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Background: Urolithiasis is a global disease with a high incidence and recurrence rate, and stone 
composition is closely related to the choice of treatment and preventive measures. Calcium oxalate 
monohydrate (COM) is the most common in clinical practice, which is hard and difficult to fragment. 
Preoperative identification of its components and selection of effective surgical methods can reduce the 
risk of patients having a second operation. Methods that can be used for stone composition analysis include 
infrared spectroscopy, X-ray diffraction, and polarized light microscopy, but they are all performed on 
stone specimens in vitro after surgery. This study aimed to design and develop an artificial intelligence (AI) 
model based on unenhanced computed tomography (CT) images of the urinary tract, and to investigate the 
predictive ability of the model for COM stones in vivo preoperatively, so as to provide surgeons with more 
accurate diagnostic information.
Methods: Preoperative unenhanced CT images of patients with urinary calculi whose components were 
determined by infrared spectroscopy in a single center were retrospectively analyzed, including 337 cases 
of COM stones and 170 of non-COM stones. All images were manually segmented and the image features 
were extracted, and randomly divided into the training and testing sets in a ratio of 7:3. The least absolute 
shrinkage and selection operation algorithm (LASSO) was used to construct the AI model, and classification 
of the training and testing sets was carried out.
Results: A total of 1,218 radiomics imaging features were extracted, and 8 features with non-zero 
coefficients were finally obtained. The sensitivity, specificity and accuracy of the AI model were 90.5%, 
84.3% and 88.5% for the training set, and 90.1%, 84.3% and 88.3% for the testing set. The area under the 
curve was 0.935 for the training set and 0.933 for the testing set.
Conclusions: The AI model based on unenhanced CT images of the urinary tract can predict COM and 
non-COM stones in vivo preoperatively, and the model has high sensitivity, specificity and accuracy.
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Introduction

Urolithiasis is a global disease with a high incidence and 
recurrence rate, with a worldwide prevalence of 2–20% (1), 
a 1-year recurrence rate of 6–17%, and a 5-year recurrence 
rate of 21–53% (2). The main clinical manifestations are 
acute renal colic, hematuria, and urinary tract irritation 
signs (frequent micturition, urgency, and dysuria). Severe 
cases may be combined with long-term, chronic obstructive 
hydronephrosis, eventually causing varying degrees of 
kidney function damage, and even endangering the lives of 
patients. There are many types of urinary stones, and the 
pathogenesis involves the combined effects of abnormal 
human metabolism, urinary tract obstruction, infection, 
drugs, and a variety of internal and external environmental 
factors (such as age, gender, race, genetics, geography, 
climate, water intake, and dietary habits) (3-5). Calculi 
composition is closely related to the choice of treatment 
and preventive measures. For larger stones that are difficult 
to break up, the results of extracorporeal shock wave 
lithotripsy (ESWL) are often unsatisfactory, and flexible 
ureteroscopic lithotripsy or percutaneous nephrolithotripsy 
(PCNL) is required.

There are various types of urinary calculi, and calcium 
oxalate (CO) calculi are the most common clinically, 
accounting for 80% of all stones (6). CO crystals are 
available in three hydrated forms: heat-stable calcium 
oxalate monohydrate (COM), substable calcium oxalate 
dihydrate (COD), and unstable calcium oxalate trihydrate 
(COT); the former two of which can be the main 
components of urinary stones and COM is the most 
common, while the latter COT has never been found in 
urine or stone crystals (7). In terms of crystal properties, 
most COM stones are brown, mulberry-shaped, hard and 
not easy to be dusted; COD stones are mostly pale yellow–
brown, with needle-like protrusions visible on the surface, 
brittle, and easy to be broken. COM stones are the most 
common and difficult to fragment in clinical practice, 
and it is of clinical significance to clarify their chemical 
composition before surgery to facilitate the correct choice 
of surgery.

The methods that can be used for stone composition 
analysis include infrared spectroscopy (IRS), X-ray 
diffraction (XRD), thermal analysis, polarized light 

microscopy, emission spectroscopy, and chemical titration 
reaction; of which, the most commonly used is IRS (8). 
However, these methods can only be performed in vitro, 
and stone specimens must be obtained by surgery, or after 
being passed out of the body. How to preoperatively clarify 
the composition of stones in the body in a simple, fast and 
noninvasive way is important for the diagnosis, treatment, 
prognosis and prevention of recurrence of urolithiasis, and 
has always been the focus of urologists.

Artificial intelligence (AI) combined with imaging, 
using advanced computer algorithms to deeply mine the 
multidimensional features embedded in medical imaging 
data, has been widely used in various fields of radiology, 
showing potential and broad application prospects in disease 
diagnosis, lesion segmentation, tumor grading and staging, 
and prognostic prediction. Its accuracy in classification 
and grading of many diseases, including pneumothorax, 
pulmonary nodules, and renal cell carcinoma and others, is 
almost comparable to and even surpasses clinicians (9-12).

In this study, we retrospectively collected urolithiasis 
cases whose composition was determined by IRS, 
aiming to develop an AI model based on preoperative 
unenhanced urinary tract CT for automatic prediction 
of stone composition, in order to provide urologists with 
detailed stone diagnostic information for further guidance 
in the selection of treatment and surgical modality. We 
present the following article in accordance with the 
TRIPOD reporting checklist (available at https://dx.doi.
org/10.21037/atm-21-965).

Methods

Data set

This retrospective study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013) and 
approved by institutional ethics board of Guizhou Provincial 
People’s Hospital (No. [2020]184), and individual consent 
was waived. The data set consisted of CT imaging data of 
urolithiasis patients treated at Guizhou Provincial People’s 
Hospital. Cases with postoperative IRS stone composition 
analysis (LIIR-20, Lamoride Company, Tianjin, China) 
and preoperative CT scan data of the urinary tract in 
our hospital from January 2015 to December 2019 were 
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retrospectively collected. Mixed stones are more common 
clinically than pure stones; there is no uniform classification 
standard (13), and the treatment of mixed stones is selected 
based on the major component (14-16). Therefore, we 
named the collected stones by their main component. 
The most harmful stones are often treated first in clinical 
practice; thus, for a particular patient with multiple stones, 
we defined all stones in the body as one sample, named after 
the main component of the surgically obtained specimen.

Exclusion criteria were: (I) duplicate cases (multiple 
stone samples submitted by the same patient at the same 
time, with multiple IRS records); (II) nephrostomy tube or 
ureteral drainage tube placement and overlapping with the 
calculi (which may affect stone segmentation and feature 
extraction); (III) no stones on CT images (calculi had passed 
spontaneously before CT examination in some patients); 
(IV) obvious respiratory or motion artifacts; (V) stones too 
small: diameter <3 mm. The patient’s age and gender, and 
stone recurrence were recorded according to the clinical 
history; stone site, number of stones, and stone morphology 
(staghorn or nonstaghorn) were recorded according to CT 
images; and the chemical composition of the stones was 
recorded according to IRS analysis.

A total of 543 patients were finally collected, and the 
five most common stones were: COM, anhydrous uric acid 
(AUA), carbonate apatite (CA), ammonium urate (AAU), and 
magnesium ammonium phosphate (MAP). Among them, 

there were 373 cases of COM calculi and 170 of non-COM 
calculi. The case screening process is shown in Figure 1. 

CT equipment and parameters

The scans ranged from the upper edge of the kidney to the 
lower edge of the sciatic tuberosity and were performed 
with three different models of CT scanners from Siemens, 
Germany: (I) SOMATOM Definition CT: Real-time 
exposure dose auto-adjustment (CARE Dose 4D and 
CARE kV on) , reference tube voltage 120 kV, reference 
tube current 210 mAs, detector width 64 mm × 0.6 mm, 
pitch 1.0; filtered inverse projection (FBP) reconstruction, 
convolution function Bf 40, layer thickness 1.0 mm. (II) 
SOMATOM Definition AS+: Real-time exposure dose auto-
adjustment, reference tube voltage 120 kV, reference tube 
current 210 mAs, detector width 64 mm × 0.6 mm, pitch 
1.2; FBP reconstruction, Bf 40, layer thickness 1.0 mm. 
(III) Somatom Force CT: CARE Dose 4D and CARE kV 
on, reference tube voltage 100 kV, reference tube current  
180 mAs, detector width 96 mm × 0.6 mm, pitch 1.2; 
ADMIRE reconstruction (intensity level 3), convolution 
function Br 40, layer thickness 1.0 mm.

CT image acquisition and stone segmentation

Thin-layer (1.0 mm), axial, unenhanced urological CT 

Unenhanced CT of the urinary tract
& infrared spectrum analysis

(n=1,099)
Exclusion cases

1. Duplicate cases (n=518)
2. Rare stones (n=16)

• COD (n=4)
• L-Cystine (n=10)
• Calcite (n=1)
• Silicon stone (n=1)

Top five common stones (n=565)
• COM (n=390)
• AUA (n=90)
• AAU (n=28)
• MAP (n=27)
• CA (n=30)

Full-text articles excluded with reasons
(n=22)
• Drainage tube (n=5)
• No stone (n=5) 
• Artifacts (n=2) 
• Too small (n=10)

Final enrolled cases (n=543)
• COM (n=373)
• AUA (n=86)
• AAU (n=28)
• MAP (n=26)
• CA (n=30)

Figure 1 Case screening flow chart. COM, calcium oxalate monohydrate; COD, calcium oxalate dihydrate; AUA, anhydrous uric acid; 
AAU, ammonium urate; MAP, magnesium ammonium phosphate; CA, carbonate apatite.
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images of the enrolled cases were exported in DICOM 
format from the Picture Archiving and Communication 
System (PACS). A radiologist with >10 years of diagnostic 
experience imported the CT images one by one into the 
3D image segmentation software package ITK-SNAP 
(Version 3.8.0-Beta, University of Pennsylvania), drew 
the regions of interest (ROI) layer by layer, and saved the 
segmented images in nii.gz format (Figure 2). ITK-SNAP 
software comes with image registration function, which 
can automatically adjust the image gray level, that is, the 
standardization of the image. Stone segmentation principle: 
drawing on the axial image; ROI is delineated along the 
stone edge, trying to include the stone as a whole and 
avoiding the inclusion of surrounding renal tissue, blood 
vessels, fat or image artifacts to ensure data reliability.

Extraction and screening of stone features

According to the AI standardization process, data cleaning 
or standardization should be carried out before ROI 
feature extraction, which aims to eliminate data differences 
caused by different devices and scan parameters and reduce 
data errors. PyRadiomics software (Version 3.0, http://
pyradiomics.readthedocs.io/) was used to normalize the 
values of all ROIs, to adjust the scattered pixel values on 
each layer of images to a nearly uniform standard. Then, 
PyRadiomics software was used to extract the stone features. 
A total of 1,218 radiomics features were extracted, including 
six types of feature parameters: first-order features (n=18); 
morphological features (n=14); gray level co-occurrence 
matrix (GLCM) features (n=22); grayscale correlation 

matrix (GLDM) features (n=14); grayscale size region 
matrix (GLSZM) features (n=16); gray running length 
matrix (GLRLM) features (n=16).

The intraclass and interclass correlation coefficient 
(ICC) was used to evaluate the consistency of the extracted 
features, and features with ICC >0.75 were considered to 
be consistent, reproducible and stable (17). In this step, a 
total of 8 features with ICC ≤0.75 were deleted, leaving 
1,210 features. After that, the least absolute shrinkage and 
selection operator (LASSO) algorithm was used to screen 
the stone feature parameters.

AI model construction and testing

The sampling software package of R (version 3.6.3) was 
used to randomly allocate the enrolled patients into 
training and testing sets at a ratio of 7:3. The characteristic 
parameters obtained after dimension reduction were used to 
construct the binary LASSO model. Seventy percent of the 
samples were used as the training set (n=381) for machine 
learning and training of the model, and 30% of the samples 
were used as the testing set (n=162) to test the diagnostic 
efficiency of the model. The predictive effectiveness of 
the AI model was evaluated in the training and testing set 
respectively; the accuracy, sensitivity and specificity of the 
model were calculated based on the optimal cut-off value 
of the training set; and the ROC curve and area under 
the curve (AUC) were obtained. The steps of AI model 
construction and analysis are shown in Figure 3.

Statistical analysis

Statistical analysis of the clinical characteristics of the 
enrolled cases was performed using SPSS software (version 
22.0, IBM Corporation). The chi-square test was used 
to compare the difference of stone composition among 
different genders, occurrence sites, occurrence numbers 
(single/multiple), and different stone shapes, and P<0.05 
was statistically significant.

Results

Clinical and CT findings

Of the 543 patients, 373 were in the COM group and 170 in 
the non-COM group (including 86 AUA, 28 AAU, 26 MAP, 
and 30 CA stones). There were 186 cases of pure calculi  
(142 COM, 38 AUA, and 6 AAU), and 357 cases were 

Figure 2 Manual segmentation interface for urinary stones (ITK-
SNAP software).
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Figure 3 Artificial intelligence analysis step-by-step diagram.

Urinary Calculi CT imaging 
 & segmentation

Feature 
extraction

Feature 
selection Analysis

mixed calculi; among which, MAP and CA were all mixed. 
In the COM group, there were 275 men and 98 women; 
age 45.55±16.14 years, including 23 aged <18 years and 350  
>18 years; 7 cases of recurrence after 1 year and 3 after  
2 years; 1 case of combined horseshoe kidney malformation; 
160 cases of single and 213 cases of multiple stones;  
161 cases on the left, 127 cases on the right, and 73 
bilateral cases. There were 177 cases of kidney stones, 
92 ureteral stones, 12 bladder stones, 88 kidney–ureteral 
stones, 4 kidney–bladder stones, 24 staghorn stones, and  
349 nonstaghorn stones (Table 1).

Selected stone features

The 1,210 features were screened by 10-fold cross 
validation, and 8 features with non-zero coefficients were 
finally obtained, as follows: original_firstorder_10Percentile, 
log.sigma.1.0.mm.3D_firstorder_90Percentile, log.
sigma.2.0.mm.3D_glcm_Imc1, log.sigma.2.0.mm.3D_
glcm_InverseVariance, log.sigma.4.0.mm.3D_glcm_
InverseVariance, log.sigma.5.0.mm.3D_glcm_Inverse

Variance, wavelet.HLH_glcm_Idn, wavelet.HHL_
gldm_DependenceVariance, and wavelet.HHH_firstorder_
Median (Figure 4).

AI model prediction results

The above eight feature parameters were trained and tested 
for classification using LASSO to understand their ability 
to discriminate between COM and non-COM stones. 
The sensitivity, specificity and accuracy of the AI model 
were 90.5%, 84.3% and 88.5% for the training set, and 

90.1%, 84.3% and 88.3% for the testing set. The AUC of 
the training set was 0.935 [95% confidence interval (CI): 
0.907–0.962], the AUC of the testing set was 0.933 (95% 
CI: 0.893–0.973), and the optimal cut-off value based on 
the training set was 0.470 (Figure 5). 

Discussion

Characteristics and treatment dilemma of COM stones

Clinically, COM calculi are the most common, with an 
incidence almost twice that of COD calculi (18). Patients 
with urolithiasis have higher levels of COM in their urine 
than normal persons, thus causing greater damage to 
renal tubular epithelial cells. The damage to renal tubular 
epithelial cells is a prerequisite for the formation of renal 
tubular calculi. Damaged tubular epithelial cells can provide 
an effective site for stone core formation, while enhancing 
the adhesion of microcrystals to the cell membrane, 
accelerating stone formation (19). 

A total of 543 patients with urinary calculi were included 
in this study, of which 373 were COM stones, accounting 
for 68.69% of all calculi. Ten cases were seen for recurrence, 
7 after 1 year and 3 after 2 years; 5 cases recurred in the 
non-COM group, with AUA stones predominating. These 
data tentatively reflected the epidemiological characteristics 
of urinary stones in this region. COM calculi were more 
common, and the recurrence rate in this population was 
higher than that in non-COM calculi population, which was 
consistent with the epidemiological characteristics of stones 
reported in the literature (20). Other statistically significant 
features of COM included more male than female patients, 
with a male-to-female ratio of approximately 2.8:1, and 
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Table 1 Clinical and imaging features of urinary calculi

Features COM Non-COM P value

Number of samples 373 170

Gender

Male 275 (73.73%) 108 (63.53%) 0.016

Female 98 (26.27%) 62 (36.47%)

Age

Total 45.55±16.14 42.25±20.95 0.000

Less than 18 years 23 (6.17%) 31 (18.24%)

More than 18 years 350 (93.83%) 139 (81.76%)

Stone location

Kidney 177 (47.45%) 105 (61.76%) 0.000

Ureter 92 (24.66%) 17 (10.00%)

Bladder 12 (3.22%) 20 (11.76%)

Kidney + ureter 88 (23.59%) 26 (15.29%)

Kidney + ureter + bladder 0 (0.00%) 1 (0.59%)

Kidney + bladder 4 (1.07%) 1 (0.59%)

Single/multiple

Single 160 (42.90%) 70 (41.18%) 0.707

Multiple 213 (57.10%) 100 (58.82%)

Stone site

Left 161 (44.60%) 55 (36.67%) 0.000

Right 127 (35.18%) 58 (38.67%)

Bilateral 73 (20.22%) 37 (24.67%)

Stone shape

Staghorn stones 24 (6.43%) 40 (23.53%) 0.000

Non-Staghorn stones 349 (93.57%) 130 (76.47%)

Recurrence

Recurrence rate 10 (1.8%) 5 (0.92%)

COM, calcium oxalate monohydrate.

more stones in adults aged >18 years, accounting for 
93.83% of cases. The most common site was the kidneys 
(177/373, 47.75%), followed by the ureters (92/373, 
24.46%), and the fewest occurred in the bladder (12/373, 
3.22%). There were more stones on the left than right, and 
the fewest were bilateral. In terms of stone morphology, 
a small proportion (24/373, 6.31%) showed cast growth; 
among which, 3 cases were pure COM stones, 19 mixed 

stones, and the main mixed crystals were COD and/or CA. 
It can be seen that pure COM rarely forms staghorn stones, 
but when combined with other crystalline components, 
especially CA, it is more likely to grow in cast form.

The  format ion  o f  COM i s  c lo se ly  re l a ted  to 
hyperoxaluria,  and patients tend to have primary 
hyperoxaluria, intestinal disease, or long-term intake of 
foods with high oxalate load (21); therefore, the treatment 
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and prevention of these stones focuses on controlling 
hyperoxaluria. Important factors affecting the success rate 
of stone lithotripsy include the location, morphology, size, 
and composition of stones. Clinically, ESWL is often not 
ideal for hard, unbreakable stones, and patients often need 
a second operation, using flexible ureteroscope or PCNL. 
Therefore, for COM stones, which are the most common 
and difficult to fragment in clinical practice, identification of 
stone composition before surgery can help select the correct 
surgical method, reduce the risk of secondary surgery, avoid 
unnecessary injury, and reduce pain.

Determination of stone composition with CT

Unenhanced CT can accurately display the location, 
morphology and size of stones without interference from 
the intestine and surrounding tissues and organs, and the 
examination is easy and quick, which is the imaging test of 
choice for clinical diagnosis of acute renal colic and urinary 
tract stones (22). The density of stones varies depending on 
their chemical composition, and the range of attenuation 
values measured by CT also varies. Most of the previous 
studies have shown that CT can identify pure stones (23), 
but the predictive value for mixed stones is not certain. 

The imaging principle of dual-energy CT (DECT) is that 
tissues with different atomic numbers have different levels 
of CT attenuation at high and low levels of X-rays, and this 
feature can be used to distinguish substances with similar 
electron densities. There are many studies related to stone 
composition analysis by DECT. Stolzmann et al. compared 
the attenuation difference of 40 calculi at 80 and 140 kV, and 
confirmed that DECT could accurately predict uric acid (UA) 
and non-UA calculi in vitro (24). Ilyas et al. (25) analyzed 
60 stones in 53 patients and found that the sensitivity and 
specificity of DECT to differentiate UA and non-UA stones 
were both 100%, and 97.8% and 92.3% for CO and non-CO 
stones. Many studies have shown that DECT can distinguish 
UA and calcified stones in vivo, with an accuracy of up to 
100%, and has potential for detection of mixed stones (26,27). 
However, compared with unenhanced CT, the cost of DECT 
equipment and examinations are more expensive, the clinical 
promotion is insufficient, and it cannot be carried out as an 
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model. 
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emergency program. 

Advances in AI-related research on urinary stones

In recent years, AI combined with imaging has been widely 
used in diagnosis, treatment, tumor grading and staging, 
and prognostic prediction of urinary system diseases (28,29), 
and many noteworthy advances have been made in the 
field of urinary calculi. Kriegshauser et al. (30) examined 38 
extracorporeal stone specimens using energy spectral CT, 
constructing and validating models using five parametric 
algorithms (support vector machine, random forest, artificial 
neural network, plain Bayesian tree, and decision tree). The 
results showed that all five models had 100% accuracy in 
the differential diagnosis of UA and non-UA stones, while 
the random forest model had the best ability to identify 
guano, cystine and CO stones, with a prediction accuracy 
of 88% for CO stones. Ferrero et al. used a semi-automated 
method to segment stones and introduced quantitative 
indicators describing morphology to predict stone fragility, 
and the results showed high predictive value of DECT 
number ratio, volume and morphological indicators (31). A 
recent study collected 200 stone specimens (116 pure and 
84 mixed stones) and used DECT combined with machine 
learning algorithms to construct an AI model, which was 
considered to predict the main chemical composition of 
urinary stones, with the accuracy of 91.1% (16). 

In this study, the most commonly used unenhanced 
urinary tract CT and AI technology were combined to 
construct a COM stone prediction model using the LASSO 
algorithm. The accuracy of COM prediction was 88.3%, 
and the sensitivity and specificity of AI model were 90.1% 
and 84.3%, respectively. The AUC of the testing set 
reached 0.933, suggesting that the model could accurately 
distinguish COM from non-COM stones, which was 
basically consistent with the performance of the previously 
reported DECT model (16,30). 

Limitations

Our study has several limitations. Firstly, this was a single-
center study and due to the differences in medical equipment 
and scanning parameters among hospitals, it is unclear how 
well the AI model will work when applied to other centers. 
In the next step of the study, data from multiple centers can 
be incorporated to set up external test sets to further test the 
diagnostic performance of AI models. Secondly, only the 
most common COM stones were modeled; other types of 

stones were not analyzed due to the small sample size, and 
it is expected that more types of stones would be detected 
after adding data from other centers. Thirdly, our hospital 
routinely uses Bf 40 and Br 40 reconstruction kernels on 
CT data, which have edge-enhancing features that may have 
affected the CT attenuation values of stones. Moreover, data 
standardization before ROI feature extraction may remove 
the information that is contained in the mean CT number 
of the stone, which is associated with stone type. Finally, 
all stones were segmented by a single radiologist, and the 
reliability and repeatability of manual segmentation has an 
impact on the accuracy and robustness of the AI model, 
and the next step could be to try using a fully automated 
segmentation approach.

Conclusions

Unenhanced urinary tract CT is widely used in clinical 
practice, which is simple, convenient and fast. Combined 
with AI, it can realize preoperative prediction of COM 
stones in vivo, which has high sensitivity, specificity 
and accuracy. Further research on AI models and their 
application to multicenter prospective clinical trials can help 
surgeons develop appropriate treatment and prevention 
plans.
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