GE 
System, Milwaukee, WI, USA). The scanning parameters 
were as follows: 2-mm slice thickness, 1-mm slice interval, 
automatic tube current modulation (maximum 450 mAs), 
and 100–140-kVp tube voltage. The contrast agent was 
administered as described for Hospital I. The arterial and 
venous phases were obtained after the aortic opacification 
reached 100 Hounsfield units (HU). The average scan 
started after contrast injection at 36 s (range, 30–42 s) for 
the arterial phase and 66 s (range, 58–70 s) for the venous 
phase.

CT image analysis

CT findings
Regarding the CT findings assessed by radiologists, the 
conditions of the primary lesion, pancreas, lymph node, 
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hepatobiliary system, and portal system were all evaluated 
independently by two radiologists with more than 10 years 
of experience in the imaging diagnosis of abdominal diseases 
that were blinded to the patients’ pathological results. A 
detailed description of evaluated CT findings is shown in 
Table S1.

Radiomics
For radiomics, regions of interest (ROIs) were delineated 
by two radiologists that were responsible for the CT 
image evaluation, and they were also blinded to patients’ 
pathological results during the whole process. The ground 
truth (GT) values of all patients were labeled on CT 
images in arterial and venous phases using the ITK-SNAP 
software, as shown in Figure S1.

First, we converted the raw data from the DICOM to 
the NIFTI format. According to the experience of the 
radiologists, the window level and window width were set 
for the arterial phase to 130 and 310 HU, respectively, 
and for the venous phase to 120 and 320 HU, respectively. 
Finally, the voxel size of all images was resampled to 1 mm 
× 1 mm × 1 mm using the 3D cubic interpolation algorithm.

Based on our own developed toolkit, we extracted  
143 features describing intensity [37] and texture [106], 
such as gray-level co-occurrence matrix, spatial gray-level 
dependence matrix, neighborhood gray-tone difference 
matrix, and neighborhood gray-level difference statistics.

DLR
The prediction process based on DLR required only rough 
annotations by the radiologists. The ROI annotation was 
also completed by the two radiologists who were responsible 
for the CT image evaluation, and the pathological results 
of the patients were not disclosed to the radiologists. Each 
radiologist delineated the top layer, the largest layer, and the 
bottom layer of each tumor in the cross section. No strict 
criteria were used for delineation. The radiologists had only 
to draw the quadrilateral area containing the tumor area, as 
shown in  Figure S1.

We additionally collected 58 CT images without recurrence 
tags but with the GT of the segmentation in the arterial phase, 
and the scanning parameters of these data were consistent with 
those of the Hospital I data. These data were used specifically 
for the training and validation of the segmentation network. To 
ensure that the network learned the characteristics with higher 
identification power, we randomly sampled 22 cases from 
the Hospital I data set and mixed them with the additionally 
collected 58 cases, to randomly divide them at a 1:9 ratio 

into a verification and a training set. Then, we trained a two-
dimensional U-net to extract DLR features. Further details are 
presented in Figure S2 and the Supplementary Materials and 
Methods (“Training U-net for DLR” section).

Data preprocessing was performed as described in the 
“Traditional radiomics” section. The data for the training 
network only comprised the arterial phase GT, and both 
arterial and venous phase images used the pretrained arterial 
model when extracting features. We included all slices into 
the pretrained U-net to retrieve slice-wise features, and 
then, we used a clustering-based method to aggregate the 
slice-wise features into patient-wise features. Details of the 
feature extraction procedure are shown in the Supplementary 
Materials and Methods (“DLR features extraction” section).

Training and validation of the prediction models

Training and cross-validation of the models
We built the recurrence prediction models using a support 
vector machine algorithm (based on Scikit-learn machine 
learning library). We used 10-fold cross-validation on the 
internal group to evaluate the performance of the prediction 
model. In each fold, the two-sample t-test or Mann-Whitney 
U test was performed, and the features which showed 
significant differences between recurrence vs. recurrence-free 
groups were selected from the training set before applying 
the selection results to the test set. The model parameters for 
each fold were determined using the grid searching method 
on the training set. The main evaluation indicators of the 
final model were ACC, SEN, specificity (SPC), and AUC. 
The receiver operating characteristic (ROC) curves of all 
models were compared with the random case (AUC =0.5), 
and the AUC values between models were also compared 
using the DeLong test performed by MedCal software 
(version 12.5.0.0 by MedCal software bvba).

External independent validation
Using the ROC curves of the external independent dataset, 
we evaluated the robustness of the method which provided 
the optimal performance on internal dataset. We used a 
model integration approach to predict recurrence risk in 
external independent validation. The details of the model 
integration are presented in the Supplementary Materials 
and Methods (“Model integration” section). 

Statistical analysis

Clinical information and CT findings were analyzed using 
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univariate analysis. Continuous variables conforming 
to normal distribution were described by the mean and 
standard deviation, and the independent two-sample 
t-test was performed. If a normal distribution was not 
confirmed, the median and interquartile ranges were used, 
and the Mann-Whitney U test was performed as a non-
parametric test. For categorical variables, the χ2 test or 
exact probability method was used in this study. P<0.05 was 
defined as statistically significant. In this study, based on the 
optimal prediction model, patients from the two hospitals 
were divided into high- and low-risk groups for Kaplan-
Meier analyses. Patients were stratified into high- and low-
risk groups using the threshold of predicted recurrence 
probability defined as the highest Youden index (21) of the 
cross-validation ROC curves. All statistical analysis were 
performed by SPSS software (version 25.0 for Macintosh, 
IBM, Chicago, IL, USA).

Results

Finally, a total of 74 pNEN patients were included in this 
study. Fifty-six patients (recurrence of 10 patients within 
5 years) of Hospital I are used for training and internal 
validation, and 18 patients (recurrence of 9 patients within 
5 years) of Hospital II are used for external independent 
validation. The clinical information of patients of Hospital 
I is shown in Table S2 with CT findings. As for patients of 
Hospital II, neither the sex (6 females with recurrence of 
3 patients, 12 males with recurrence of 6 patients) nor the 
mean age (53.56±10.36 in recurrence group, 48.78±15.67 in 
recurrence-free group) was significantly different between 
the recurrence and recurrence-free groups. 

We annotated (by C Song and Y Luo with 4 and 8 years 
of working experience, respectively) on 5 random cases 

from the data. The mean time of the two radiologists to 
locate were 11.30 and 9.98 s, and the medians were 11.04 
and 9.79 s. The two radiologists spent an average of 647.19 
and 796.01 s in the fine-delineation process, with a median 
of 305.51 and 382.59 s, respectively.

Clinical information and CT findings

The results of the univariate analysis for Hospital I are 
shown in  Table S2. Among the examined factors, the CT 
ratios of the primary lesion in the unenhanced phase and 
the venous phase were significantly different between the 
recurrence and recurrence-free groups. Neuroendocrine 
symptoms, the shape and size of the primary lesion, the 
shape of pancreatic duct, lymph node morphology, and 
lymph node enhancement pattern were all significantly 
associated with recurrence. There were more patients with 
tumor recurrence in the groups with asymptomatic tumors, 
cystic-solid tumors, tumors with a maximum diameter 
greater than 20 mm, the dilation or cutoff of pancreatic 
duct, normal lymph node size, and homogeneous lymph 
node enhancement. In the univariate analysis for Hospital 
II, among the examined CT findings, only the CT ratio 
and the relatively enhanced rate of the primary lesion in 
the arterial phase and the venous phase were significantly 
different between the recurrence and recurrence-free 
groups. The AUCs were 0.53 and 0.52 respectively in the 
internal and validation groups.

Radiomics

Table 1 shows the results of the 10-fold cross-validation of 
the radiomics model based on features in different phases 
extracted from the data of Hospital I. Using the data of 

Table 1 Accuracy, sensitivity, specificity, and AUC values of the radiomics models for recurrence prediction (56 patients from Hospital I and  
18 patients from Hospital II)

Models
Hospital I (internal data set) Hospital II (independent data set)

ACC SEN SPC AUC P ACC SEN SPC AUC P

Radiomics-A 0.75 0.70 0.76 0.74 0.020 0.44 0.11 0.78 0.56 0.691

Radiomics-V 0.71 0.80 0.70 0.68 0.083 0.44 0.33 0.56 0.52 0.965

Radiomics-A&V 0.71 0.80 0.70 0.70 0.044 0.56 0.22 0.89 0.56 0.691

The threshold of the predictive probability used to calculate ACC, SEN, and SPC was the highest Youden index of the cross-validation 
ROC curves for the internal data set. A P value indicates the significance level of the comparison between an AUC with that of a random 
case (AUC =0.5). AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPC, specificity; A, arterial; V, venous; A&V, arterial & 
venous.

https://cdn.amegroups.cn/static/public/ATM-21-25-Supplementary.pdf
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Hospital II, the results of the established prediction models 
were verified independently. According to the cross-
validation and independent validation results, the model 
performed best in the arterial phase with an AUC of 0.74 
for cross-validation and 0.56 for independent validation. 
The results of the DeLong test comparing the different 
phases are shown in Table S3. There were no significant 
differences in AUCs for different phases. The ROC curves 
of the radiomics model in different contrast phases are 
shown in Figure S4.

DLR

The 10-fold cross-validation results based on DLR features 
are shown in Table 2. The Hospital II data were used to 
validate this model independently. The model reached the 
highest AUCs in the arterial phase both for cross-validation 
(0.80) and independent validation (0.77). The ROCs 
are compared in Table S3. For the different phases, no 
significant differences were detected in the cross-validation 
results. Figure S4 shows the ROC curves of all models 
trained with DLR.

Optimal prediction model with and without added 
clinical features, the comparison of the optimal radiomics 

model, the optimal DLR model, and the model based on 
CT findings regarding the prediction of postoperative 
tumor recurrence is shown in Table 3. The highest cross-
validated AUC value was observed in the DLR model of the 
arterial phase (DLR-A; AUC =0.80). The cross-validation 
results with added clinical information (not included in the 
feature extraction) are shown in Table 4. After including the 
three clinical parameters, all model indicators, except for 
SEN decreasing by 0.10, were improved to some extent 
with ACC, SPC, and AUC reaching 0.80, 0.80, and 0.83, 
respectively. However, the ROC results of the models 
before and after the addition of the clinical information 
were not significantly different. As shown in Table S3, all 
image-based models showed no statistically significant 
differences between each other. Figure 3A displays the ROC 
curves of the optimal radiomics model (radiomics-A), the 
optimal DLR model (DLR-A), and the model based on CT 
findings. The ROC curve of the DLR-A model with added 
clinical information is presented in Figure 3B.

Survival analysis

Using the predicted value of the DLR-A model as the risk 
factor and the highest Youden index in the internal group 

Table 2 Accuracy, sensitivity, specificity, and AUC values of the DLR models for recurrence prediction (56 patients from Hospital I and  
18 patients from Hospital II)

Models
Hospital I (internal data set) Hospital II (independent data set)

ACC SEN SPC AUC P ACC SEN SPC AUC P

DLR-A 0.71 0.90 0.67 0.80 0.003 0.61 0.55 0.66 0.77 0.058

DLR-V 0.73 0.60 0.76 0.58 0.429 0.44 0.22 0.67 0.48 0.895

DLR-A&V 0.71 0.80 0.70 0.72 0.034 0.61 0.44 0.78 0.64 0.310

The threshold of the predictive probability used to calculate ACC, SEN, and SPC was the highest Youden index of the cross-validation 
ROC curves for the internal data set. A P value indicates the significance level of the comparison between an AUC with that of a random 
case (AUC =0.5). AUC, area under the curve; DLR, deep learning radiomics; ACC, accuracy; SEN, sensitivity; SPC, specificity; A, arterial; V, 
venous; A&V, arterial & venous.

Table 3 Performance comparison between the optimal radiomics model (radiomics-A), the optimal DLR model (DLR-A), and the model based 
on CT findings (56 patients from Hospital I)

Model ACC SEN SPC AUC P

Radiomics-A 0.75 0.70 0.76 0.74 0.020

DLR-A 0.71 0.90 0.67 0.80 0.003

CT findings 0.63 0.50 0.65 0.53 0.748

A P value indicates the significance level of the comparison between an AUC with that of a random case (AUC =0.5). DLR, deep learning 
radiomics; A, arterial; CT, computed tomography; ACC, accuracy; SEN, sensitivity; SPC, specificity; AUC, area under the curve.

https://cdn.amegroups.cn/static/public/ATM-21-25-Supplementary.pdf
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as its stratification threshold (0.165499), the combined 
patients from both hospitals were divided into a high-risk 
and a low-risk group. The mean and median survival times 
were in the high-risk group 36.28 months [95% confidence 
interval (CI), 26.37 to 46.20 months] and 38.53 months 
(95% CI, 10.63 to 66.44 months), respectively. The mean 
survival time in the low-risk group was 53.11 months (95% 
CI, 46.91 to 59.32 months). The survival analysis using the 

Kaplan-Meier method is shown in Figure 4, in which the  
P value of the log-rank test is 0.003.

Discussion

In this study, we successfully established recurrence 
prediction models for pNEN patients based on three 
methods: radiologist assessment, radiomics, and DLR. 

Table 4 Accuracy, sensitivity, specificity, and AUC values of the DLR-A recurrence prediction model with added clinical information (56 patients 
from Hospital I)

Model ACC SEN SPC AUC Pa
Pb

DLR-A + s DLR-A + sa DLR-A + sag

DLR-A 0.71 0.90 0.67 0.80 0.003 0.413 0.822 0.680

DLR-A + s 0.71 0.80 0.70 0.75 0.015 – 0.459 0.108

DLR-A + sa 0.76 0.90 0.73 0.79 0.004 – – 0.483

DLR-A + sag 0.80 0.80 0.80 0.83 0.001 – – –
a, a P value indicates the significance level of the comparison between an AUC with that of a random case (AUC =0.5). b, a P value 
indicates the significance level of comparison between every two AUCs. AUC, area under the curve; DLR, deep learning radiomics; A, 
arterial; ACC, accuracy; SEN, sensitivity; SPC, specificity; + s, symptom added; + sa, symptom and age added; + sag, symptom, age, and 
gender added.

Figure 3 The receiver operating characteristic (ROC) of deep learning radiomics (DLR), radiomics and CT findings models in Hospital I. (A) 
The receiver operating characteristic (ROC) curves of the optimal radiomics (R) model (R-A), the optimal deep learning radiomics model 
(DLR-A), and the model based on CT findings. (B) The ROC curves of the DLR-A model with added clinical information. AUC, area 
under the curve.
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We also analyzed the influence of CT imaging phase and 
clinical information on the performance of the prediction 
models. Compared with previous studies (1,9,12,22,23) 
on postoperative recurrence in pNEN patients, we found 
that most of these studies performed univariate analyses 
based on biochemical indicators or CT findings without an 
established and validated prediction model. Some indicators 
like the Ki-67 index or the pathological grade can only be 
obtained after surgery limiting their practical application. 
Our study applied radiomics successfully to postoperative 
recurrence prediction in patients with pNEN based on 
preoperative parameters. The DLR-A model performed 
optimally on both internal and external data sets but without 
significantly difference between the models. The results 
of the CT findings in our study were consistent with those 
in previous publications (13,14,24-26). Smaller and round 
lesions often indicated less aggressive behavior or early 
discovery, which are both associated with a better prognosis. 
The CT ratio represents the difference in CT values 
between the primary lesion and the pancreas parenchyma. 
In the unenhanced phase, more patients in the recurrence-
free group showed lower attenuation of the primary lesion 
relative to the pancreas parenchyma. An explanation might 

be that these lesions contained fewer solid components 
or that tumor cells proliferated more slowly. pNENs are 
highly vascularized tumors. Thus, they were significantly 
enhanced in the arterial phase in both the recurrence and 
the recurrence-free groups. However, in the venous phase, 
more patients in the recurrence group presented a lower 
attenuation of the primary lesion relative to the pancreas 
parenchyma. Possibly, the lesions of the recurrence group 
contained more blood vessel connections leading to faster 
blood flow, and consequently, a more obvious CT value 
decrease in the venous phase would be observed in the 
recurrence group. Regarding the lymph node morphology, 
the confluent multinodular lymph node group with its 
100% recurrence rate comprised only one patient. In the 
enlarged lymph node group and the normal lymph node 
group, 60% [3/5] and 15% [6/41] of the patients presented 
with postoperative recurrence, respectively. Considering 
the aspect of lymph node enhancement patterns, the two 
patients of the heterogeneous enhancement group both 
presented with postoperative recurrence. Lymph node 
enlargement, fusion, and heterogeneous enhancement are 
important indicators of lymph node metastasis in various 
tumor types, and the same is true for pNENs (27). Given 

Figure 4 Survival analysis using the high- and low-risk groups according to the DLR-A model. The Kaplan-Meier analysis shows a 
statistically significant difference (P=0.003; log-rank test) between these groups regarding recurrence-free survival. DLR, deep learning 
radiomics; A, arterial.
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that the liver is the organ most susceptible to metastasis and 
that the venous reflux from the pancreas is drained through 
the portal system of the liver, the CT findings of the liver 
and its portal system were also included in our study. 
However, these group differences were not statistically 
significant. A larger pNEN sample size may be needed for 
further explorations. 

The model based on CT findings required the manual 
image evaluation by the radiologists, whereas the radiomics 
model involved the radiologists precisely delineating the 
ROIs. Although in this study as in most previous studies 
experienced radiologists were employed to avoid the 
variability and subjectivity of manually delineated ROIs, 
the level of experience to evaluate CT images differs in 
practice. Our simple semi-automatic method used in the 
DLR prediction model greatly reduced subjectivity and 
task complexity, while achieving high SEN by roughly 
locating the tumor. Although the ACC and SPC values of 
the external independent validation were low due to some 
deviation in the distribution of features, the AUC value of 
these data reached 0.77 indicating that the model still had 
a robust ability for risk stratification. We used a segmented 
network-based DLR method using image properties (mask) 
to supervise the network training and to automatically 
obtain more force-expressing features with less data volume. 
Therefore, over- or underfitting problems due to the use 
of unbalanced recurrent tags to supervise the training were 
avoided. Another study (23) conducted by our research 
team used only grading labels for supervision, and the 
results demonstrated that the deep learning method was not 
superior to the radiomics approach. Moreover, the findings 
suggested that the use of semantic labels such as grading 
or recurrence labels to supervise networks might limit the 
performance with small training sets. 

This study also compared the performance of the models 
based on different contrast enhancement phases, and we 
found that the models in the arterial phase performed 
superior to the models in the venous or arterial & venous 
phases for both radiomics and DLR models. This result 
is consistent with the previous findings of our team (23). 
The reasons for this are as follows: (1) Most pNEN lesions 
are highly vascularized. Thus, the difference between 
the primary tumor and the surrounding normal pancreas 
parenchyma is more obvious in the arterial phase, and the 
tumor outline is more clearly displayed. By contrast, the 
demarcation between tumor and surrounding parenchyma 
is relatively poor in the venous phase. The segmentation 
network would, therefore, better acquire the ability to 

distinguish the tumor from the surrounding tissue in the 
arterial phase. In other words, the segmentation network 
excluded any interference from the surrounding tissue 
in the arterial phase and could pay more attention to the 
characteristics of the tumor itself (2). Compared to DLR, 
the feature extraction was in the radiomics model limited 
by the radiologist-defined tumor boundaries. Because 
pNENs are better distinguishable in the arterial phase, it 
was easier to observe characteristics such as texture in the 
arterial than in the venous phase (3). In the DLR models, 
the characteristics with poor performance may be due to 
the obscured tumor contour in the venous phase and the 
inability of the network to effectively identify the tumor 
area. That a network trained on arterial data was unsuitable 
for venous data may be another reason, and the inherent 
phase differences led to the transfer failure (4). Finally, the 
performances of the combined arterial & venous phase 
models were for both DLR and radiomics methods not as 
good as the arterial phase models, which may have been 
caused by feature redundancy. Feature redundancy means 
that features have a high degree of collinearity. The same 
situation occurred in our previous study (23). Theoretically, 
high collinearity can lead to poor model prediction 
performance (28). We performed a collinearity analysis on 
the DLR features of arterial phase and venous phase, and 
the results showed that most of the two features have a high 
degree of collinearity (Figure S5). Therefore, the redundant 
information brought by the highly collinearity feature is 
the reason why the DLR-arterial & venous (DLR-A&V) 
model is inferior to the DRL-A model. In the current 
study we added clinical information to the optimal DLR-A 
model and found that the performance was improved 
without reaching statistical significance. This indicates the 
importance of clinical information and its positive effects on 
the modeling process. 

In this study, the optimal model (DLR-A) was selected 
to stratify the risk of postoperative recurrence in pNEN 
patients from two hospitals. According to the results of 
the Kaplan-Meier analysis, in the DLR-A model that 
determined the recurrence probability with a 5-year RFS 
cutoff, the survival rates differed significantly between 
high- and low-risk groups. Moreover, the survival analysis 
included not only the final status of a patient but also 
information about the time to reach this status. Compared 
with other model evaluation indicators like AUC, ACC, 
etc., the results of the survival analysis (such as survival time, 
mean survival time) reflected the ability of the prediction 
model to stratify the survival status of patients and their 

https://cdn.amegroups.cn/static/public/ATM-21-25-Supplementary.pdf
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theoretical survival status with more practical significance.
In our study, none of the models performed was better 

than random chance in external data set. There may be 
heterogeneity in the imaging data due to the different 
parameters in the scanning process at different centers, 
which can reduce the generalization ability of the prediction 
models. As indicated in some recent studies (29-31), domain 
adaptive technology based on deep learning may be applied 
to reduce the difference in data distribution to improve 
the generalization ability of the method in further studies. 
Another factors, such as surgeons of different experience in 
different hospitals, and postoperative monitoring frequency, 
etc., can be influential, and require prospective studies to 
verify.

There are some limitations to our study. First, although 
the DLR-A model was the optimal model in our study, it was 
still only a semi-automatic method that requires a radiologist 
to provide information regarding the tumor location. 
Fully automatic localization or segmentation for feature 
extraction is warranted, not only to avoid the subjectivity of 
a radiologist but also to improve the prediction performance. 
Second, similar to our study, published studies in patients 
with pNENs are mostly limited by small data sets (23,32,33). 
This might be the reason that no statistically significant 
differences within each model were detected. However, 
the difference between the DLR-A and the random model 
was statistically significant in the internal group and in the 
external group, the difference between the DLR-A and the 
random model was nearly significant. The survival analysis 
also demonstrated the potential of the optimal model for 
prognosis prediction. In this study, the independent dataset 
was small. It needs a larger external dataset to further prove 
the robustness of the model in the future. Third, in four 
patients of the external group, the records regarding their 
neuroendocrine symptoms were not available. Therefore, we 
failed to validate the model with added clinical features using 
the data from Hospital II. Fourth, in our presented study, 
we did not predict two outcomes (local recurrence and distal 
metastasis) separately due to the limitation of the sample size. 
Finally, the performance of our optimal model remains to be 
improved with emerging artificial intelligence technologies. 
We believe that these technologies can overcome the 
problems of sample size and annotation to further improve 
the ACC of the prediction model.

Conclusions

In summary, this study successfully established a preoperative 

prediction model of pNEN recurrence with good 
generalization in an external data set. It provides the basis 
to evaluate the risk of postoperative recurrence in pNEN 
patients with high SEN, thus aiding decision-making 
processes in clinical practice. But how individual follow-up 
surveillance and treatment plans in patients with different 
postoperative risks should be performed, needs to be further 
explored based on the results of the current study. 
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Table S1 Description of CT findings

CT findings Subcategories Description

Primary lesion

The max diameter
The maximal diameter in the axial plane was recorded for pNENs and the data 
was categorized as ≥20 mm group and <20 mm group

Location
The location of pNENs was recorded as the uncinate process, head or neck, body 
and tail

Property
pNENs was divided as purely solid, purely cystic and solid-cystic mixed types 
according to the hypo-attenuation portion less than 30 HU with no enhancement 
in both arterial and portal venous phases

Calcification
Calcification in pNENs was recorded with the presence of hyper-attenuation 
portion more than 80 HU

Shape
The shape of pNENs was classified into 3 types: round shape with clear margin, 
simple nodular with extra-nodular growth and confluent multinodular

Boundary
If there was a clear line between pNENs’ lesion and surrounding tissues, it was 
recorded as clear boundary. Otherwise, it was recorded as unclear boundary

Vessel involvement
If there was filling defect in pNENs’ surrounding vessels (artery observed in arterial 
phase, venous observed in venous phase), it was recorded as surrounding vessel 
involvement. Otherwise, it was recorded as surrounding vessel non-involvement

CT ratio
CT ratio was defined as the CT value of pNENs’ lesion divided by the  
non-tumorous pancreatic parenchyma. We recorded CT ratio in unenhanced 
phase, arterial phase and venous phase, respectively

Relatively enhanced rate
Relatively enhanced ratio was calculated by that increased CT value of pNENs’ 
lesion divided by the increased CT value of aorta in the same plane. We recorded 
the data in arterial phase and venous phase, respectively

Pancreas Pancreatic duct dilated or cut
The dilation of pancreatic duct was recorded when the diameter of main 
pancreatic duct measured more than 3 mm. Pancreatic duct cut was defined as a 
sudden interruption of the main pancreatic duct

Pancreas atrophy
Pancreas atrophy was defined as more than expected loss or of adipose 
infiltration of pancreas parenchyma

Lymph node

Morphology
The maximal diameter of lymph node short axis in the axial plane was recorded 
and the data was categorized as normal group (<10 mm), enlarged group  
(≥10 mm) and multinodular confluent group

Enhancement pattern
pNENs’ lesion was characterized as heterogeneous enhancement when there was 
hypo-attenuation area in the solid part and homogeneous enhancement when the 
solid part appeared as the same attenuation in arterial phase

Hepatobiliary  
system

Fatty liver Fatty liver was defined as the CT value of liver decreased less than 40 HU

Focal benign lesion
Hepatic focal benign lesions included pure cyst, focal nodular hyperplasia and 
calcification with typical CT imaging appearance confirmed by hepatic lesion 
imaging diagnostic expert

Bile duct dilatation
The diameter of bile duct >5 mm was recorded as dilation. The diameter of 
common hepatic duct and common bile duct >10 mm was recorded as dilation

Portal system

Portal vein The diameter of portal vein was measured at the plane of hepatic hilum

Splenic vein The diameter of splenic vein was measured at the plane of splenic hilum

Splenic varices
Increased and dilated blood vessels at the splenic hilum were recorded as splenic 
varices

Splenomegaly The spleen was beyond 5 costal units on axial plane

CT, computed tomography; pNEN, pancreatic neuroendocrine neoplasm.
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Figure S1 ROIs for radiomics (red) and DLR (green). ROIs, regions of interest; DLR, deep learning radiomics.

Figure S2 Network structure of 2D U-net. The W and H and C donate width and height and channel of feature map, respectively. Conv, 
convolution; GAP, global average pooling; Trans conv, transposed convolution.



Table S2 Clinical information and CT findings in recurrence and recurrence-free pNENs (56 patients from Hospital I)

Variables Recurrence-free (n=46) Recurrence (n=10) Statistics* P

Clinical information

Age 14.25 (3.00) 14.75 (4.50) m 140.000 0.054

Sex x 0.487 0.730

F 24 4

M 22 6

Symptom f 0.032

N 23 9

Y 23 1

Primary lesion

The max diameter f 0.032

<20 mm 23 1

≥20 mm 23 9

Location f 0.850

Uncinate process 16 5

Head and neck 14 2

Body 4 1

Tail 12 2

Property f 0.054

Cystic 0 1

Mixed 18 6

Solid 28 3

Calcification f 0.390

Y 38 7

N 8 3

Shape f 0.022

Round 29 2

Local lobulated 11 4

Confluent multinodular 6 4

Boundary f 0.140

Clear 32 4

Unclear 14 6

Vessel involvement 1.000

N 42 9

Y 4 1

CT ratio

Unenhanced 1.16 (0.38) 0.85 (0.45) m 136.000 0.044

Arterial phase 1.21 (0.61) 0.90 (0.88) m 172.000 0.260

Venous phase 1.16 (0.38) 0.85 (0.45) m 136.000 0.044

Relatively enhanced rate

Arterial phase 0.43 (0.39) 0.28 (0.34) 0.052

Venous phase 0.64 (0.37) 0.48 (0.45) 0.120

Pancreas

Pancreatic duct dilated or cut f 0.028

N 39 5

Y 7 5

Pancreas atrophy f 0.680

N 36 7

Y 10 3

Lymph node

Morphology f 0.023

Normal 41 6

Enlarged 5 3

Confluent multinodular 0 1

Enhancement pattern f 0.029

Homogeneous 46 8

Heterogeneous 0 2

Hepatobiliary system

Fatty liver f 1.000

N 43 10

Y 3 0

Focal benign lesion f 0.490

N 26 4

Y 20 6

Bile duct dilatation f 1.000

N 40 9

Y 6 1

Portal system

Portal vein 14.25 (3.00) 14.75 (4.50) m 189.500 0.380

Splenic vein 8.83±2.15 7.60±2.95 t −1.244 0.240

Splenomegaly f 1.000

N 29 6

Y 17 4

Splenic varices f 0.560

N 43 9

Y 3 1

*, t represents Student’s t-test, m represents Mann Whitney U test, x represent Pearson chi-square test, f represents fisher exact 
probability test. CT, computed tomography; pNEN, pancreatic neuroendocrine neoplasm.
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Table S3 DeLong test results (P value) of ROC comparisons for all models based on Hospital I image datasets

Model DLR-A DLR-V DLR-A&V Radiomics-A Radiomics-V Radiomics A&V CT findings

DLR-A – 0.0632 0.1519 0.5952 0.2808 0.4309 0.1191

DLR-V – – 0.1618 0.1719 0.3590 0.2756 0.7364

DLR-A&V – – – 0.8552 0.6310 0.9041 0.2474

Radiomics-A – – – – 0.6500 0.7994 0.1046

Radiomics-V – – – – – 0.5058 0.2855

Radiomics-A&V – – – – – – 0.1966

CT findings – – – – – – –

ROC, receiver operating characteristic; DLR, deep learning radiomics; A, arterial; V, venous; A&V, arterial & venous; CT, computed 
tomography.

Figure S3 Flow chart of deep learning radiomics feature extraction.
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Figure S4 ROCs of different phases with radiomics, deep learning radiomics (DLR) and CT findings in the internal and external groups. 
ROC, receiver operating characteristic.



Supplementary Materials and Methods

Section 1 Training U-net for DLR

We used a 2D U-net to extract DLR features (Figure S2). 
The encoder of the U-net contained 4 downsampling 
modules, and the decoder contained 4 upsampling 
modules constructed based on transposed convolution. 
Skip connections were set between the upsampling and 
downsampling modules to provide more high-resolution 
information for the decoder. The initial learning rate was 
set as 1×10−5, the optimizer was Adam, and we used cross-
entropy as loss function. Dice similarity coefficient (DSC) 
was calculated on the validation set for evaluating the 
performance of segmentation, and the calculation formula of 
DSC was as follow, where A and B are the ground truth (GT) 
and predicted segmentation mask of the image, respectively.

2|A B|
DSC(A,B) =

|A|+|B|

 
[1]

Section 2 DLR features extraction

In the feature extraction process (Figure S3), we first took 
the smallest externalized cube of the region of interest 
(ROI) roughly annotated by the radiologists in 3D space as 
processed ROI, then for each patient we inputted each slice 
of CT image in processed ROI and extracted the feature map 
[after exponential linear unit (ELU) activation] of the last 
convolution layer before the decoder. Then a global average 
pooling (GAP) was performed to convert the feature map 
with size of 16×16×1,024 into a feature vector with size of 
1×1,024.

The input of segmentation network was a 2D slice of 
the tumor on CT image, and the recurrence annotation 

was patient-wise, so it was necessary to aggregate all slice-
wise feature vectors of the same patient into a patient-
wise feature vector. The feature vectors extracted from the 
multi-layer images of the same sample was n ×1,024, and 
n was the number of tumor slices. All feature vectors were 
clustered into 2 clusters based on K-means algorithm, and 
the maximum cluster was preserved. Then we took the mean 
value in the maximum cluster along feature dimension to get 
the final vector with a size of 1×1,024. 

Section 3 Model integration

For model integration, we used models in each fold of cross-
validation on internal group to predict the recurrence risk of 
each patient in external group, and the average of the multi-
model predicted recurrence risk was used to calculate the 
evaluation metric. The whole process of model integration 
can be expressed as following equation, 

{ }∈i i,p i,p iY = F(x )|x X
 

[2]

∑i in n

1
Z = g (K(Y ))

N
 [3]

where X and x represent the CT image (in processed ROI) 
and its slice, respectively. And i is the patient index, p is the 
slice index. F denotes the segmentation feature extraction 
process (whose output is a feature vector), and Y is the feature 
vector set of all slices of tumor X. In the latter formula, K is 
the feature aggregation operation (K-means clustering), and 
g denotes the recurrence prediction model (whose input is a 
feature vector). N is the number of classification models, and 
n is the cross-validation model index. Z is the final predicted 
recurrence risk of patient in external group.

Figure S5 Collinearity analysis results of DLR features in arterial and venous phases. (A) Heatmap of absolute value of correlation 
coefficient r, 206 features overlap between arterial and venous phases (which correlation coefficients are shown in the red box). (B) 
Histogram of Pearson’s correlation coefficient r distribution. (C) Histogram of P value distribution. DLR, deep learning radiomics.
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