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Intravoxel incoherent motion (IVIM) theory in magnetic 
resonance imaging (MRI) was proposed by Le Bihan et al.  
to account for the effect of vessel/capillary perfusion on 
the aggregate diffusion weighted MR signal. The fast 
component of diffusion is related to micro-perfusion, 
whereas the slow component is linked to water molecular 
diffusion. Three parameters can be computed. Dslow (or D) 
is the diffusion coefficient representing the slow “pure” 
water molecular diffusion (unaffected by perfusion). The 
perfusion fraction (PF, or f) represents the fraction of the 
compartment related to (micro)circulation, which can 
be understood as the proportional “incoherently flowing 
fluid” (i.e., blood) volume. Dfast (or D*) is the perfusion-
related diffusion coefficient representing the incoherent 
microcirculation within the voxel, which holds information 
for blood perfusion’s speed. Among IVIM research 
community, it has been generally assumed that the perfusion 
component and the diffusion component can be separately 
determined. We recently reported that, for the liver, IVIM 
modeling of the perfusion component is constrained by the 
diffusion component, and a reduced Dslow measure leads to 
artificially higher PF and Dfast measures (1,2). Two related 
questions would then follow: Is this phenomenon also 
observed in organs other than the liver? Can a reduction 
of PF lead to an artificial elevation of Dslow measure? We 
argue that the answer is “yes” to both questions. Hereby, we 
explain this point by using examples in existing brain IVIM 

literatures with acute PF change being the initiating factor. 
These examples suggest a lower PF can lead to a higher 
observed Dslow. 

By increasing arterial carbon dioxide pressure (PaCO2), 
McKinstry et al. (3) induced brain grey matter perfusion 
increases in three dogs and IVIM imaging of the brain 
was acquired. PaCO2 was changed according to the order 
of: low PaCO2, high PaCO2, and normal PaCO2. Their 
IVIM analysis in Fig-5 shows, among various PaCO2, 
PF and Dslow changed toward the opposition directions. 
When PF went up, Dslow went down; when PF went 
down, Dslow went up. Pavilla et al. (4) studied cerebral 
hypoperfusion induced by hyperventilation challenge in 10 
healthy volunteers. For the IVIM measures, they reported 
cerebellum grey matter had PF of 0.16±0.07 under normal 
ventilation and 0.07±0.09 (P=0.03) under hyperventilation, 
while Dslow was 0.55±0.10 and 0.63±0.13 (×10−3 mm2/s,  
P=0.05) respectively under normal ventilation and 
hyperventilation. Thus, hyperventilation included 
lower PF and higher Dslow measures in cerebellum grey 
matter. In the study by Xu et al. (5), a middle cerebral 
artery occlusion model was established in 24 beagle 
dogs, and IVIM imaging data were acquired at 4.5 hours 
after model establishment. Serum soluble CD40L level 
was used as an indicator of microvascular thrombosis 
after acute ischemic stroke onset, with its higher level 
associated with more microvascular thrombosis events 
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and thus lower perfusion in the ischemic stroke lesions 
(5,6). Their Fig-5A (for Dslow) and Fig-5B (for PF) show 
a potential negative correlation between PF and Dslow. 
Compared with the contralateral healthy brain hemisphere 
[PF =0.055±0.008, Dslow =(0.813±0.152)×10−3 mm2/s],  
the stroke lesions had lower PF and low Dslow. However, the 
stroke lesions with higher serum soluble CD40L level and 
lower PF (0.041±0.007) had higher Dslow (0.531±0.153) than 
Dslow (0.435±0.044, P=0.057) of the stroke lesions with lower 
serum soluble CD40L level and higher PF (0.051±0.007, 
P<0.001). With IVIM measures of 20 acute ischemic 
stroke patients, Zhu et al. (7) reported penumbra zone, 
ipsilateral non-ischemia region, and contralateral healthy 
hemisphere had PF of 0.0541±0.0323, 0.0755±0.0454, 
and 0.0722±0.0293 respectively, while the corresponding 
Dslow measure was 0.847±0.116, 0.819±0.225, 0.842±0.100  
(×10−3 mm2/s) respectively, with the lowest PF associated 
with highest Dslow and highest PF associated with lowest 
Dslow. 

In interpreting the relationship between PF and Dslow, it 
should be noted that acute brain ischemia (with a reduction 
of PF) can indeed induce cytotoxic edema resulting in a 
reduction of Dslow (8,9). When both PF and Dslow are truly 
decreased and the decrease of Dslow is of sufficient extent, 
Dslow can be measured as “decreased” [such as the case 
for IVIM measure of brain ischemic core (7-9)]; though 
a possibility remains that, even for such decreased Dslow 
measures, their observed value is still over-estimated. On 
the other hand, there likely is a PF change magnitude 
window which does not induce observed Dslow reduction 
but instead induce observed Dslow artificial elevation. As 
time goes on, ischemia induced cytotoxic edema may 
turn into vasogenic edema which will demonstrate a 
true Dslow elevation (8,9). In the examples of McKinstry  
et al. (3), Pavilla et al. (4) and Xu et al. (5), brain changes 
or lesions would not have had dominant vasogenic edema 
with overall true Dslow elevation. In the example of Zhu  
et al. (7), for the retrospective cohort of stroke patients with 
vessel occlusion, the mean time from onset to treatment 
was 8.3±5.1 hours and MRI was conducted before the 
treatment, it is still more likely that there was no sufficient 
vasogenic edema leading to overall true Dslow elevation. 

The point  d iscussed here  wi l l  have important 
implications in interpreting IVIM data. For example, 
in the report by Zhu et al. (7), the penumbra zone 
had  a  decrea sed  PF  o f  0 .0541±0 .0323  (norma l : 
0.0722±0.0293, ischemic core: 0.0445±0.0262), while the 
observed Dslow was (0.847±0.116)×10−3 mm2/s [normal:  

( 0 . 8 4 2 ± 0 . 1 0 0 ) × 1 0 − 3  m m 2 / s ,  i s c h e m i c  c o r e : 
(0.544±0.111)×10−3 mm2/s]. Considering the degree of PF 
reduction, there could be a possibility that penumbra zone’s 
true Dslow had decreased, the observed Dslow which was 
normal (or slightly higher than normal) was masked by an 
artificial increase of Dslow measure due to true reduction of 
PF. Moreover, the results of McKinstry et al. (3) and Zhu 
et al. (7) also suggest the possibility that a truly increased 
PF can lead to an artificial lowering of Dslow measure. In 
the study of McKinstry et al. (3), when a PF increase was 
induced by increasing PaCO2, a lowering of Dslow was 
noted. In the results of Zhu et al. (7), compared with the 
contralateral healthy brain, the ipsilateral non-ischemia 
region had slightly higher PF measure (0.0755±0.0454) 
than that of the contralateral brain (PF: 0.0722±0.0293) 
which would have been caused by collateral blood flow 
compensation (10), resulting in a slightly lower Dslow 
measure than that of the contralateral brain (0.819±0.225 vs. 
0.842±0.100 ×10−3 mm2/s). 

Taking together the evidence explained here and our 
previously discussions (1,2), it can be summarized that, if 
one component, being perfusion component or diffusion 
component, changes toward one direction (i.e., increase 
or decrease), the other component will be constrained to 
change toward the opposite direction to a certain extent. 
For this problem, one might expect the cause could be 
that currently prevalent IVIM modeling does not fully 
consider the varied noise proportions of diffusion weighted 
images scanned under different acquisition conditions (11). 
However, our preliminary further analysis showed noise 
correction only slightly improved this “constraining”. 
Moreover, the prevalent IVIM modeling is based on Eq. [1]: 

 
( ) ( ) ( ) ( ) ( )slow fastb 0SI SI 1 PF exp D PF exp Db b= − × − × + × − ×

 [1]
where SI(b) and SI(0) denote the signal intensity of images 
acquired with the b-factor value of b and b =0 s/mm2, 
respectively. With higher b-value associated lower image 
signal of the target tissue, Eq. [1] is focused on describing 
the signal decay pattern along increasingly higher b-values 
by three IVIM parameters (PF, Dslow, Dfast). Signal intensity 
at each b-value [i.e., SI(b)] is normalised by the signal 
intensity of b =0 image [i.e., SI(0)]. Applying this approach, 
for example if we want to compare the IVIM parameters 
of the normal brain and a brain tumor, we will take SI(0) 
of the normal brain and SI(0) of the tumor both as 1 (or 
100) for the biexponential decay modelling, thus we would 
be assuming the SI(0) of the normal brain and the SI(0) the 
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tumor are equal. This could be invalid in many scenarios. 
We demonstrated that an initial lower SI(0) of the target 
tissue is associated with a lower Dslow and a higher PF 
(1,2,11,12), regardless of whether we used segmented fitting 
or full fitting (1). Regardless of whatever methods we use 
to fit the curve of the diffusion weighted imaging signal 
decay along increasingly higher b-values, IVIM parameters 
are determined by this curve’s pattern which is in turn 
determined by relativity of SI(b) to SI(0). Therefore, target 
tissues of different compositions, which have different SI(0), 
may not necessarily be directly compared with the three 
IVIM parameters. For example, if two living tissues had 
the same diffusion and perfusion as well as other biological 
properties but these two tissues had different iron contents, 
we would expect the tissue with higher iron content would 
have lower SI(0), lower measured Dslow, and higher measured 
PF (12). We consider this problem is not easily solvable by 
a better fitting approach, by high signal-to-noise images, or 
by an extensive array of b-value images. Further research 
to better separate diffusion component and perfusion 
component should be pursued (1,13). Another possible 
approach would be that, if the reference values of IVIM 
diffusion and perfusion components are already known 
with standardised data acquisition, then we may be able to 
understand how these constrains can be computationally 
compensated for each target tissue. 
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