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Background: Ovarian cancer is a common gynecological malignant tumor that greatly threatens women’s 
health, so we screened potential biomarkers of ovarian cancer and analyzed their prognostic value. 
Methods: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets were used 
to analyze the ovarian cancer-related genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analyses were performed to analyze the function of ovarian cancer-related genes. The 
survival-related genes were screened out through the least absolute shrinkage and selection operator (LASSO) 
method. Multivariate Cox regression model and stepwise regression analysis were performed to construct 
the risk model. The receiver operating characteristic (ROC) and the area under the ROC curve (AUC) were 
used to evaluate the prediction accuracy of risk score model. Finally, gene set enrichment analysis (GSEA) 
and immune cell infiltration analysis were performed to investigate the biological function and immune cell 
infiltration. 
Results: A total of 111 genes were found to have common effects on survival. These genes were mainly 
involved in metabolism, protein phosphorylation and immune-related signaling pathways. Seven risk genes 
(AP3D1, DCAF10, FBXO16, LRFN4, PTPN2, SAYSD1, ZNF426) were screened out. Among these genes, 
AP3D1 and LRFN4 are risk genes and DCAF10, FBXO16, PTPN2, SAYSD1, and ZNF426 are protective 
genes. These findings suggest that risk status may be an independent prognostic factor. The risk score had 
a high predictive value for the prognosis of ovarian cancer. In addition, GSEA revealed that the biological 
function of genes expressed in patients at a high risk was mostly related to immune-related function. The 
contents of CD4+ T cells, macrophages, myeloid dendritic cells (mDC) and neutrophils were high in samples 
at a high risk for ovarian cancer. 
Conclusions: The abnormal expression of AP3D1, DCAF10, FBXO16, LRFN4, PTPN2, SAYSD1 and 
ZNF426 is highly related to the progression of ovarian cancer. These seven genes can be used as independent 
prognostic markers of ovarian cancer. This study not only adds evidence to the pathogenesis of ovarian 
cancer but also provides scientific basis for judging the prognosis of ovarian cancer. 
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Introduction 

Ovarian cancer is the most common cause of death among 
the gynecologic malignancies, and mainly occurs in women 
aged over 50 years. This disease is frequently diagnosed 
at the late stage because patients are often asymptomatic, 
which seriously affects prognosis (1). Approximately 90% 
of ovarian cancers are epithelial tumors, which are classified 
into five histotypes: serous, endometrioid, mucinous, 
clear cells and undifferentiated. Advanced serous cancer 
is the most common and fatal of the ovarian cancers. 
In North America, advanced serous cancer accounts 
for 70% of all ovarian cancers and 90% of deaths from 
ovarian cancer (2,3). Endometrial carcinoma accounts 
for ~10% of ovarian cancers, and is usually low stage and 
low grade. Undifferentiated serous ovarian cancer has a 
high mortality rate, and is often associated with metastasis 
and drug resistance (4). Mucinous ovarian cancer is a rare 
tumor, accounting for ~3% of all epithelial ovarian cancers 
(5,6). Each type of ovarian cancer has its own molecular 
phenotype and unique treatment, so it is challenging to 
diagnose and treat this disease. To control the progression 
of ovarian cancer, its pathogenesis must be understood, 
which will help to better screen the populations at high 
risk for ovarian cancer, and the identification of potentially 
changeable pathological factors provides an opportunity to 
reduce morbidity (7). At present, the molecular mechanism 
of ovarian cancer remains unclear, which hinders prognosis 
and the development of treatment strategies. Therefore, it 
is an urgent task to provide new biomarkers or biological 
targets for ovarian cancer. 

We present the following article in accordance with the 
REMARK reporting checklist (available at https://dx.doi.
org/10.21037/atm-21-2627).

Methods 

Data collection 

Ovarian cancer-related clinical information and gene 
expression information were downloaded from the TCGA. 
All samples were ovarian cancer. Only samples of severe 
ovarian cancer are kept in the GEO dataset. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Data processing 

Trimmed mean of M values (TMM) was used to normalize 

the TCGA sequencing data (8), and Robust multi-array 
average (RMA) was used to process the GEO data (9). After 
removing low-expression samples, the following criteria 
were used: for sequencing data, reads per kb per million 
(rpkm) ≥1 in at least one-third of the samples; for chip 
data, normalized expression value ≥ median value of overall 
expression in at least one-third of the samples.

Survival analysis 

To further screen the genes greatly associated with ovarian 
cancer survival, we first analyzed the TCGA and GEO 
datasets using univariable Cox proportional hazards 
regression analysis. The threshold value was set to P<0.05. 
The key genes in the two datasets were screened, and key 
genes co-expressed by the two datasets were selected. The 
genes with common effect on tumor survival in the two 
datasets [log2 (HR) values >0 or <0] were further selected. 
The LASSO method was used to set 300 calculations (10). 
The genes with frequency ≥150 were defined as potentially 
highly related to survival. Finally, the P values of the Cox 
regression model of these potential genes highly related to 
survival were analyzed and compared between the TCGA 
and GEO datasets. 

Risk model construction

A multivariate Cox regression model was used to analyze 
the genes that were potentially highly related to survival. 
Stepwise regression analysis was used to select the smallest 
akaike information criteria (AIC) information statistics 
for gene deletion. The remaining genes were used for 
risk model construction. The risk formula was generated 
according to the Cox regression results. The risk coefficient 
of each patient was calculated according to the formula. 
The patients were classified according to the median risk 
value: low-risk group (low median risk value) and high-risk 
group (high median risk value). 

GSEA analysis 

The log2 difference folds (high vs. low) of the genes 
detected in the datasets were analyzed. The genes were 
sequenced according to log2 difference folds (from high to 
low). The database used for GSEA analysis was the KEGG 
dataset (data from https://www.gsea-msigdb.org/gsea/
msigdb). The pathways with Padj <0.05 and absolute value 
of normalized enrichment score (NES) ≥1 were considered 

https://dx.doi.org/10.21037/atm-21-2627
https://dx.doi.org/10.21037/atm-21-2627
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as enriched pathways (11). The first six of them (arranged 
by P value from low to high) were selected to create the 
distribution curve of the enrichment score. 

Immune cell infiltration analysis

To analyze the differences in the proportion of immune cells 
between samples of high and low risk for ovarian cancer, 
immune cell infiltration analysis of the TCGA datasets 
was performed by the Timer (tumor immune estimation 
resource; https://cistrome.shinyapps.io/timer) (12) and 
Cibersort (https://cibersort.stanford.edu/) (13), respectively. 
The Wilcoxon test was used to analyze the differences in 
cell proportions between samples of high- and low-risk 

ovarian cancer (14). 

Statistical analysis

To evaluate the predictive accuracy of the risk score 
model, the receiver operating characteristic (ROC) curve 
was plotted and the area under the ROC (AUC) was 
calculated. The effects of age, grade, stage, risk status and 
other potential prognostic factors in the TCGA and GEO 
datasets were analyzed using univariate and multivariate 
Cox regression analyses. 

Results

Principal component analysis (PCA)

To investigate the feasibility of subsequent study, PCA was 
applied to the TCGA and GEO datasets (Figure 1). There 
were no outliers in the PCA results, indicating that sample 
homogeneity was good. 

Functional analysis of co-expressed genes

Univariate Cox proportional hazards regression was used 
to analyze the ovarian cancer data in the TCGA and GEO 
datasets and screen out co-expressed genes. According to 
the log2(HR) value, 111 co-expressed genes with common 
effects on ovarian cancer survival were screened (Table 1). 
The function of these co-expressed genes was analyzed 
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Figure 1 Principal component analysis (PCA) on ovarian cancer samples. (A) Ovarian cancer samples in The Cancer Genome Atlas (TCGA), 
(B) ovarian cancer samples in Gene Expression Omnibus (GEO) datasets.

Table 1 Construction of risk models of seven genes screened out 
using multivariate Cox regression model and stepwise regression 
analysis

Gene coeff HR HR.95L HR.95H P value

AP3D1 2.7 15 1.4 156 0.023

DCAF10 −2.7 0.067 0.0050 0.91 0.042

FBXO16 −1.0 0.36 0.14 0.95 0.039

LRFN4 1.3 3.5 0.61 20 0.16

PTPN2 −2.9 0.053 0.0050 0.57 0.015

SAYSD1 −2.11 0.12 0.020 0.75 0.023

ZNF426 −1.8 0.17 0.029 1.0 0.052
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based on the GO and KEGG datasets. Based on the results 
of biological process (BP), a type of GO analysis, these 
111 co-expressed genes mainly participated in metabolism, 
protein phosphorylation, and other functions. According to 
the KEGG results, these genes were involved in immune-
related signaling pathways (Figure 2A,B). 

Screening of ovarian cancer survival-related genes

To investigate the relationship between ovarian cancer-
related genes and survival, the LASSO method was used 
to further analyze the 111 co-expressed genes from the 
TCGA and GEO datasets. A total of 42 and 18 genes with 
a frequency ≥150 that were highly related to ovarian cancer 
survival were selected from the TCGA and CEO datasets, 
respectively (Figure 3A,B). Interestingly, nine common 
genes were found (Figure 3C). Finally, the P value of the 
Cox proportional hazards regression of these nine genes 
was compared between the TCGA and GEO datasets  
(Figure 3D). The results showed that AP3D1, DCAF10, 
FBXO16, LRFN4, PTPN2, SAYSD1, SMU1, WAC.AS1 
and ZNF426 were highly related to ovarian cancer survival. 
Subsequent study of ovarian cancer biomarkers should be 
performed based on these nine genes. 

Prognostic value of ovarian cancer markers

To investigate the prognostic value of ovarian cancer 
markers, the nine genes were analyzed using a multivariate 

Cox regression model, and seven risk genes for ovarian 
cancer were finally screened out using stepwise regression 
analysis (Table 1). According to the Cox regression results, 
the risk formula was constructed as below: 2.7090 * AP3D1-
2.6960 * DCAF10-1.0232 * FBXO16 +1.2613 * LRFN4-
2.9331 * PTPN2-2.1094 * SAYSD1-1.7618 * ZNF426. 
According to the median risk value, patients in the TCGA 
and GEO datasets were assigned to low-risk and high-
risk groups, and the ovarian cancer survival curve was 
plotted (Figure 4), which showed that patients at a low risk 
of ovarian cancer had good survival status. The heat map 
(Figure 5) shows the expression level of risk genes in the 
low-risk and high-risk groups from the TCGA dataset 
and the distribution of clinical pathological features. 
Accordingly, AP3D1 and LRFN4 are highly expressed in 
patients with low survival and are considered risk genes 
for ovarian cancer. DCAF10, FBXO16, PTPN2, SAYSD1, 
SMU1, WAC.AS1 and ZNF426 are considered protective 
genes. Univariate and multivariate Cox regression analyses 
were performed to analyze the effects of age, stage, grade, 
and risk status on ovarian cancer survival based on the 
TCGA and CEO datasets (Tables 2,3). Both univariate 
and multivariate Cox regression analysis results revealed 
that risk status was related to survival. These findings 
demonstrate that risk status may be an independent 
prognostic factor. To analyze the predictive value of a risk 
score for ovarian cancer prognosis, a time-dependent ROC 
curve was plotted according to the risk score of seven genes 
screened out of the TCGA and CEO datasets (Figure 6). In 
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Figure 2 Functional analysis of co-expressed genes. (A) According to biological process results, 111 co-expressed genes mainly participated 
in metabolism, protein phosphorylation, and other functions. (B) Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) results, 
the 111 co-expressed genes were involved in immune-related signaling pathways. 
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Figure 3 Screening of ovarian cancer survival-related genes. The 111 genes screened out in the The Cancer Genome Atlas (TCGA; A) 
and Gene Expression Omnibus (GEO; B) datasets were further analyzed using the LASSO method: 300 calculations were designated. The 
genes with frequency >150 were selected as potentially highly related to ovarian cancer survival. (C) Nine common genes were screened out 
using the LASSO method. (D) Comparison of P values of Cox proportional hazards regression of these nine genes between the TCGA and 
GEO datasets. Y-axis represents –log10(P value) value. The dotted line is the position where P=0.05. It can be seen that AP3D1, DCAF10, 
FBXO16, LRFN4, PTPN2, SAYSD1, SMU1, WAC.AS1 and ZNF426 are highly related to ovarian cancer survival.
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Figure 4 Patients were assigned to a high-risk group or low-risk group according to median risk value, and time-dependent survival curves 
were plotted. (A) Analysis of survival of patients at high and low risk for ovarian cancer in The Cancer Genome Atlas dataset. (B) Analysis on 
survival of patients at high and low risk for ovarian cancer in the Gene Expression Omnibus dataset. 
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the TCGA dataset, the AUC for 1-, 3- and 5-year prognosis 
models was 0.6, 0.628 and 0.667, respectively, and 0.741, 
0.9 and 0.955 in the GEO dataset. Therefore, in the two 
datasets, the predictive power of 1-, 3- and 5-year prognosis 
models was very high. Generally speaking, the AUC values 
were mostly >0.6, and therefore, the 1-, 3- and 5-year 
prognosis models had high predictive value. 

Investigation of the signaling pathways involved in 
ovarian cancer using GSEA 

The GSEA results revealed that in the samples from 
patients at high risk of ovarian cancer the immune-related 
pathways were upregulated and ribosomal pathway was 
downregulated (Figure 7). The first six pathways (arranged 
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by P values from low to high) were used to plot the 
distribution curves of the enrichment score (Figure 8), which 
showed that the genes in “complement and coagulation 
cascades”, “ECM-receptor interaction”, “Hematopoietic 
cell lineage”, “Th1 and Th2 cell differentiation” and “Toll-
like receptor signaling pathway” were clustered in the high-
expression region, and the genes in the ribosomal pathway 
were clustered in the low-expression region. Generally 
speaking, the biological functions of the signaling pathways 

involved in ovarian cancer in high-risk patients were mostly 
related to the patient’s immune function. 

Immune cell infiltration analysis using Timer and 
Cibersort 

Immune cell infiltration analysis using Timer and Cibersort 
(Figures 9,10) revealed that high-risk status samples tended 
to have high abundance of most immune cells. B cells, 
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Figure 5 Heat map displaying the expression level of risk genes in the low-risk and high-risk groups from The Cancer Genome Atlas (TCGA) 
dataset and the distribution of clinical pathological features.

Table 2 Analysis of the effects of age, stage, and risk status on 
ovarian cancer survival based on The Cancer Genome Atlas (TCGA) 
dataset using univariate and multivariate Cox regression analyses

HR CI.low CI.up P value

Univariate Cox regression analysis

Age (>60 vs. ≤60 years) 1.4 1.1 1.8 0.019

Stage (III/IV vs. I/II) 2.1 0.95 4.8 0.067

Risk (low vs. high) 0.51 0.39 0.67 1.00E-06

Multivariable Cox regression analysis

Age (>60 vs. ≤60 years) 1.5 1.2 2.0 0.0015

Stage (III/IV vs. I/II) 2.3 1.0 5.1 0.049

Risk (low vs. high) 0.48 0.37 0.63 1.39E-07

Table 3 Analysis of the effects of age, stage, and risk status on 
ovarian cancer survival based on the Gene Expression Omnibus 
(GEO) dataset using univariate and multivariate Cox regression 
analyses

HR CI.low CI.up P value

Univariate Cox regression analysis

Stage (III/IV vs. II) 3.9 0.54 28 0.18

Grade (3/4 vs. 2) 2.4 1.1 5.3 0.036

Risk (low vs. high) 0.11 0.053 0.21 2.80E-10

Multivariable Cox regression analysis

Stage (III/IV vs. II) 2.4 0.32 18 0.40

Grade (3/4 vs. 2) 1.6 0.54 4.6 0.41

Risk (low vs. high) 0.12 0.059 0.25 5.84E-09
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Figure 6 Analysis of the predictive value of a risk score for ovarian cancer prognosis. The time-dependent ROC curves of risk scores of 
seven genes screened out from The Cancer Genome Atlas (A) and Gene Expression Omnibus (B) datasets were plotted using 1-, 3-, and 5-year 
prognosis models. 

Figure 7 Gene set enrichment analysis (GSEA) of the biological functions of the signaling pathways involved in ovarian cancer in high- and 
low-risk patients. The first 15 signaling pathways arranged by P value from low to high were selected to create histograms. Pos refers to that 
the genes in the signaling pathway that were upregulated in the samples from patients at a high risk for ovarian cancer. 
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mDC activated cells and NK(natural killer)-activated cells 
were less expressed in high-risk status samples, and CD4+ T 
cells, macrophages, mDC cells and neutrophils were highly 
expressed in high-risk status samples. 

Discussion

Ovarian cancer is one of the most common gynecological 
malignancies and carries a poor prognosis (15). The 

molecular mechanism underlying the occurrence and 
development of ovarian cancer remains unclear. In this 
study, we investigated the relationship between seven ovarian 
cancer-related genes and the occurrence and development 
of ovarian cancer. More importantly, we found that these 
ovarian cancer-related genes were closely related to the 
degree of malignancy and prognosis of ovarian cancer. Our 
findings add more evidence to existing knowledge of the 
occurrence and development of ovarian cancer.
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To investigate the relationship between ovarian cancer-
related genes and survival, we screened nine genes related 
to survival and further investigated them. Firstly, we used a 
multivariate Cox regression model and stepwise regression 
analysis to screen seven risk genes to construct the risk 
model, then univariate and multivariate Cox regression 
analyses determined that risk status may be an independent 
prognostic factor. In addition, we used ROC curves to 
analyze the predictive value of a risk score for ovarian 
cancer prognosis. We calculated the AUC value and found 

that the risk score had a high predictive value. We found 
that AP3D1, DCAF10, FBXO16, LRFN4, PTPN2, SAYSD1 
and ZNF426 can be used as independent markers of ovarian 
cancer. Finally, we performed GSEA and immune cell 
infiltration analyses to analyze the biological functions 
of these genes and confirmed the important significance 
of these genes as new biomarkers of ovarian cancer. We 
found that AP3D1 and LRFN4 are risk genes, and their 
high expression inhibits the survival of ovarian cancer 
patients. AP3D1 and LRFN4 promote the occurrence and 
development of many cancers or diseases. In colorectal 
cancer, the loss of the optic nerve element leads to 
immune evasion and intrinsic immunotherapy resistance. 
Unexpectedly, the optic nerve element interacts with AP3D1 
to prevent the sorting and degradation of palmitoylated 
IFNGR1 lysosomes, thereby maintaining the integrity of 
interferon gamma and MHC (major histocompatibility 
complex)-I signaling (16). Hermansky-Pudlak syndrome 
represents a group of immune dysfunction syndromes, and 
mutation of AP3D1 encoding the main subunit AP-3 (δ) 
is the cause of Hermansky-Pudlak syndrome type 10 (17). 
In addition, leucine-rich repeat and fibronectin type III 
domain-containing (LRFN) family proteins are considered 
to be neuron-specific proteins. LRFN4 is expressed in cells 
in various cancers and leukemia. LRFN4 signaling plays an 
important role in monocyte/macrophage migration (18).

However, it is reported that AP3D1 and LRFN4 also play 
a protective role in many diseases. For example, envelope 
glycoprotein 51 (gp51) is necessary for bovine leukosis virus 
to enter bovine B lymphocytes. Bovine adaptor protein 3 
complex subunit δ-1 is considered to be a potential receptor. 
There is evidence that the N-terminal part of gp51 
interacts with the AP3D1 receptor in vitro, and provides a 

Figure 8 Distribution curves of enrichment scores. The first six signaling pathways (arranged by P value from low to high) were selected to 
plot the distribution curves of enrichment scores. ECM, extracellular matrix.
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Figure 9 Analysis of the proportions of infiltrating immune cells 
in high- and low-risk samples using Timer. x-axis indicates high 
and low. y-axis represents log2 cell fraction score. Higher log2 cell 
fraction score indicates greater cell abundance. mDC, myeloid 
dendritic cells.
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reliable silicon interaction model (19). In colorectal cancer, 
LRFN4 expression is upregulated, which strongly correlates 
with clinical pathological features and prognosis. High 
expression of LRFN4 reduces the risk of death in colorectal 
cancer patients (20).

We found that DCAF10, FBXO16, PTPN2, SAYSD1 and 
ZNF426 are protective genes in ovarian cancer patients, 
and their high expression promotes survival. These genes 
inhibit the occurrence and development of many cancers 
and diseases. For example, FBXO16 functions as a tumor 
suppressor, and is a component of the skp1-cullin1-f-
box protein complex that targets nuclear β-catenin and 
promotes proteasome degradation through 26S proteasome. 
Depletion of FBXO16 results in increased levels of β-catenin, 

which in turn promotes cancer cell invasion, tumor growth 
and epithelial-mesenchymal transition (21). In breast cancer, 
FBXO16 is considered to be a potential clinical target and 
prognostic biomarker for patients with different molecular 
types of breast cancer (22). In addition, it has been reported 
that increasing the number of cytotoxic Tim-3+/CD8+ 
T cells can promote effective anti-tumor immunity, and 
PTPN2 is an attractive tumor immunotherapy target in 
immune cells (23). In breast cancer, PTPN2 protein is 
lost in half of breast cancer patients. The role of PTPN2 is 
related to the subtype of breast cancer, and PTPN2 affects 
the prognosis and treatment response of breast cancer (24).

However, these genes can also promote the occurrence 
and development of some diseases. For example, mutations 

Figure 10 Analysis of the proportions of infiltrating immune cells in high- and low-risk samples using Cibersort. x-axis indicates high and 
low. y-axis represents log2 cell fraction score. Higher log2 cell fraction score indicates higher cell abundance. mDC, myeloid dendritic cells; 
NK, natural killer; Tregs, regulatory T cells.
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in the gene locus encoding protein tyrosine phosphatase 
non receptor type 2 (i.e., PTPN2) are associated with 
inflammatory diseases, including inflammatory bowel 
disease, rheumatoid arthritis, and type 1 diabetes (25). In 
thyroid cancer, inflammation or oxidative stress induces the 
upregulation of PTPN2, which promotes the progression of 
thyroid cancer (26).

Conclusions 

We identified that among the ovarian cancer-related genes, 
AP3D1, DCAF10, FBXO16, LRFN4, PTPN2, SAYSD1, 
and ZNF426 were greatly associated with the progression 
of ovarian cancer. AP3D1 and LRFN4 were risk genes, 
and DCAF10, FBXO16, PTPN2, SAYSD1 and ZNF426 
were protective genes, which could be used as independent 
prognostic markers of ovarian cancer. Moreover, there was 
severe inflammatory infiltration in the tumors of patients 
at a high risk of ovarian cancer. This study adds more 
evidence to confirming the pathogenesis of ovarian cancer, 
determining prognostic indicators of ovarian cancer, and 
providing potential targets for targeted therapy of ovarian 
cancer. 
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