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Single-cell RNA-seq reveals transcriptional landscape and 
intratumor heterogenicity in gallbladder cancer liver metastasis 
microenvironment
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Background: Gallbladder cancer (GBC) is a highly aggressive biliary epithelial malignancy. The median 
survival time of GBC patients was less than 1 year. Tumor invasion and metastasis are the major cause of 
high mortality of GBC patients. However, the molecular mechanisms involved in GBC metastases are still 
unclear.
Methods: We performed 10X genomics single-cell RNA sequencing (scRNA-seq) on GBC liver metastasis 
tissue to evaluate the characteristics of the GBC liver metastasis microenvironment.
Results: In this study, 8 cell types, a total of 7,788 cells, including T cells, B cells, malignant cells, 
fibroblasts, endothelial cells, macrophages, dendritic cells (DCs), and mast cells were identified. Malignant 
cells displayed a high degree of intratumor heterogenicity, while neutrophils were found to promote GBC 
cell proliferation, migration, and invasion. Furthermore, cytotoxic cluster of differentiation (CD8+) T 
cells became exhausted and CD4+ regulatory T cells (Tregs) exhibited immunosuppressive characteristics. 
Macrophages played an important role in the tumor microenvironment (TME). We identified three distinct 
macrophage subsets and emergent M2 polarization. We also found that cancer-associated fibroblasts 
exhibited heterogeneity and may be associated with GBC metastasis.
Conclusions: Although preliminary in nature, our study provides a landscape view at the single-cell level. 
These results offer a unique perspective into understanding the liver metastasis of GBC.
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Introduction

Gallbladder cancer (GBC) is a common biliary tract tumor 
with extremely poor prognosis and high aggressiveness 
(1,2). The majority of GBC patients have already reached 
an advanced stage at the time of diagnosis, and only 10% 
of patients have access to curative surgery (3). Among those 
who undergo surgical resection, recurrence and metastasis 
rates remain high. Hepatic invasion and metastatic 
progression are common and represent a major cause of 
mortality in GBC patients (4,5). However, the mechanisms 
of GBC cell metastasis have not yet been elucidated.

The tumor microenvironment (TME) plays an important 
role in tumor metastasis (6). The GBC microenvironment 
consists of malignant cells, stromal cells, and extracellular 
components. Some factors such as tumor growth factor beta 
(TGFβ), interleukin 10 (IL-10), and vascular endothelial 
growth factor (VEGF) secreted by cellular elements in the 
TME contribute to desmoplasia, immunosuppression, and 
metastasis (7). The TME has become an attractive target 
for drug therapy strategies (8). 

Single-cell RNA sequencing (scRNA-seq) provides 
a powerful tool to reveal cellular diversity and disclose 
microenvironment heterogeneity at a single-cell resolution 
(9,10). In recent years, scRNA-seq has been used to dissect the 
complicated TME of several cancers, such as hepatocellular 
carcinoma (11,12), intrahepatic cholangiocarcinoma (13), 
colorectal cancer (14,15), glioblastoma (16), and pancreatic 
ductal adenocarcinoma (17). However, microenvironment 
heterogeneity at the single-cell level in human GBC liver 
metastases is still poorly understood.

In this study, we used scRNA-seq to examine single cells 
from human GBC liver metastasis tissue and identified 8 
cell types corresponding to 7,788 cells. Malignant cells were 
observed with intratumor heterogenicity while neutrophils 
were found to play an important role in GBC liver 
metastases. We proved that neutrophils facilitate GBC cell 
proliferation, migration, and invasion in vitro. Moreover, 
tumor-infiltrating regulatory T cells (Tregs) displayed 
immunosuppressive characteristics, while cytotoxic cluster 
of differentiation (CD)8+ T cells appeared to be exhausted. 
We also identified 3 macrophage subtypes. M2 polarization 
was common in the TME. Furthermore, RGS5+ cancer-
associated fibroblasts showed a correlation with metastasis. 
Together, we hope this work can contribute to the better 
understanding of TME composition and promote GBC 
metastasis therapy.

We present the following article in accordance with 
the MDAR reporting checklist (available at http://dx.doi.

org/10.21037/atm-21-2227).

Methods

Tumor sample collection

Human cancer tissue subjected to scRNA-seq was obtained 
from a female patient who was diagnosed as gallbladder 
adenosquamous carcinoma with liver metastasis. The H&E 
staining is shown in Figure S1. The tissue samples were 
collected by surgery with the approval of the institutional 
research ethics committee of the First Affiliated Hospital of 
Nanjing Medical University. All enrolled patients provided 
informed consent. All procedures performed in this study 
involving human participants were in accordance with the 
Declaration of Helsinki (as revised in 2013).

Fresh tissue preparation and dissociation into single cells

The fresh tumor tissue was immediately washed with 
phosphate-buffered saline (PBS) and then conserved in 
MACS Tissue Storage Solution (Cat#130-100-008, Miltenyi 
Biotec) at 4 ℃. Tissue digestion was performed according 
to the Tumor dissociation Kit user guide (Cat#130-093-
237, Miltenyi Biotec). Cell suspensions were filtered using a  
70-μm nylon mesh, and 10 μL of cell suspensions were 
counted by trypan blue to determine the concentration of 
live cells. The suspensions were then centrifuged at 300 ×g 
at 4 ℃ for 5 min, and the supernatant was discarded. 

Library preparation and sequencing 

We loaded viable cells that had undergone fluorescence-
activated cell sorting (FACS) into a well of a microfluidic 
chip to generate a complementary DNA (cDNA) library 
using a Chromium Single-Cell Instrument (10X Genomics). 
Single-cell transcriptomic amplification and library 
preparation were performed by single-cell 3’ Reagent Kit v3 
(10X Genomics) according to the manufacturer’s protocol. 
The library was loaded on an Illumina XTEN system.

Single cell sequencing data preprocessing, quality control, 
and subcluster detection

The CellRanger software (v.3.1.0, 10X Genomics) was 
used to process raw FASTQ files, align the sequencing 
reads to the GRCh38 reference, and generate a filtered 
feature-barcode matrix. The “Seurat” package in R 
(v3.1.5, R Foundation for Statistical Computing) (18) 

http://dx.doi.org/10.21037/atm-21-2227
http://dx.doi.org/10.21037/atm-21-2227
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was used to analyze our data. Cells with over 10,000 
genes and more than 25% of mitochondrial UMI counts 
were removed. The remaining high-quality cells were 
normalized and scaled. High variable genes were calculated 
using the FindVariableFeatures function in Seurat with 
default parameters. The selected features were used for 
principal components analysis (PCA) analysis. Clusters 
were found using the FindClusters function (resolution 
=0.8). t-distributed stochastic neighbor embedding (tSNE) 
analysis was used for dimension reduction and visualization 
of gene expression.

Cell type classification 

We conducted tSNE dimensionality reduction with the first 
50 principal components. Cell clusters were annotated to 
known biological cell types using canonical marker genes 
and the putative copy number variation (CNV) score. 

CNV estimation 

We used the “inferCNV” (v1.2.1) R package to estimate 
the CNV score for each single cell. All T cells served as the 
reference for inferCNV. The CNV score of each cell was 
calculated as a quadratic sum of the CNV region. 

Estimation of the transcriptional diversity of each cell

CytoTRACE [Cellular (Cyto) Trajectory Reconstruction 
Analysis  using gene Counts  and Expression]  is  a 
computational framework used to predict the relative 
differentiation state of a single cell (19). We used R software 
(v.0.1.0) to predict the transcriptional diversity.

Pseudotime trajectory analysis

Trajectory analysis was performed using R package 
“Monocle 2” (v.2.14.0) (20). The differentialGeneTest 
function was used to identify significant genes (qval 
<0.01, num_cells_expressed >10). Cell ordering was then 
conducted on these genes. The trajectories were visualized 
using DDRTree method.

Cell-cell communication analysis

CellPhoneDB is a python-based tool used to analyze cell-
cell communication at the molecular level (21). We used 
CellPhoneDB python package (v.2.1.1) to analyze the 

potential interaction networks of the 8 major cell types.

Gene regulatory network analysis 

As described previously, we use “SCENIC” R package 
(v.1.1.2-2) to infer gene regulatory networks and cell 
types from single-cell RNA-seq data (22). Two gene-motif 
rankings including 10 kb around the transcription start 
site (TSS) and 500 bp upstream of the TSS were used to 
determine the search space around the TSS. A 20-thousand 
motif database was downloaded for RcisTarget and 
GENIE3 package.

Functional enrichment analysis

Differentially expressed genes (DEGs) were identified 
using the FindAllMarkers function of Seurat. The cutoff 
threshold values were used: adj.p.val <0.05, min.pct >0.25, 
and log fold change >0.25. R package clusterProfiler (23) 
was used to perform the Gene Ontology (GO) enrichment 
analysis. Pathways in which the adjusted P value <0.05 
were considered significantly enriched. Gene set variation 
analysis (GSVA) was performed in the GSVA R package 
(v1.34.0) (24) to evaluate pathway activity of 50 hallmark 
gene sets.

Processing of GBC bulk RNA sequencing data

We downloaded the RNA sequencing data of GBC liver 
metastatic tumor, primary tumor, and adjacent tissues from 
GSE132223. STAR software was used to align the data to 
the hg38 reference genome. Fragments per kilobase million 
(FPKM) data were used for the further analysis.

Cell culture

The GBC cell lines GBC-SD (RRID: CVCL_6903) and 
SGC-996 (RRID: CVCL_M737) were purchased from the 
Procell Life Science & Technology (Wuhan, China). The 
cell lines were cultured in RPMI 1640 containing 2% fetal 
bovine serum (FBS).

Isolation and preparation of human neutrophils

Human neutrophils were isolated from the peripheral blood 
of healthy donors collected at the First Affiliated Hospital 
of Nanjing Medical University using a human neutrophils 
separation kit (Solarbio, Beijing, China). All donors signed 



Zhang et al. Single cell of GBC liver metastasis

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(10):889 | http://dx.doi.org/10.21037/atm-21-2227

Page 4 of 15

he informed consent. Neutrophils were resuspended 
in RPMI 1640 containing 2% fetal FBS. Neutrophil-
conditioned medium (NCM) was obtained as previously 
described (25).

Cell proliferation assay, and cell migration and invasion 
assays

The Cell Counting Kit-8 (CCK-8 Cell Counting Kit; 
Vazyme Biotech Co., Ltd) was used to assess the abilities of 
cell proliferation according to the manufacturer’s protocol. In 
brief, we planted cell lines with or without NCM into 96-well 
plates (2,000 cells/well) with the addition of CCK-8 solution 
(10 μL/well). After incubation for 2 hours in the incubator 
described above, the absorbance at 450 nm was measured to 
determine the number of variable cells in each well. 

Cell migration was assessed through the scratch wound 
assay. We made a uniform linear scratch using a 10-μL pipet 
tip on the cell lines which had been cultured with or without 
NCM for 2 days. The distance between the wound edges 
was taken as a baseline. We then acquired the image of the 
same location after 24 hours. The change of the distance 
was measured to assess the cellular ability of migration.

Next, 24-well Transwell chambers (Millipore) were used 
to evaluate the invasive capabilities of the cells. In total, 
1×105 cells were seeded in the upper chamber. The lower 
chamber was filled with 100 μL RPMI 1640 with 2% FBS 
or NCM. After incubation for 24 hours, the cells in the 
upper chamber were removed using cotton swabs. Cells 
on the lower surface of membrane were fixed and stained 
with crystal violet. The GBC cells were visualized under 
an inverted light microscope (Olympus), photographed, 
and counted in 5 microscopic fields. All experiments were 
performed 3 times. 

Immunohistochemistry (IHC) staining 

We performed IHC staining on the tissue sections of 
formalin-fixed, paraffin-embedded specimens. All sections 
were deparaffinized, rehydrated, and washed. Endogenous 
peroxidase was blocked using 3% hydrogen peroxide for  
10 min. After water-bath heating was performed for antigen 
retrieval, slides were incubated with primary antibodies, 
which was followed by horseradish peroxidase (HRP)-
linked secondary antibodies and diaminobenzidine staining. 
Counterstaining was done with hematoxylin. Slides were 
dehydrated with sequential ethanol washes (75%, 80%, and 
100%) for 1 min each. Two pathologists blinded to clinical 

data independently assessed staining results for LAG3 (Cat # 
16616-1-AP, RRID: AB_2133350; Proteintech), and CD163 
(Cat #16646, RRID: AB_2756528; Proteintech).

Statistical analysis

All statistical analyses were performed using R platform 
(v.3.6.0). A P value <0.05 was considered statistically 
significant. Statistical differences between multiple groups 
were compared using Student’s t test or analysis of variance 
(ANOVA).

Results

Single cell transcriptomic analysis revealed cellular 
diversity in GBC liver metastasis

To explore the potential mechanisms and microenvironment 
of GBC liver metastasis, we generated a single-cell 
transcriptomic profile from GBC liver metastasis tissue 
using 10X Genomics (Figure 1A). A total of 7,788 cells 
passed quality control, and 8 distinct cell types were 
identified (Figure 1B and Figure S2) using the following 
conventional markers: malignant cells (925 cells, marked 
with KRT7 and KRT19 (markers of adenocarcinoma), KRT5 
and KRT6A (markers of squamous cell carcinoma); T cells 
(4,258 cells, marked with CD2, CD3D, CD3E, and CD3G); 
B cells (907 cells, marked with CD79A and MS4A1); 
macrophages (1,214 cells; marked with CD68, CD163, 
and CD14); fibroblasts (264 cells, marked with ACTA2 
and COL1A2); dendritic cells (DCs) (79 cells, marked with 
IL3RA and LILRA4); endothelial cells (64 cells, marked with 
VWF, ENG, and CD34) and mast cells (77 cells, marked 
with KIT and TPSAB1). The dot plots of marker genes are 
shown in Figure 1C. Further CNV analysis was conducted 
to distinguish malignant from nonmalignant cells (Figure 1D  
and Figure S3). The DEGs in 8 cell types, as shown in 
Figure 1E, confirmed the accuracy of cell recognition.

Transcriptomic intratumor heterogeneity of tumor cells in 
GBC liver metastasis

In this study, we identified 7 subclusters after the 
reclustering of malignant cells (Figure 2A). To investigate 
the heterogeneity of tumor cells, we used CytoTRACE to 
evaluate the transcriptional diversity of each cell, which 
is a hallmark of developmental potential. As shown in 
Figure 2B (left), the CytoTRACE score was diversely 

https://cdn.amegroups.cn/static/public/ATM-21-2227-Supplementary.pdf
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Figure 1 The overview of cell type distribution in GBC liver metastasis. (A) The workflow of this scRNA-seq study. Metastatic liver tissue was 
dissociated into single cells and sequenced with 10X platform. (B) The tSNE plot of 8 cell types in this study and each color indicating an associated 
cell type. (C) Dot plots showing the expression of marker genes in 8 distinct cell types. (D) Box plots of CNV score for each cell type. (E) Heatmap 
showing the top 5 DEGs in each subtype. GBC, gallbladder cancer; CNV, copy number variation; DEGs, differentially expressed genes.
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Figure 2 Transcriptomic heterogeneity of malignant cells in metastatic liver tissue. (A) tSNE map showing 7 cancer cell clusters. (B) Boxplot 
showing transcriptional diversity of cancer cells estimated by CytoTRACE (left) and differentiation trajectory of cancer cells in GBC liver 
metastasis (right). (C) Differences in the activity of 50 hallmark pathways scored by GSVA software. t values were calculated by a linear 
model. (D) GO analysis of DEGs for cluster 0 (top), cluster 3 (middle), and cluster 4 (bottom). FDR <0.05 was considered as significantly 
enriched. GBC, gallbladder cancer.

30

0

−30

tS
N

E
_2

tSNE_1

1.00

0.75

0.50

0.25

0.00

0 1 2 3 4 5 6

0 10 20 30

0 2 4 6

0 4 8
−log10 P value

M4 M0 M1 M5 M6 M2 M3

C
yt

oT
R

A
C

E

Cluster
P

at
hw

ay
 a

ct
iv

ity
 

(t 
va

lu
e 

ca
lc

ul
at

ed
 

by
 a

 li
ne

ar
 m

od
el

)

Component 1

C
om

po
ne

nt
 2

A B

C
D



Annals of Translational Medicine, Vol 9, No 10 May 2021 Page 7 of 15

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(10):889 | http://dx.doi.org/10.21037/atm-21-2227

distributed, indicating that tumor cells were in different 
differentiation states. Monocle 2 was used to construct a 
trajectory. Consistent with the CytoTRACE result, we 
noticed that the trajectory’s root was populated by the 
majority of M0 cells (high CytoTRACE score). M3 and 
M4 cells (low CytoTRACE score) were present at the 
end of 2 differentiation branches [Figure 2B (right) and 
Figure S4A]. In addition, pathway analysis with GSVA 
revealed that hallmark pathways were partially activated in 
subpopulations M0, M1, or M2 with higher CytoTRACE 
scores, particularly, the M4 subcluster had the lowest GSVA 
score (Figure 2C). We conducted gene function enrichment 
analysis on DEGs of M0, M3, and M4 subclusters. As 
shown in Figure 2D and Figure S4B, G2M/S cell cycle-
related genes were enriched in M0. In M3, neutrophil-
associated immune response and interferon gamma (IFNγ) 
signaling were commonly observed. Furthermore, the 
M4 cluster was mainly correlated with nucleocytoplasmic 
transport pathways. In M3, M2, and M5 macrophages, 
neutrophil-related gene functions were enriched, 
suggesting that there was abundant crosstalk between 
neutrophils and cancer cells during the metastasis of GBC  
(Figure S4C,D,E,F). Different functional patterns of tumor 
cells may reflect diverse processes of the metastatic seeds 
adapted to the soil. Taken together, these findings indicated 
a high degree of intratumoral heterogeneity in malignant 
cells of GBC metastasis.

Neutrophils promoted proliferation, migration, and 
invasion of GBC cells in vitro

Significant neutrophil infiltration has previously been 
observed in human cancer metastatic sites. To examine the 
effect of neutrophils on GBC cells, we incubated the GBC 
cell lines (GBC-SD and SGC-996) with NCM. CCK-8 
proliferation analysis showed that NCM promoted GBC 
cell growth in vitro (Figure 3A). Wound-healing migration 
assays and cell invasion assays also demonstrated that NCM 
significantly enhanced the migration and invasion abilities 
of GBC cells (Figure 3B,C).

Tumor-infiltrating Tregs and exhausted CD8+ T 
cells contributed to the immunosuppressive metastatic 
microenvironment

T cells were found to be the most prevalent cell type in 
the TME of liver metastasis tumor. It was found that the 
tumor-infiltrating immune cells played an important role 

in response to immunotherapy. As shown in Figure 4A, T 
cells were clustered into 9 distinct subgroups. According 
to the known markers of T cells, 9 subclusters were 
annotated as T0-CD8T-GZMB (CD8A+GZMB+, cluster 
0 and 4), T1-CD8T-GZMK (CD8A+GZMK+, cluster 1), 
T2-Treg-FOXP3 (CD4+ FOXP3+, cluster 2), T3-CD4T-
naïve (CD4+IL7R+, cluster 3, 7), T4-CD8T-proliferation 
(CD8A+MKI67+, cluster 5, 8), and T5-CD8T- naïve 
(CD8A+IL7R+, cluster 6; Figure 4B,C). In this study, we 
found that CD8+ T cells (cluster 0, 1, 4, 5, 6, 8) expressed 
different levels of cytotoxic markers, including GZMK, 
IFNG, and PRF1. In proliferating CD8+ T cell populations 
(cluster 5 and 8), a set of T cell exhaustion-related immune 
checkpoints including TIGIT, LAG3, HAVCR 2 (TIM3), 
and CTLA4 tended to be upregulated, indicating that the 
CD8+ T cells became dysfunctional (Figure S5A). We used 
Monocle 2 package to perform pseudotime analysis on 
CD8+ T cells. The trajectory was visualized as a DDRTree 
plot (Figure 4D). We noticed that naïve T cells tended to 
convert into proliferating CD8+ T cell subgroups that had 
become dysfunctional, suggesting that cytotoxic CD8+ T 
cells were being exhausted. In addition, Tregs (cluster 2)  
expressed a certain number of immunosuppression markers, 
including TIGIT ,  CTLA4 ,  and TNFRSF18 (GITR). 
We extracted the gene signatures of T cell subclusters 
from scRNA-seq data. Through single-sample gene set 
enrichment analysis (ssGSEA) algorithm, we evaluated the 
infiltration of T cell subclusters in GSE132223. As shown 
in Figure 4E, the percentage of proliferating and exhausted 
CD8+ T cells was also significantly higher in primary and 
metastatic tumors than in adjacent tissues. Interestingly, the 
expression of LAG3 was found to be highly correlated with 
the activity of dysfunctional CD8+ T cells as was measured 
by the average expression of granzymes (GZMA, GZMB 
and GZMH; Spearman correlation R =0.25; Figure 4F). 
The IHC results also indicated higher LAG3 expression in 
tumor tissues (Figure S5B). Taken together, our analyses 
demonstrated that in the GBC metastatic TME, cytotoxic 
T cells tend to be exhausted and Tregs presented as a highly 
immunosuppressive phenotype. LAG3 may be a potential 
treatment target for patients with GBC liver metastasis.

Macrophages exhibited greater crosstalk with malignant 
cells and tended to generate M2-type polarization

We used CellPhoneDB to infer intercellular communication 
in the TME. Macrophages were found to have more 
interactions with tumor cells, revealing an important role 

https://cdn.amegroups.cn/static/public/ATM-21-2227-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-2227-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-2227-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-2227-Supplementary.pdf
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Figure 3 Neutrophils promoted proliferation, migration, and invasion of GBC cells in vitro. (A) Cell proliferation measured by CCK8 assay. 
NCM significantly promoted GBC proliferation. (B) Wound-healing migration assays showed that there was a significant increase in the 
wound closure rate of GBC cells cocultured with NCM compared with the controls. (C) In vitro invasive assays showed that the number of 
invasive GBC cells was higher when cells were cultured with NCM than with the control. Cells were fixed and stained with crystal violet. 
Scale bar =100 μm. **P<0.01, ***P<0.001. GBC, gallbladder cancer; NCM, neutrophil-conditioned medium.
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Figure 4 Distinct subpopulations of infiltrating T cells in the metastatic TME. (A) tSNE plot for 9 T cell subclusters. (B) t-SNE plots showing the 
expression of marker genes for each cell type. (C) Heatmap showing the expression of the top 10 DEGs in each cluster. (D) Differentiation trajectory 
of cytotoxic CD8+ T cells. (E) Box plots showing signature scores of T cell subclusters in GBC primary tumors, liver metastatic tumors, and adjacent 
tissues. (F) Spearman correlation between the activity of CD8+ T cells, as measured by the mean granzyme expression (GZMA, GZMB, and GZMH) 
and known immune checkpoint molecules. TME, tumor microenvironment; DEGs, differentially expressed genes; GBC, gallbladder cancer.
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in the microenvironment (Figure 5A). To investigate the 
heterogeneity of macrophages, we clustered macrophages 
into 3 subclusters (Figure 5B). As shown in Figure 5C, 
subcluster 0 cells highly expressed M2-type macrophage 
markers including CD163, APOE, and MAF. Cells from 
cluster 1 exhibited the M1-like phenotype. SPP1, also 
known as secreted phosphoprotein 1, was also expressed 
in subcluster 1. For the lack of large-cohort GBC gene 
expression data, we checked the expression of SPP1 in liver 
hepatocellular carcinoma (LIHC) and cholangiocarcinoma 
(CHOL). SPP1 was highly expressed in tumor tissues  
(Figure 5D) and correlated with overall survival in 
LIHC (Figure S6A) and disease-free survival in CHOL  
(Figure S6B). In addition, MKI67 and STMN1, which 
correlated with the cell cycle process, were expressed by 
cells from subcluster 2. GSVA revealed that interferon 
(pathways were enriched in subcluster 0; however, the 
inflammatory response was also activated (Figure 5E). 
SCENIC analysis showed that genes regulated by FOS, 
JUN, STAT1, ERG1, and RUNX1 were upregulated in 
subcluster 0 (Figure 5F). Fos/Jun TFs has been reported to 
be able to enhance inflammatory responses in macrophages. 
Meanwhile, IRF7, which was activated in macrophage 
subcluster 1, participates in the regulation of the M1-to-M2 
phenotype switch (26). Therefore, M2-like macrophages 
maintained some of their proinflammatory functions. 
Furthermore, trajectory analysis showed that M2-like 
macrophages were present at the end of the differentiation 
trajectory (Figure 5G). Further ligand-receptor analysis 
between malignant cells and macrophages showed that the 
TNFSF10-TNFRSF10D pair was enriched in the M2-
like subcluster (Figure S6C), suggesting that blocking the 
TNFSF10-TNFRSF10D axis may affect the interaction 
of malignant cells with M2 macrophages. We adopted the 
same method as above to check the infiltration of each 
macrophage cluster. As shown in Figure S6D, the M2-like 
macrophage signature score was also higher in tumor sites. 
The same phenomenon was also observed in IHC results 
(Figure S6E), indicating that the phenomenon of M2-type 
polarization in GBC was common.

Fibroblasts exhibited heterogeneity and expressed markers 
correlated with cancer invasion or metastasis

As shown in Figure 6A,B, cancer-associated fibroblasts 
(CAFs) from three subgroups were positive for alpha 
smooth muscle actin (α-SMA; ACTA2) which is a classical 
marker of fibroblasts. These 3 subgroups expressed different 

markers (cluster 0: MAFB+ and GPB5+; cluster 1: RGS5+and 
SMOC2+; cluster 2: ACTG2+and CCL11+; Figure 6C). The 
Gene Ontology (GO) analysis results of DEGs in 3 distinct 
subgroups are shown in Figure S7. RGS5, a marker for 
vascular CAFs (vCAFs), has been reported to be related to 
invasion and metastasis of cancers such as liver cancer and 
lung cancer by inducing epithelial-mesenchymal transition 
(EMT) (27,28). The SCENIC analysis revealed that genes 
regulated by TF NR2F2 and NFIL3 were upregulated in 
cells from the RGS5+ fibroblasts subgroup (Figure 6D).  
Overall, our data suggest that RGS5+ fibroblasts are 
associated with the tumorigenesis, invasion, and metastasis 
of GBC. 

Discussion

GBC is a highly aggressive and lethal tumor (29). Currently, 
the therapy of GBC, especially metastatic GBC, is still a 
challenge (2,3,29). Only a few patients can benefit from 
curative resection, and even then, the prognosis is poor. 
The mechanisms underlying GBC metastasis are little 
known. Several studies have shown that TME participates 
in tumor progression and metastasis (30,31). Disrupting the 
protumorigenic TME is a promising therapeutic target for 
cancer patients. In this study, we employed scRNA-seq to 
delineate the transcriptomic heterogeneity of the TME in 
GBC liver metastasis at a single-cell resolution. 

In this work, several key observations arose from 
examining the intratumoral heterogeneity of the TME 
in GBC liver metastasis. First, GBC cells exhibited high 
heterogeneity at the metastatic site. The existence of cell 
subpopulations in distinct differentiation states fully reflects 
the complexity and diversity of GBC in its evolution. In 
previous studies, neutrophil-to-lymphocyte ratio (NLR) 
showed prognostic significance in GBC patients (32)  
and increasing neutrophil levels have a significant 
influence on the TME by inducing various cytokines and 
chemokines, which could accelerate the proliferation and 
promote metastasis of tumor cells (33,34). Thus, targeting 
neutrophils might become a new direction for the treatment 
of GBC metastasis. By using pseudotime analysis and GO 
analysis, we found that neutrophil-associated gene ontology 
was enriched in the intermediate stage of the differentiation 
trajectory, indicating that tumor cells communicate 
extensively with immune cells at the intermediate stage of 
metastasis. We also confirmed the influence of neutrophils 
on GBC cells in vitro. The evidence from our study suggests 
that targeting tumor-associated neutrophils is a promising 

https://cdn.amegroups.cn/static/public/ATM-21-2227-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-2227-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-2227-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-2227-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-2227-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-2227-Supplementary.pdf
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Figure 5 M2 polarization of macrophages in the TME. (A) Interaction network of 8 cell types in the TME constructed by CellPhoneDB. 
At thicker line indicates greater interaction. (B) tSNE plot of 3 subclusters of macrophages. (C) The average expression of canonical marker 
genes for macrophage subpopulations. (D) SPP1 expression in the TCGA LIHC cohort and CHOL cohort. (E) Heatmap of differences 
in 50 hallmark pathways scored per cell by GSVA. (F) Heatmap showing the AUC scores of expression regulation by transcription factors 
estimated by SCENIC. (G) Differentiation trajectory of macrophages with each color coded for subclusters (left) and pseudotime (right). 
TME, tumor microenvironment; AUC, area under the curve.
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Figure 6 Three distinct fibroblast subpopulations detected in GBC liver metastasis. (A,B) tSNE plot of 3 fibroblast subpopulations (A) and 
the expression levels of α-SMA (ACTA2) (B). (C) Violin plots showing marker genes of 3 subclusters. (D) Differences of AUC scores in 
expression regulated by transcription factors. GBC, gallbladder cancer.
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method to antitumor metastasis for GBC patients.
Second, the high expression of TIGIT ,  CTLA4 , 

LAG3, and HAVCR2 in different T cells indicated a 
tumor-suppressive TME in GBC metastasis. Tregs are 
immunosuppressive T cells that participate in immune 
escape and block the antitumor immune response of cancer 
patients (35). A set number of Tregs in GBC liver metastasis 

was observed. The infiltrating level of Tregs is correlated 
with the disease progression of GBC patients (36,37). 
Additionally, LAG3, known as an exhausted marker, was 
found to be correlated with CD8+ T cell activity, suggesting 
that LAG3 is the most prominent immune checkpoint 
molecule in GBC metastasis. Akhilesh Pandey et al. found 
that a group of GBC patients had a high infiltration of 
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CD8+ T cells and a high expression of LAG3 (38). LAG3 
may serve as a better immunotherapeutic target in GBC 
patients with higher infiltration of CD8+ T cells.

Third,  3 types of macrophages were identif ied 
from the TME. M1-like macrophages exhibited the 
CD68+CD163+SPP1+ phenotype while M2-like macrophages 
exhibited the CD68+IL1B+S100A8+ phenotype. It has 
been reported that proinflammatory molecules, such as 
IFNγ and IL-1β could induce SPP1 expression, and these 
have been found to play an important role in colon cancer 
liver metastasis in previous studies (39). Tumor necrosis 
factor (TNF)-related apoptosis-inducing ligand (TRAIL, 
TNFSF10) and its receptors are key mediators of the innate 
immune response in tumor immune surveillance. One 
study showed that TRAIL-induced secretome could drive 
monocyte polarization to myeloid-derived suppressor cells 
(MDSCs) and M2-like macrophages (40). Targeting TRAIL 
is a promising method to break the immunosuppressive 
microenvironment in GBC metastatic sites. Using GSVA 
pathway analysis and SCENIC analysis, we revealed 
some underlying transcription factors (TFs) and potential 
mechanisms involved in the M2 polarization phenomenon. 
Furthermore, transcription factor IRF8 was also found 
activated in the proliferative macrophage population. 
IRF8 has been shown to suppress the macrophage-
derived matricellular protein, osteopontin, thus making it 
a novel immunosuppressive checkpoint (41). Osteopontin 
also controls immunosuppression in the TME (42). 
Interestingly, M1-like macrophages highly expressed 
secreted phosphoprotein 1, indicating that SPP1+ M1-like 
macrophages are correlated with immunosuppression and 
may be associated with immunotherapy outcomes for patients 
with GBC metastasis.

Finally, several TFs related to metastasis were found to 
be activated in RGS5+ fibroblasts via SCENIC analysis. 
Previous studies have shown that NR2F2 (COUP-TFII) is 
a transcription factor closely associated with tumorigenesis, 
invasion, and metastasis in several digestive cancer such 
as pancreatic (43), colorectal (44), and gastric cancer (45). 
NFIL3, also known as E4-binding protein 4 (E4BP4), is a 
leucine zipper transcription factor in the immune system. 
Lin et al. found that cellular prion protein transcriptionally 
regulated by NFIL3 promotes lung cancer invasion and 
metastasis (46). A study indicated that RGS5+ CAFs 
(vCAFs) contribute to tumor progression in intrahepatic 
cholangiocarcinoma (13). The data supported the notion 
that RGS5+ CAFs is also a key factor associated with GBC 
metastasis.

Taken together, our findings provide a landscape view of 
the single-cell expression profiles in GBC liver metastasis 
and clarify the characteristics of certain cell subpopulations. 
However, some limitations to our study should be 
mentioned. Most importantly, the tissue sample sent for 
scRNA-seq was adenosquamous carcinoma, which is a rare 
subtype of GBC. Due to a lack of squamous cancer cell 
lines, we validated our results in gallbladder adenocarcinoma 
cell lines and clinical samples. Although we have proved 
the accuracy of our result in human cell lines and samples, 
these results still need to be further validated in scRNA-seq 
data of other types of GBC samples. We hope our study can 
help address microenvironment-mediated GBC progression 
and drug resistance and contribute to identifying novel 
therapeutic targets for GBC metastasis.
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Supplementary

Figure S1 The H&E staining image of a GBC patient in our 
single-cell experiment. Scale bar represents 100 μm.

Figure S2 Marker genes of major cell types were visualized into tSNE plot.
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Figure S3 A heatmap showing CNVs for malignant and nonmalignant cells. Red: amplification; blue: deletion. 
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Figure S4 The heterogeneity of malignant cells. (A) Differentiation trajectory of malignant cells color coded for pseudotime. (B) tSNE plot 
colored by cell cycle status. (C,D,E,F) The top 10 enriched biological process GO terms in cancer cell subcluster 1 (C), subcluster 2 (D), 
subcluster 5 (E), and subcluster 6 (F).
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Figure S5 The expression of T cell markers. (A) Violin plots showing the expression of T cell function-associated markers in 9 T cell 
clusters. (B) LAG3 immunohistochemical staining in tumor and adjacent tissues. Scale bars represent 100 μm. N=5 samples/group.
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Figure S6 Kaplan-Meier analysis of the relationship of SPP1 with overall survival in TCGA LIHC (A) and disease-free survival in CHOL (B) 
using the GEPIA website. (C) The significant ligand–receptor pairs between malignant cells and macrophage subclusters. (D) The box plot 
showing the signature score of M2-like macrophages in GSE132223. N: normal tissue, T: primary tumor, M: metastatic tumor. (E) CD163 
immunohistochemical staining in tumor and adjacent tissues. Scale bars represent 100 μm. N=5 samples/group. 
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Figure S7 The top 10 enriched biological process GO terms in the CAF subcluster 0 (A), subcluster 1 (B), and subcluster 2 (C).
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