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Abstract: Atherosclerotic carotid artery stenosis causes about 10–20% of all ischemic strokes through two 
main mechanisms: hemodynamic impairment in case of significant stenosis and thromboembolism from an 
atherosclerotic plaque regardless of the degree of stenosis. The latter is the most frequent mechanism and 
appear to result from embolization from a vulnerable atherosclerotic plaque or acute occlusion of the carotid 
artery and propagation of thrombus distally. Downstream infarcts may occur in a territory of major cerebral 
artery or at the most distal areas between two territories of major cerebral arteries, the so-called watershed 
(WS), or border zone area. Although WS infarcts, especially deep WS infarct, were historically thought to be 
due to hemodynamic compromise, the role of microembolism has also been documented, both mechanisms 
may act synergistically to promote WS infarcts. Routine and more advanced imaging techniques may provide 
information on the underlying mechanism involved in ipsilateral ischemic stroke. A better understanding 
of ischemic stroke pathogenesis in carotid stenosis may limit the use of routine non-selective shunt, whose 
benefit-risk balance is debated, to patients with hemodynamic impairment.
After reviewing existing evidence underpinning the contribution of the two mechanisms in downstream 
ischemic stroke and the various imaging techniques available to investigate them, we will focus on the 
pathogenesis of WS infarcts that remains debated.
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Prior studies have estimated that up to 20–25% of ischemic 
strokes are caused by large-artery atherosclerosis (1-3). 
Carotid artery disease is believed to be responsible for 

anywhere between 10 and 20% of ischemic stroke (4). 
The degree of stenosis is a relevant risk factor of ipsilateral 
ischemic stroke (5). This criterion has been used to select 
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patients in randomized clinical trials and is consequently 
considered when making treatment decisions in patients 
with carotid disease (6,7). However, the importance of 
hemodynamic factors in the pathogenesis of focal cerebral 
ischemia is still debated. While it is likely that some 
ischemic strokes associated with carotid artery disease result 
from hypoperfusion, the majority of such strokes appear to 
result from embolization from a vulnerable atherosclerotic 
plaque or acute occlusion of the carotid artery and 
propagation of thrombus distally (8-10). Routine and more 
advanced imaging techniques may provide information on 
the underlying mechanism involved in ipsilateral ischemic 
stroke (11-13). Downstream infarcts may affect watershed 
(WS) or border zone area, that are the most distal areas 
between two territories of major cerebral arteries (14). 
Some studies suggested that WS infarct, especially deep 
WS infarct, are related to hemodynamic compromise, but 
this hypothesis has been challenged by evidence on the 
contribution of microembolism in this setting (15). We 
aimed to review existing evidence and imaging modalities 
supporting the contribution of these two mechanisms, 
especially in the pathogenesis of WS infarcts, in which they 
may act synergistically.

We present the following article in accordance with the 
Narrative Review reporting checklist (available at https://
dx.doi.org/10.21037/atm-20-7490).

Hemodynamic impairment downstream to 
carotid stenosis

Generalities about brain perfusion: cerebral autoregulation 
and vascular reserve

The cerebral blood flow (CBF) is about 50 mL/100 g/minutes 
(16-18). Cerebral autoregulation maintains a constant 
CBF in case of  increased brain functional activity or a  
significant drop of systemic blood pressure (from 50 to  
170 mmHg) (19). Cerebrovascular reserve is the ability 
of the brain to increase cerebral blood volume (CBV) via 
collateral network development to maintain a constant 
CBF. In case of severe decrease of CBF related to unilateral 
severe carotid artery stenosis, adaptative mechanisms are 
involved. First (grade I) a vasodilatation of arterioles occurs, 
which is traduced by an increase of mean transit time (MTT) 
and CBV while a normal oxygen extraction fraction (OEF) 
is maintained. If this mechanism is exhausted (grade II), 
OEF increases in order to maintain the cerebral metabolic 
rate of oxygen (CMRO2) (20). At the end, when these 

compensatory mechanisms are exhausted and CBF and 
CMRO2 decreased, irreversible damage then takes place: 
this is ischemia (Figure 1) (21,22).

Many different methods are available to evaluate 
brain perfusion: transcranial doppler (TCD), positron 
emission tomography (PET), xenon-CT (Xe-CT), single-
photon emission computed tomography (SPECT), CT-
angiography (CTA), MR-angiography (MRA), perfusion 
CT (CTP), MR perfusion (MRP) and conventional cerebral 
angiography (16,23). PET is the gold standard to estimate 
cerebrovascular reserve. It uses an oxygen-15 radiotracer 
and can provide estimations of CBV, CBF, CMRO2 and 
MTT (21). TCD is used to evaluate vasomotor reactivity 
(VMR) in the middle cerebral artery (MCA) before and 
after the administration of either CO2 or acetazolamide. A 
reduced VMR is a marker of impaired cerebral perfusion 
and poor collateral circulation. SPECT also evaluates 
hemodynamic reserve by measuring regional VMR after 
administration of CO2 or acetazolamide. In physiological 
conditions, administration of acetazolamide increases 
blood flow by as much as 80%. CT or MR perfusion-based 
methods are easily accessible in clinical practice and maps of 
CBF, CBV, MTT and time to peak (TTP) may be provided 
to estimate brain perfusion (16,24).

Evidence of hemodynamic impairment in case of carotid 
artery stenosis

Hemodynamic and cerebrovascular reactivity (CVR) 
studies
Cerebral  perfusion pressure is  not systematically 
compromised downstream of carotid plaques. It is only in 
case of significant stenosis that brain hemodynamic may be 
impaired (25).

PET studies on patients with severe carotid stenosis 
show a decrease of CBF, CBF/CBV ratio, CMRO2 and 
an increase in MTT, CBV, and OEF in the ipsilateral 
hemisphere (26,27).

Many studies using acetazolamide (24) or 99mTc-
HMPAO SPECT before and after injection of dipyridamole 
(28,29) showed a reduced resting CBF and an altered 
CVR ipsilateral to the carotid stenosis after injection. 
More recently, multimodal MRI perfusion studies showed 
that CBF and CVR were decreased ipsilaterally to the  
stenosis (30). Lythgoe et al. found a significant increase in 
mean MTT and CBV, and a significant decrease in mean 
CBF ipsilateral MCA territory in carotid stenosis patients, 
compared with both the contralateral MCA territory 
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and the control group (31). In a multimodal imaging 
study, CBF, mean flow velocity in MCA ipsilateral artery 
and VMR were significantly decreased in case of carotid  
stenosis (32). These results were confirmed by two other 
studies showing a decrease in CVR ipsilateral to carotid 
stenosis (33,34). Finally a Xe/CT study found a decreased 
vasoreactivity to C02 in patients with carotid stenosis but 
no effect on CBF versus contralateral hemisphere (35).

An alteration of CVR, evaluated by apnea-induced 
hypercapnia and transcranial doppler was significantly 
associated with an increased risk of stroke in a prospective 
study (36). For Blaser et al. exhausted CVR was the major 
risk factor of stroke recurrence in case of symptomatic 
carotid stenosis (37). Webster et al. and Yonas et al. 
also showed in Xe-CT studies an association between a 
decreased CVR and risk of stroke in patients with severe 
carotid stenosis (38,39). These results were corroborated 
by two other studies using CT perfusion and doppler 
ultrasound (40,41). A meta-analysis has identified an 
increased OEF as an independent predictor of stroke in 
carotid stenosis or occlusion (42).

Moreover, many studies with different methods of 
brain perfusion or vasoreactivity evaluation showed an 
improvement of brain hemodynamic after endarterectomy 

or stenting (43-49).
These data suggest that hemodynamic impairment may 

play a role in the occurrence of stroke in patients with 
carotid stenosis.

Influence of collateral circulation
Some factors have been identified to explain patient 
susceptibility to ischemic stroke occurrence downstream to 
carotid stenosis. The most relevant protective factor seems 
to be the presence and the quality of collateral circulation. 
Collateral circulation is a compensatory pathway which can 
be recruited to preserve brain perfusion in case of acute 
or chronic hypoperfusion. Its protective role depends on 
several factors as anatomical variations, blood pressure, age 
and rate of development of steno-occlusive disease (16).  
Primary collateral pathways involved in carotid artery 
stenosis are represented by the circle of Willis. It is 
necessary to distinguish the anterior pathway with the 
anterior communicating artery and the A1 segment of 
the anterior cerebral artery (ACA) and the posterior 
communicating pathway with the posterior communicating 
artery and the P1 segment of the posterior cerebral artery 
(PCA). Secondary pathways are extra Willisian collaterals 
like retrograde flow via the external carotid and ophthalmic 

Figure 1 Illustration of cerebrovascular reserve in case of a CPP decrease due to high grade carotid artery stenosis. CPP, cerebral perfusion 
pressure; CBF, cerebral blood flow; CBV, cerebral blood volume; CMR02, cerebral metabolic rate of O2; MTT, mean transit time; OEF, 
oxygen extraction fraction. 
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artery and leptomeningeal collateral flow via the PCA (50).
Fang et al. demonstrated that in patients with unilateral 

carotid stenosis, blood flow velocity in the contralateral 
commune carotid artery was higher than in the ipsilateral 
commune carotid artery (51). Furthermore, patients with 
bilateral carotid artery stenosis had higher blood flow 
velocity in vertebral arteries than control patients or 
patients with unilateral carotid artery stenosis. These data 
are in favor of compensatory mechanisms via collateral 
pathways in case of carotid stenosis. In a doppler study, 
CVR tended to be less important in patients without 
collateral circulation (52). There was a majority of patients 
with a reduced CVR ipsilateral to carotid stenosis.

These arguments highlight role of hemodynamic 
impairment in ischemic strokes downstream to carotid 
stenosis.

Influence of degree of stenosis
There is a relationship between the severity of symptomatic 
or asymptomatic carotid stenosis and the risk of ipsilateral 
ischemic stroke (53). Tomura et al. assessed the correlation 
between carotid stenosis degree and cerebral reserve 
alteration (54). They observed no significant association 
between CBF and stenosis degree but a small but significant 
association between CVR alteration and degree of stenosis. 
Jongen et al. showed that a higher degree of carotid 
artery stenosis was associated with a decreased CBF and 
an increased MTT (55). An association between doppler 
C02 vasoreactivity alteration and degree of stenosis was 
also reported but these results might be biased by the 
recruitment of patients who had experienced recent stroke 
or transient ischemic attack (TIA) (37).

Microembolic mechanism from vulnerable 
carotid plaques

Beyond the  degree  of  s tenos i s  and i t s  potent ia l 
hemodynamic impairment, carotid plaques, especially 
vulnerable plaques, cause mostly downstream ischemic 
stroke through a microembolic mechanism (8,9).

This hypothesis is supported by data coming from 
TCD studies. TCD is a validated tool to detect cerebral 
microembolic signals (MES) using a probe placed in 
front of the ipsilateral middle cerebral artery (56). MES 
detection is predictive of ischemic stroke/TIA occurrence 
in patients with carotid stenosis both in asymptomatic (57) 
and symptomatic patients (58). A severe degree of carotid 
stenosis appears to be associated with a higher detection of 

MES (59,60), whereas optimizing medical treatment may 
decrease their detection (61).

Plaques that are more prone to cause distal embolization 
and subsequent TIA and stroke occurrence are qualified 
as vulnerable (62). Plaque features of vulnerability include 
a large lipid-rich necrotic core, a thin or ruptured fibrous 
cap, ulcerations and intraplaque hemorrhage and the 
presence of inflammatory cells (63). Several approaches 
have been developed to identify imaging markers of 
plaque vulnerability from routine to advanced techniques, 
using ultrasound, CTA, MRI or other imaging techniques  
(Figure 2) (11,12). Carotid stenosis progression is also 
considered as a marker of vulnerability (64). The prevalence 
of vulnerable plaques on the basis of various imaging 
criteria account for about 25% of all asymptomatic carotid 
plaques (65). Plaques classified as vulnerable were associated 
with a higher risk of an ipsilateral ischemic event (65). This 
relationship was also observed in case of <50% luminal 
narrowing plaques among patients with cryptogenic  
stroke (66) and, more specifically those with embolic stroke 
of undetermined source (67).

Among routine imaging, two-dimensional ultrasound is 
often used as first-line imaging and provide information on 
carotid plaque echostructure, besides the degree of stenosis. 
Echolucency that corresponds to lipid-rich necrotic core or 
intraplaque hemorrhage has been established as a stroke risk 
marker (68-70) as well as higher juxta-luminal hypoechoic 
black size (71,72) and plaque area (72). Other risk markers 
as ulceration (73) and neovascularization (74,75) may be 
assessed using three-dimensional and contrast-enhanced 
ultrasound.

CTA, which is widely available, may approach plaque 
vulnerability with a high degree of agreement with 
histologic examination (76) and high-resolution MRI (77). 
Soft plaque, plaque ulceration, increased common carotid 
artery wall thickness and lack of calcifications on CTA have 
been associated with the risk of ipsilateral stroke (78).

Advanced imaging as high resolution MRI and PET/
CT or PET/MRI studies of carotid plaques now offer the 
possibility to better characterize plaque composition and 
risk features (12). High resolution MRI is an accurate, 
sensitive and specific method for determining the plaque 
characteristics of vulnerability, as the lipid rich necrotic 
core, thin and/or ruptured fibrous cap and intraplaque 
hemorrhage compared to histological findings (79,80). High 
resolution contrast-enhanced MRI can also detect increased 
plaque permeability, a hallmark of neoangiogenesis (81). 
The inflammatory plaque component was mainly evaluated 
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with 18F-fluorodeoxyglucose (FDG) PET/CT (82). Indeed, 
FDG uptake has been recognized as a marker of stroke risk 
and correlated with MES (83). Inflammation imaging of 
atherosclerosis is an active research field and new tracers are 
currently under clinical evaluation using hybrid imaging, 
PET/CT or PET/MRI (84). Among the other factors 
of plaque vulnerability, intraplaque neoangiogenesis and 
hypoxia are associated with an increased risk. Hypoxia can 
be evaluated by 18F-fluoromisonidazole (FMISO) PET 
and was correlated with FDG uptake (85). Thus, FDG 
PET/MRI can explore the link between MRI vulnerable 
plaque features and inflammation (84). In a small study 
of 18 patients using 18F-FDG PET/MRI, non-stenotic 
carotid plaques were diagnosed as the cause of embolic 
stroke of unknown origin (86). Microcalcification is the 
hallmark of active atherosclerosis and is linked to acute 

events. It can be evaluated by PET/CT or PET/MRI using 
18F-sodium fluoride (NaF) (87). Two recent studies used 
both NaF and FDG PET tracers to evaluate the association 
of active microcalcification and inflammation in culprit 
plaques (88,89). The study by Fujimoto et al. conducted in 
28 patients assessed the relationship between these tracers 
and the severity of ischemic brain disease on MRI and 
concluded that NaF uptake appeared more discriminant 
than FDG (89).

WS infarct pattern

In 1959, German neurosurgeons Wilhelm Tönnis and 
Wolfgang Schiefer endorsed the Schneider’s concept of 
“letzte Wiese” to explain the manifestation of circulatory 
disturbances in the border zones between the 3 large 

Figure 2 Illustrative case of a 73-year-old woman with a transient ischemic attack. Angio-MR MIP (maximum intensity projection) 
reconstruction (A) highlighting the presence of a plaque ulceration of the right internal carotid artery (image courtesy of Sara Boccalini). 
Transcranial Doppler (B) showing a cerebral microembolic signal in the right middle cerebral artery. Surgical specimen confirming the 
presence of ulceration (C).
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cerebral arteries and in basal ganglia and internal  
capsule (90).

WS or border zones correspond to the most distal 
areas between two territories of major cerebral arteries 
(14,15). Cortical WS zones are located between the 
cortical territories of the ACA, MCA, and PCA. Deep 
or internal WS zones are located in the white matter 
along and slightly above the lateral ventricle, between 
the superficial systems of the MCA and ACA, or between 
the deep and the superficial arterial systems of the MCA  
(Figures 3 and 4) (91). Deep WS zones are divided into 
confluent and partial infarcts either as a single lesion or in 
“rosary-like” pattern in the centrum semiovale. However, 
WS zones and vascular territories have variable spatial 
distribution in healthy individuals (92,93) and even more 
markedly in those with artery stenosis or occlusion (94) in 

whom collateral pathways is recruited in a highly individual 
pattern to compensate for diminished blood flow. An 
individual WS zone mapping using multimodal MRI has 
been proposed to take into account this inter-individual 
spatial variability (95,96).

WS, or border-zone, infarcts account for about 10% of 
all infarcts and for up to about 60% of infarcts in patients 
with carotid artery stenosis or occlusion (97-101). The 
pathogenesis of WS infarcts remains debated. WS infarcts, 
and particularly deep WS and the rosary-like pattern, were 
historically thought to be due to hemodynamic compromise 
in the setting of carotid artery stenosis or occlusion as 
supplying by distal arterial branches with lowest perfusion 
pressure (102). Indeed, they were observed early in the 
clinical setting of severe systemic hypotension (2,103,104). 
Several PET, SPECT, MRI and TCD sonography 

Figure 3 Schematic representation of watershed area. Coronal (A) and axial (B) representation of cortical (white) and internal (red) 
watershed area. ACA, anterior cerebral artery; MCA, middle cerebral artery; dMCA, deep MCA; sMCA, superficial MCA; PCA, posterior 
cerebral artery.
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studies have demonstrated hemodynamic impairment in 
these zones as reduced regional CBF, reduced perfusion 
reserve, and an elevated regional OEF (13,105-107). The 
relationship between a noncompetent circle of Willis  
(108-110) or a reduced MCA intensity on 3D TOF  
MRA (111) and WS infarcts, in particular in deep WS 
infarcts, also argued for this hypothesis. The supposedly 
stronger role of hemodynamic impairment in deep WS 
infarcts was reinforced by the fact that deep WS infarcts 
had more likely a higher degree of stenosis or occlusion in 
either the middle cerebral or internal carotid artery (101) 

and were mainly due to large artery atherosclerosis (112) 
than cortical WS infarcts.

However, evidence of the role of embolism in the 
pathophysiology of WS infarcts has been documented early 
in autopsy studies showing the presence of microemboli 
including cholesterol crystals in arteries supplying WS 
zones (98,113-116). In addition, the perfusion with 
suspensions of glass microspheres of the brains of cadavers 
resulted in distribution of these microspheres into the 
WS zones as well as various arterial territories (117). The 
preferential distribution pattern of the microspheres into 

Figure 4 Axial slices of diffusion-weighted MRI showing anterior cortical (full arrow) and internal (dotted arrow) watershed infarcts (A), 
internal (full arrow) watershed infarcts (B), posterior cortical watershed infarcts (C) and a territorial infarct in the middle cerebral artery 
territory (D).
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the WS zones was affected by their diameters, as observed 
in rodents (118). An experimental study conducted in non-
human primates showed that subsequent WS infarcts 
affected both cortical and deep WS zones (119). In a clinical 
study, ipsilateral MES were common in patients with recent 
WS infarct related to carotid artery stenosis or occlusion 
thus demonstrating an embolic mechanism from the  
plaque (120). In the same way, carotid intraplaque 
hemorrhage, a marker of plaque instability, tended to 
be associated with WS infarcts in the absence of severe 
hemodynamic impairment (121). Emboli may also come 
upstream from the carotid artery. Thus, cardioembolism 
was considered as the most frequent cause of cortical 
WS infarcts and accounted for about 15% of deep WS  
infarcts (112).

A dichotomized approach is nevertheless likely too 
simplistic. Caplan et al. proposed that hemodynamic 
compromise and embolism may be intimately intertwined. 
Thus, reduced perfusion may hamper washout or clearance 
of emboli, particularly within the WS zone or make this 
brain area, with marginal perfusion, more vulnerable to 
the effect of microemboli (122). In any case, these two 
mechanisms appear to contribute, solely or synergistically, 
to all subtypes of deep WS infarcts according to studies 
combining brain perfusion mapping and MES assessment in 
patients with recently symptomatic carotid stenosis (83,123).

Conclusions

While some ischemic strokes associated with carotid artery 
disease may result from hypoperfusion, most of them 
are related to embolism from a vulnerable plaque. The 
contribution of these different pathways in patients with 
carotid plaque cannot be inferred from infarct pattern but 
may be explored using routine and more advanced imaging 
techniques. A better understanding of ischemic stroke 
pathogenesis in carotid stenosis may limit the use of routine 
non-selective shunt, whose benefit-risk balance is debated, 
to patients with hemodynamic impairment (124).
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