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Background: Lung cancer is one of the most malignant tumors. However, neither the pathogenesis of lung 
cancer nor the prognosis markers are completely clear. The purpose of this study is to screen the diagnostic 
or prognostic markers of lung cancer. 
Methods: TCGA and GEO datasets were used to analyze the relationship between lung cancer-related 
genes and lung cancer samples. Common differential genes were screened, and a univariate Cox regression 
analysis was used to screen survival related genes. A univariable Cox proportional hazards regression analysis 
was used to verify the genes and construct risk model. The key factors affecting the prognosis of lung cancer 
were determined by univariate and multivariate regression analyses. The ROC curve, AUC and the survival 
of each risk gene was analyzed. Finally, the biological functions of high- and low-risk patients were explored 
by GSEA and an immune-infiltration analysis.
Results: Based on the common differential genes, 13 genes significantly related to lung cancer survival 
were identified. Eight risk genes (CBFA2T3, DENR, EGLN1, FUT2, FUT4, PCDH7, PHF14, and STX3) 
were screened out. The results showed that risk status may be an independent prognostic factor, and the 
risk score predicted the prognosis of lung cancer. CBFA2T3 and STX3 are protective genes, while DENR, 
EGLN1, FUT4 and PCDH7 are dangerous genes. These 6 genes can be used as independent lung cancer 
prognosis markers. The corresponding biological functions of genes expressed in high-risk patients were 
mostly related to tumor proliferation and inflammatory infiltration. Neutrophil, CD8+T, Macrophage M0, 
Macrophage M1- and mDC-activated cells were high in high-risk status samples.
Conclusions: CBFA2T3, STX3, DENR, EGLN1, FUT4, and PCDH7 are important participants in the 
occurrence and development of lung cancer. High-risk patients display serious inflammatory infiltration. 
This study not only provides insight into the mechanism of occurrence and development of lung cancer, but 
also provides potential targets for targeted therapy of lung cancer.
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Introduction

Lung cancer is one of the most common cancers, especially 
in developed countries. However, diagnosing lung cancer 
is a challenge. Despite recent progress in diagnosis, 
classification and treatment, the overall survival rate is still 
very low (1). Most patients are diagnosed at the advanced 
stage, and have a poor prognosis. Indeed, the overall 5-year 
survival rate is 10–15% (2). In all stages of lung cancer, less 
than 7% of patients survived for 10 years after diagnosis. 
Late diagnosis and a lack of effective and personalized drugs 
reflect the need to better understand the mechanism of 
lung cancer progression (3). Using predictive biomarkers 
to identify tumors that respond to targeted therapy means 
a change in the diagnostic mode of lung cancer (4,5). At 
present, the potential molecular mechanism of lung cancer 
is unclear, which hinders the development of its prognosis 
and treatment strategy. Thus, new biomarkers or biological 
targets for lung cancer need to be identified urgently.

Tumor-related genes come from circulating cancer cells 
or directly from patients’ primary tumors via a process 
called ‘gene shedding’ (6). In recent years, the role of 
different lung cancer-related genes in lung cancer has not 
been widely explored. However, experimental evidence has 
shown that many lung cancer-related genes are involved 
in the pathogenesis and development of tumors (7). For 
example, in acute myeloid leukemia (AML), core-binding 
factor subunit alpha 2 to translocation 3 can inhibit retinoic 
acid receptors in many AML subtypes and patient samples. 
Thus, it is necessary and sufficient to downregulate 
CBFA2T3 to improve the expression and differentiation 
of myeloid genes induced by all-trans retinoic acid. 
CBFA2T3 can be used as a potential target to improve the 
responsiveness of AML to ATRA differentiation therapy (8). 
In bladder cancer, fucosyltransferase 4 (FUT4) is the target 
mRNA of microRNA (miR)-125a-5p. FUT4 can reverse the 
effect of miR-125a-5p on the progression of bladder cancer. 
Thus, miR-125a-5p inhibits the progression of bladder 
cancer by targeting FUT4 (9). 

Research has shown that density-regulated protein 
(DENR) is highly expressed in many cancer types, 
and is related to the low survival rate of patients with 
hepatocellular carcinoma, gastric cancer, renal cancer, 
laryngeal cancer, and lung cancer. The high expression of 
DENR may contribute to the occurrence of tumors, and 
affect clinical prognoses (10). EglN1 is the main hypoxia-
inducible factor α (HIF-α) prolyl hydroxylase in triple 
negative breast cancer (TNBC), which undergoes oxidative 

self-inactivation in biochemical analysis and cells in the 
absence of cysteine, which results in hypoxia-inducible 
factor 1α accumulation. HIF is a transcription factor that 
can promote the adaptation to hypoxia and stimulate the 
growth of TNBC (11). In oral squamous cell carcinoma 
(OSCC), gene-environment interactions of FUT2 
polymorphisms with smoking and betel quid chewing habits 
may alter oral cancer susceptibility. A correlation has been 
found between FUT2 gene variation and OSCC risk (12). In 
castration resistant prostate cancer (CRPC), protocadherin 
7 (PCDH7) is overexpressed in a large number of CRPC 
patients, and PCDH7 knockout reduces phosphorylation 
of extracellular receptor kinase (ERK), Akt kinase (AKT) 
and retinoblastoma, colony formation, cell invasion, and 
cell migration. It has been suggested that PCDH7 may be 
an attractive target in subgroups of CRPC patients (13). 
In gastric cancer, the levels of phosphorylated AKT and 
phosphorylated ERK1/2 were decreased by the silence of 
plant homeodomain (PHD) finger protein 14 (PHF14). The 
downregulation of PHF14 in gastric cancer cells inhibited 
colony formation in vitro and tumorigenesis in vivo. Thus, 
PHF14 could be used as a potential target for the treatment 
of gastric cancer (14). In humans, syntaxin 3 (STX3) is 
an important apical targeting protein in epithelial cell 
membrane and exocytosis, and is also a vesicle transporter 
of neutrophil receptor that plays a key role in protein 
transport. The residue exposed by crustacean cardioactive 
peptide (Ccap) should be subject to further mutation 
research, especially the mutation of Val286 of STX3 in 
humans (15). This method could be applied to STX3 drug 
design, which is a valuable target for cancer treatment.

This study used lung cancer data from The Cancer 
Genome Atlas (TCGA) and Gene Expression Omnibus 
(GEO) dataset to systematically analyze 8 lung cancer-
related genes  that  have been widely  reported.  A 
bioinformatics analysis was undertaken to examine the 
role of lung cancer-related genes in the occurrence and 
development of lung cancer. Additionally, a univariate 
analysis, a multivariate regression analysis, and a ROC curve 
analysis were undertaken to explore their clinical prognostic 
value. More importantly, a gene set enrichment analysis 
(GSEA) and immune-infiltration analysis were used to 
determine the corresponding biological functions of high- 
and low-risk patients, which confirmed the significance of 
these markers as new biomarkers for lung cancer patients.

We present the following article in accordance with 
the MDAR reporting checklist (available at http://dx.doi.
org/10.21037/atm-21-1392).

http://dx.doi.org/10.21037/atm-21-1392
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Methods

Data acquisition

Clinical information related to lung cancer and the 
RNA sequencing data of gene expression [for lung 
adenocarcinoma (LUAD)] were downloaded from the 
TCGA (https://gdc-portal.nci.nih.gov/), which includes 526 
tumor specimens and 59 adjacent cancers. GSE31210 data 
were downloaded from the GEO (http://www.ncbi.nlm.nih.
gov/geo/). The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). 

Screening of research objects

In the TCGA dataset, the RDEseq2 and edge R package 
were used to calculate the p-value difference (16,17). 
The results of screening by any method are considered as 
differential genes (Padjust<0.05), that is, differential genes. In 
the GEO dataset, using the R ‘limma’ package, the P value 
was calculated using a moderated t-test method and student 
t-test method. In this study, the common differences 
between TCGA and GEO dataset were chosen as the 
follow-up research objects.

Survival analysis

To further determine which genes were significantly related 
to the survival of lung cancer, we first analyzed survival 
related genes in the TCGA tumor dataset by undertaking 
univariable Cox proportional hazards regression analysis 
with default parameter of R “survival” package, version 
3.2-7 (18). The threshold was set to FDR (False Discovery 
Rate) <0.1 (the P value correction mode was Benjamini and 
Hochberg procedure) (19), and 491 genes were identified. 
The least absolute shrinkage and selection operator 
(LASSO) regression analysis was then used to undertake 
300 calculations (20). Genes with a frequency ≥150 were 
selected as potential genes that were significantly related 
to survival. Finally, the above genes were verified by a 
univariate Cox proportional hazards regression analysis 
using the GEO data set. The threshold was set to FDR <0.1 
(the P value correction mode was Benjamini and Hochberg 
procedure). Ultimately, 13 genes were identified. These 13 
genes are considered to be significantly related to survival.

Risk model construction

The 13 selected genes were analyzed by a multivariate 

Cox regression model and a stepwise regression analysis 
was undertaken based on akaike information criterion 
(AIC) information statistics. The genes were eliminated by 
selecting the smallest AIC information statistics, and finally 
8 molecules were selected for risk model construction. 
Then, Choose a model by AIC in a Stepwise Algorithm (21), 
the mode of stepwise search is “both”, and a risk formula 
was constructed according to Cox regression results. The 
following risk formula was constructed: –0.13 × CBFA2T3 + 
0.5 × DENR + 0.28 × EGLN1 – 0.17 × FUT2 + 0.54 × FUT4 
+ 0.14 × PCDH7 + 0.26 × PHF14 – 0.77 × STX3.

Using this formula, the risk coefficient of each patient 
was calculated, and the patients were classified into to one 
of two groups; patients with a score lower than the median 
risk fell into the low-risk group, and those with a score 
higher than the median risk fell into the high-risk group.

GSEA

Next, the log2 difference multiples (high versus low) of the 
genes detected in the data was analyzed. The genes were 
sorted according to the multiple of log2 difference (from 
large to small). The database used for the GSEA was the 
Kyoto Encyclopedia of Genes and Genomes data set (the 
data was obtained from https://www.gsea-msigdb.org/
gsea/msigdb). A pathway with a Padj (p-adjusted) <0.05 and 
a normalized enrichment scores (NES) absolute value ≥1 
in the screening results was considered to be an enriched 
pathway (22,23). The first 6 of pathways were selected (and 
sorted from small to large based on the P value) to make the 
distribution curve of the enrich score.

Immuno-infiltration analysis

To analyze the difference of the immune cell ratio between 
high- and low-expression risk status samples, the immune 
cell infiltration of the TCGA-LUAD data set was analyzed 
by both Timer (tumor immune estimation resource; https://
cistrome.shinyapps.io/timer) (24) and Cibersort (https://
cibersort.stanford.edu/) (25), respectively. Timer was 
used to analyze the tumor-infiltrating immune cells, and 
the correlations between the infiltrating level of different 
subsets of immune cells and high- and low- risk status 
samples. Cibersort was used for estimating the abundance 
of different immune cell types in tumor microenvironment 
by FPKM data (26). The Wilcox test was used to test the 
cell-ratio difference between the two groups.

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
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Statistical analysis

To evaluate the prediction accuracy of the risk scoring 
model, the receiver operating characteristics (ROC) curve 
was drawn, and the area under the curve (AUC) was 
calculated. A univariate analysis and a multivariate Cox 
regression analysis were used to analyze the survival of 
potential prognostic factors, such as age, fender, risk status 
in the TCGA and GEO data sets.

Results

Screening genes related to lung cancer survival

To explore the relationship between lung cancer-related 
genes and survival, based on the common differential genes 
in the two datasets, a univariable Cox proportional hazards 

regression analysis and a Least Absolute Shrinkage and 
Selection Operator (LASSO) analysis were used to further 
screen them. The following 28 genes with a frequency 
≥150 were selected as potential survival significantly related 
genes: ASB1, FAM189A2, FUT1, FUT2, FUT4, HGSNAT, 
HOXA7, MS4A1, MYO6, P2RX1, PAX5, PCDH7, PTX3, 
RHOQ, SFXN1, SHC1, STX3, TLE1, EGLN1, MYLIP, 
OR7E47P, CBFA2T3, ASCC1, DARS2, IPO9, PHF14, 
DENR, and GRPEL1 (see Figure 1A). A univariable Cox 
proportional hazards regression analysis was then undertaken 
to verify these 28 genes in the GEO data set. By setting a 
threshold, the following 13 genes significantly related to 
survival were finally screened out: ASB1, CBFA2T3, DENR, 
EGLN1, FAM189A2, FUT1, FUT2, FUT4, MYLIP, PCDH7, 
PHF14, and STX3 (see Figure 1B). Subsequent research on 
lung cancer markers was based on these 13 genes.

Figure 1 Screening survival-related genes. (A) 28 key genes (frequency ≥150) were obtained from 491 genes screened by a single-factor 
regression analysis; (B) a univariable Cox proportional hazards regression analysis was used to verify the above genes in the Gene Expression 
Omnibus (GEO) data set, and 13 genes significantly related to survival were identified.
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Expression level of 13 survival-related genes in the tumor 
and normal groups

In view of the role of these 13 survival-related genes in the 
occurrence and development of lung cancer, their expression 
levels in tumor and normal groups were analyzed in the 
TCGA and GEO data sets (see Figure 2). The results 
obtained from the two data sets exhibited the same trend, 
and the upregulated genes in lung cancer were mainly FUT2, 
SFXN1, DENR, PCDH7, PHF14, EGLN1, and FUT4, 
while the downregulated genes were mainly FAM189A2, 
CBFA2T3, MYLIP, FUT1, STX3, and ASB1. Notably, the 
difference between FUT2 and FAM189A2 was the most 
significant.

Prognostic value of lung cancer markers

To study the prognostic value of lung cancer markers, 
the aforementioned 13 genes were first analyzed by a 
multivariate Cox regression model. 8 risk genes were then 
screened out by a stepwise regression analysis (see Table 1).  
Next, we divided patients into either the low- or high-risk 
group according to the median risk in the TCGA and GEO 
data sets, and drew survival curves (see Figure 3A,B). As 
Figure 3A,B shows, low-risk patients had high survival rates. 
We then conducted univariate and multivariate regression 
analyses using the TCGA and GEO data sets to analyze 
survival in relation to age, gender, and risk status (see  
Tables 2-5). The analysis showed that whether due to a single 

Figure 2 Analysis of the expression levels of the 13 survival-related genes in tumor and normal groups in The Cancer Genome Atlas (TCGA) 
and Gene Expression Omnibus (GEO) data sets, respectively. The red dots represent upward adjustment, and the blue dots represent 
downward adjustment.
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Table 1 Eight genes were selected by a multivariate Cox regression model and a stepwise regression analysis to construct a risk model

Gene CoEf HR 95% CI for HR P value

CBFA2T3 –0.134737413 0.873945369 0.739184514–1.033274497 0.114823254

DENR 0.502939089 1.653574138 1.06051335–2.578286666 0.026472368

EGLN1 0.277237561 1.319479791 1.011235233–1.721683405 0.041125084

FUT2 –0.165924349 0.847110316 0.745464979–0.962615156 0.010953068

FUT4 0.543922139 1.722750496 1.356288928–2.188227899 8.30E-06

PCDH7 0.142887158 1.153599619 1.043684318–1.275090618 0.005159577

PHF14 0.264241702 1.302442961 0.932311101–1.819518898 0.121362743

STX3 –0.774663038 0.460859047 0.328641131–0.64627048 7.11E-06
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factor or multiple factors, the risk situation was related to 
survival. The results also indicated that risk status may be 
an independent prognostic factor. To analyze the predictive 
value of the risk score for lung cancer prognosis, we made 
time-dependent ROC curves based on risk scores of 8 genes 
in the TCGA and GEO data sets and calculated the AUC 
(see Figure 3C,D). In the TCGA data set, we found that the 
AUC of ROC curves of the prognosis model at 1, 3, and 5 
years were 0.756, 0.756, and 0.761, respectively. In the GEO 
data set, we found that AUC of ROC curves of the prognosis 
model at 1, 3 and 5 years were 0.802, 0.74, and 0.817, 
respectively. Thus, in the two data sets, the 1-, 3- and 5-year 

risk scoring models had high predictive power. Generally 
speaking, if the AUC value was more than 0.75, then the 
predicted value was relatively high.

Identification and analysis of the risk genes related to lung 
cancer prognoses

To explore the significance of each risk gene in relation 
to the survival time of the lung cancer patients from the 
TCGA and GEO data sets, the samples were divided 
into high- and low-risk groups according to whether the 
median value of gene expression was lower than or higher 

Figure 3 Prognostic values of lung cancer-related genes. (A) Survival analysis of high- and low-risk groups in The Cancer Genome Atlas 
(TCGA) data set; (B) survival analysis of high- and low-risk groups in the Gene Expression Omnibus (GEO) data set. (C,D) ROC curves for 
the TCGA and GEO data sets to analyze the predictive value of risk scores for lung cancer prognosis.
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than the median value of overall gene expression (see 
Figure 4A,B). As Figure 4A,B shows, in the TCGA data set, 
patients with a high expression of CBFA2T3 and STX3 had 
high survival rates, while patients with a high expression 
of DENR, EGLN1, FUT4, and PCDH7 had low survival 

rates. Similarly, in the GEO data set, patients with a high 
expression of CBFA2T3 and STX3 had high survival rates, 
while patients with high expression of DENR, EGLN1, 
FUT4, and PCDH7 had low survival rates. Thus, CBFA2T3 
and STX3 appear be protective lung cancer genes, while 

Table 5 Multivariate regression analyses on the survival analysis of age, gender, and risk status in the Gene Expression Omnibus (GEO) data set

HR P value 95% CI

Age >60 1.558052247 0.206786723 0.78270296–3.101466238

Gender (male) 1.083930224 0.817164994 0.547360611–2.146491193

Stage (stage 2) 2.96462251 0.002638156 1.459964761–6.019999153

Risk (low) 0.234287045 0.001852798 0.093955213–0.584218986

Table 2 Univariate regression analyses on the survival analysis of age, gender, and risk status in The Cancer Genome Atlas (TCGA) data set

Beta HR (95% CI for HR) Wald. test P value

Age 0.3 1.3 (0.91–2) 2.2 0.14

Gender –0.067 0.94 (0.65–1.3) 0.14 0.71

Stage2 1 2.8 (1.9–4.1) 30 4.20E-08

T2 0.91 2.5 (1.5–4) 14 0.00017

N2 0.93 2.5 (1.7–3.8) 20 8.10E-06

Risk –1.3 0.28 (0.19–0.41) 41 1.70E-10

Table 3 Multivariate regression analyses on the survival analysis of age, gender, and risk status in The Cancer Genome Atlas (TCGA) data set

HR P value 95% CI

Age >60 1.297839626 0.212126079 0.861732054–1.954653638

Gender (male) 0.882863433 0.515268644 0.606609446–1.284925327

Stage2 (stage 3+4) 2.917666797 0.000527009 1.592628179–5.345114226

T2 (T3+4) 1.183025304 0.542076399 0.689184547–2.030731646

N2 (N2+3) 0.856846265 0.626061867 0.46027759–1.595092913

Risk (low) 0.291371608 2.71E-09 0.194077935–0.437439804

Table 4 Univariate regression analyses on the survival analysis of age, gender, and risk status in the Gene Expression Omnibus (GEO) data set

Beta HR (95% CI for HR) Wald. test P value

Age 0.24 1.3 (0.65–2.5) 0.49 0.49

Gender 0.42 1.5 (0.78–3) 1.5 0.22

Stage 1.4 4.2 (2.2–8.2) 18 2.20E-05

Risk –1.8 0.17 (0.071–0.42) 15 9.00E-05
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DENR, EGLN1, FUT4 and PCDH7 appear to be dangerous 
genes. These 6 genes can be used as lung cancer markers to 
evaluate the prognosis of lung cancer.

Exploring the involved signal pathways through a GSEA

A GSEA was undertaken to gain a better understanding of 
the corresponding biological functions of high- and low-risk 

patients. The results showed that linoleic acid metabolism 
and metabolism of xenobiotics by the cytochrome P450 
pathway were downregulated in high-risk samples, while 
the p53 signaling pathway, oocyte meiosis, deoxyribonucleic 
acid (DNA) replication, homologous recombination, and 
the cell cycle pathway were upregulated in high-risk samples 
(see Figure 5A). We also selected the first 6 pathways 
(sorted from small to large based on the P values) to make 

Figure 4 Analysis of the survival of the 8 risk genes. (A) Samples in The Cancer Genome Atlas (TCGA) data set were divided into high- and 
low-risk groups and survival curves were drawn; (B) the samples in the Gene Expression Omnibus (GEO) data set were divided into high- 
and low-risk groups and survival curves were drawn.
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the distribution curve of the enrich score (see Figure 5B). 
As Figure 5B shows, genes in the pathway of linoleic acid 
metabolism and xenobiotic metabolism by cytochrome 
P450 tended to be more concentrated in the low-expression 
region, while genes in the p53 signaling pathway, Oocyte 
meiosis, DNA replication, and homologous recombination 
tended to be more concentrated in the high expression 
region. Thus, the results indicated that the corresponding 
biological functions of high-risk patients are mostly related 

to tumor proliferation.

An analysis of immune cell infiltration with Timer and 
Cibersort

To analyze the immune cell ratio between high- and low-
expression samples of risk status, we used Timer and Cibersort 
to analyze immune cell infiltration (see Figure 6A,B).  
Together, the Timer and Cibersort results showed that 

Figure 5 The corresponding biological functions of high-risk patients. (A) GSEA was undertaken to analyze the corresponding biological 
functions of high-risk patients. A negative value indicated that the activity of this pathway was downregulated in the high-risk samples, and 
a positive value indicated that the activity of this pathway was upregulated in the high-risk samples. (B) The first 6 pathways (sorted by P 
value from small to large) were selected to make the distribution curve of the enrich scores. The highest point was the enrich score of this 
pathway; a positive enrich score indicated that the activity of this pathway was upregulated, while a negative enrich score indicated that the 
activity of this pathway was downregulated.
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Figure 6 Analysis of immune cell infiltration. (A) Timer and (B) Cibersort were used to analyze the proportion of immune cells in high-
risk status and low-risk status samples. The horizontal axis shows high-risk status and low-risk status; the vertical axis represents log2 cell 
fraction score. The higher the value, the higher the cell abundance.
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the high-risk status sample was biased toward the high 
abundance of most immune cells. The expressions of B cell, 
B plasma, and Mast-activated cells were low in the high-risk 
status samples, whereas Neutrophil, CD8+ T, Macrophage 
M0, Macrophage M1, and mDC-activated cells showed 
opposite results.

Discussion

Lung cancer has one of the highest tumor morbidity and 
mortality rates in the world; however, its pathogenesis is 
very complex and remains unclear (27,28). Previous studies 
have shown that the upregulation or downregulation of 
many genes is related to the occurrence and development 
of lung cancer. For example, the methylation of RASSF1A, 
CDKN2A, and DLEC1 is only found in lung cancer patients, 
while the methylation of CACA, CDH13, PITX2, HOXA9, 
and WT1 is found in both lung cancer and non-lung 
cancer patients (29). Nine genes (i.e., HMMR, B4GALT1, 
SLC16A3, ANGPTL4, EXT1, GPC1, RBCK1, SOD1, and 
AGRN) are considered to be related to poor prognosis 
and metastasis among LUAD patients (30). Further, 
some studies have found that there are differences in the 
expression of m6A-related genes in LUAD, and that the 
m6A-related genes of METTL3, YTHDF1 and YTHDF2 can 
be used as new biomarkers for the prognosis of LUAD (31). 
In this study, we focused on the relationship between 8 lung 
cancer-related genes and the occurrence and development 
of lung cancer. We found that they are closely related to 
the malignant degree and prognosis of lung cancer. Thus, 
our research has further improved understandings of the 
mechanism of the occurrence and development of lung 
cancer.

To explore the relationship between lung cancer-related 
genes and survival, we screened genes related to lung 
cancer survival. A follow-up study was then conducted of 
the 13 genes that we identified as being related to lung 
cancer survival. First, we analyzed their expression levels in 
tumor and normal groups using the TCGA and GEO data 
sets. Next, we selected 8 risk genes by a multivariate Cox 
regression model analysis and stepwise regression analysis 
to construct a risk model. Finally, we examined whether risk 
status was an independent prognostic factor by undertaking 
univariate and multivariate regression analyses. In addition, 
we used a ROC curve to analyze the predictive value of risk 
scores on the prognosis of lung cancer. We calculated the 
AUC, and found that the predictive value is still relatively 
high. We then identified and analyzed the risk genes related 

to prognosis in lung cancer. According to the results, it 
appears that CBFA2T3 and STX3 are the protective genes of 
lung cancer, while DENR, EGLN1, FUT4, and PCDH7 are 
the risk genes. Finally, we analyzed the biological function 
by a GSEA and immune-infiltration analysis, and confirmed 
their significance as new biomarkers for lung cancer 
patients.

CBFA2T3 and STX3 can promote the occurrence and 
development of tumors in many cancers. For example, the 
CBFA2T3/ACSF3 locus is a new recurrent carcinogenic 
target of immunoglobulin heavy chain locus (IGH) 
translocation that may be involved in the pathogenesis 
of GC-derived b-cell lymphoma in children (32). The 
expression of CBFA2T3-GLIS2 in drosophila and mouse 
hematopoietic cells induced bone morphogenetic protein 
signal transduction, and led to a significant improvement in 
the self-renewal ability of hematopoietic progenitor cells, 
which indicated that the expression of CBFA2T3-GLIS2 
was directly involved in the occurrence of AMKL (33). 
In addition, STX3 promotes the growth of breast cancer 
cells by regulating the PTEN-PI3K-Akt-mTOR signaling 
pathway. The upregulation of STX3 is related to the 
malignant stage of breast cancer patients, and can predict 
the overall survival rate and disease-free survival rate of 
breast cancer patients (34). The formation of lateral basal 
areas and inclusion bodies in intestinal cells by microvilli 
dislocation is a pathological feature of congenital bowel 
disease, which is related to the mutation of apical plasma 
membrane receptor binding protein 3 (STX3) (35).

However, in lung cancer, we found that CBFA2T3 and 
STX3 were both protective genes, and their high expression 
promotes the survival of lung cancer patients. According 
to reports, CBFA2T3 and STX3 play inhibitory roles in 
many cancers. For example, CBFA2T3 was proved to be a 
transcription inhibitor when it was linked to GAL4-DNA 
binding domain, which indicates that CBFA2T3 may be a 
candidate gene of the breast cancer tumor suppressor gene, 
which is a common target gene of 16q24 LOH in breast 
cancer (36). RUNX1-CBFA2T3 has a good prognosis 
in childhood acute myeloid leukemia, and patients with 
RUNX1-CBFA2T3-rearrangement AML may benefit from 
the risk stratification of standard intensive treatment (37). In 
addition, the expression of BDNF, STXBP2, STX3, TGFB1, 
and CHAT was downregulated in a human neuroblastoma 
SH-SY5Y cell model (38).

Conversely, we found that DENR, EGLN1, FUT4, 
and PCDH7 were risk genes in lung cancer. Their high 
expression inhibits the survival of lung cancer patients. It has 
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been shown that DENR gene encodes density regulatory 
protein, which acts on translation initiation together with 
multiple copies of oncogene (39). Many key ribosome 
binding proteins are important in cancer and participate 
in re-initiation, including the eukaryotic translation  
initiation factor 2D (eIF2D) or MCT-1/DENR homologous 
complex (40). Cancer cells are exposed to many pressures 
and need ATF4 to survive and proliferate. We found that 
there is a strong correlation between DENR•MCTS1 
expression and ATF4 activity in cancer (41).

The mechanism of EGLN1 in different cancers differs. 
For example, in clear cell ovarian cancers, the knockout 
of EGLN1 encoding prolyl hydroxylase domain protein 
2 (PHD2) was found to reduce the proliferation of some 
clear cell ovarian cancer cell lines. EGLN1 is a potential 
therapeutic target for patients with clear cell ovarian 
cancers (42). EGLN1 can be used as a prognostic biomarker 
in gynecological cancer, and, the imbalance of EGLN1 
in cervical squamous cell carcinoma (CESC) is related 
to OS (Overall survival)time, which has been identified 
as the central gene of cancer progression (43). However, 
in clear cell renal cell carcinomas (ccRCCs), EGLN1 can 
mediate the degradation of SFMBT1, and the deletion 
of SFMBT1 inhibits the proliferation of CCRCC cells in 
vitro and the growth of tumor in situ in vivo (44). EGLN1 
is a member of prolyl hydroxylase that can promote the 
degradation of HIF-1 by hydroxylation and ubiquitination. 
Introducing wild-type EGLN1 into endometrial cancer cell 
lines (e.g., HHUA, Ishikawa, and HWCA) with EGLN1 
gene mutation can induce aging. EGLN1 can be used as a 
candidate tumor suppressor gene of chr. 1q (45).

The role of FUT4 in the occurrence and development of 
cancer has also been reported in the literature. For example, 
in AML, the miR-29b/Sp1/FUT4 axis regulates fucosylated 
CD44 through Wnt/β-catenin pathway, which promotes 
the malignant behavior of LSCs. Identifying LSCs surface 
markers and targeting LSCs are of great significance to the 
development of potential treatment methods for AML (46). 
In colorectal cancer, MALAT1 increases the expression 
of FUT4 through miR-26a/26b, and the MALAT1/
miR-26a/26b/FUT4 axis plays an important role in the 
development of colorectal cancer mediated by exosomes (47).

PCDH7 is a transmembrane receptor and belongs to 
the cadherin superfamily (48). It plays different roles 
in different tumors. For example, in breast cancer, the 
overexpression of PCDH7 promotes the proliferation and 
invasion of breast cancer cells in vitro and the formation of 
bone metastasis in vivo (49). In colon cancer, LNAPPCC 

plays a carcinogenic role by forming a positive feedback 
loop with PCDH7. Targeting LNAPPCC/EZH2/PCDH7/
ERK/c-FOS signal axis is a potential treatment strategy 
for colon cancer (50). However, in gastric cancer, the 
knockout of tumor suppressor gene PCDH7 in PRMT6-
KO-GC cells promotes cell migration and invasion. 
Gastric cancer cells overexpressing PRMT6 may increase 
invasiveness by directly repressing PCDH7 by increasing the 
H3R2me2as level (51). In androgen-independent prostate 
cancer (AIPC), androgen receptor targets PCDH7, and its 
hypermethylation may inhibit the growth and invasion of 
AIPC cells and promote apoptosis. This study provides a 
new target for the treatment of AIPC (52).

FUT2 does not appear to have a significant relationship 
with the survival of lung cancer patients; however, it has 
been reported that FUT2 induces fucosylation in airway 
epithelium of asthma patients, which partly aggravates 
airway inflammation through the production of C3a and 
the aggregation of monocyte-derived dendritic cells in 
lung (53). The FUT2 genotype was significantly correlated 
with the prognosis of patients with non-cystic fibrosis 
bronchiectasis, and the homozygous secretor showed low 
lung function, increased aggravation times, and increased 
infection frequency of Pseudomonas aeruginosa (54). In 
addition, in breast cancer, the overexpression of FUT2 
increases the migration and invasion of cells in vitro and the 
metastasis of breast cancer in vivo. FUT2 plays an important 
role in regulating growth, adhesion and migration, and 
has the characteristics of cancer stem cells, which may be a 
therapeutic target for breast cancer (55). The relationship 
between FUT2 and lung cancer should be further examined.

In sum, this study sought to identify the expression, 
potential function, and prognostic value of lung cancer-
related genes in lung cancer. Risk genes may contribute 
to the personalized prediction of lung cancer prognosis. 
Further, as potential biomarkers, risk genes reflect the 
response of lung cancer patients to specific targeted 
therapies of lung cancer markers. The further study of these 
genes could fully reveal the potential association between 
lung cancer-related genes and the prognosis of lung cancer. 
This study also highlighted the important role of lung 
cancer-related genes in the occurrence and development of 
lung cancer, and provided potential guidance in relation to 
biomarkers for the selection of treatment methods.

Conclusions

This study comprehensively analyzed the relationship 
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between the expression of lung cancer-related genes and 
the occurrence, development, and prognosis of lung cancer. 
In lung cancer-related genes, the abnormal expression of 
CBFA2T3, STX3, DENR, EGLN1, FUT4, and PCDH7 was 
found to be significantly related to the progression of lung 
cancer. Of these genes, CBFA2T3 and STX3 were identified 
as protective genes, while DENR, EGLN1, FUT4 and 
PCDH7 were identified as dangerous genes. These 6 genes 
can be used as independent lung cancer markers to evaluate 
the prognosis of lung cancer, and whether there is serious 
inflammatory infiltration in the tumors of high-risk patients. 
This study not only provided insights into the mechanism 
of occurrence and the development of lung cancer, it also 
provided potential targets for targeted lung cancer therapy. 
However, our study still needs further clinical verification.
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