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Background: Osteosarcoma (OS) is a type of primary malignant tumor, and increasing evidence shows 
the clinical benefits of immunotherapy in treating OS. However, the lack of comprehensive studies on the 
complex OS immune microenvironment hinders the application of immunotherapy. Thus, this study aimed 
to systematically explore the immune characteristics of OS and identify novel biomarkers for OS treatment.
Methods: We systematically studied the immune score and proportions of infiltrating immune cells in 
OS in the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Gene 
Expression Omnibus (GEO) databases using the ESTIMATE and CIBERSORT algorithms. Differential 
expression and functional analyses were used to identify dysregulated genes and explore their functions. 
Survival and Cox regression analyses were applied to establish an immune-related prognostic signature. 
Additionally, qPCR and immunohistochemistry were performed to validate the results.
Results: A total of 103 differentially expressed immune genes (DEIGs) were found in the TARGET-
OS and GSE39058 databases, and these DEIGs were mainly enriched in leukocyte proliferation, leukocyte 
differentiation, osteoclast differentiation, natural killer (NK) cell-mediated cytotoxicity, and the adaptive 
immune system. A predictive signature was constructed based on the survival analysis, with an area under 
the receiver operating characteristic (ROC) curve (AUC) of 0.65. Moreover, we found that mitogen-
activated protein kinase kinase kinase 15 (MAP3K15) can predict the prognosis of patients with OS and is 
closely related to CD4+ T cells and macrophages. The OS patients with high MAP3K15 expression had a 
significantly poorer prognosis.
Conclusions: Our study found that MAP3K15, whose expression level is closely related to immune 
activity in tumors, is a critical immune-related biomarker, and our findings may provide a basis for OS 
immunotherapy.
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Introduction

Osteosarcoma (OS) is a type of primary malignant tumor 
that commonly occurs in children and adolescents (1). 
Although its incidence is not high, OS easily relapses and 
metastasizes, and has a 5-year survival rate of approximately 
65% (1,2). Currently, the treatment for OS mainly consists 
of 3 parts: preoperative chemotherapy, surgical resection, 
and postoperative radiotherapy (3,4). Surgical resection is 
still the primary treatment for OS (3). However, traditional 
medicines are unsatisfactory in reducing the recurrence and 
metastasis of OS (5,6). 

Recently, immunotherapy has made breakthroughs in 
the field of cancer therapy. Immune checkpoint inhibitors, 
such as PD-1, PD-L1, and CTAL4, have shown significant 
antitumor effects on various cancers (7-9). Additionally, 
these immune checkpoint inhibitors have been shown to 
play substantial roles in the treatment of OS. Despite this, 
immunotherapy is still not beneficial to many patients 
because of target mismatch and drug resistance (10,11). 
Thus, there is an urgent need to identify novel immune-
related biomarkers to better guide clinical immunotherapy 
for OS.

The tumor microenvironment (TME) is the cellular 
environment that includes endothelial cells, mesenchymal 
cells, immune cells, inflammatory mediators, and extracellular 
matrix molecules (12-14). The tumor can influence the 
microenvironment by releasing extracellular signals, promoting 
tumor angiogenesis and inducing peripheral immune 
tolerance, while the immune cells in the microenvironment 
can affect the growth and evolution of cancerous cells. the 
study of predictive biomarkers, which may fully address the 
complexities of the biology, will promote the development of 
therapies tailored to individual patients. Thus, it is important 
to understand the role of different components of the TME in 
the treatment and prevention of osteosarcoma. Further studies 
on the complexity and systemic characteristics of the TME 
are greatly needed to identify useful biomarkers. Based on the 
ESTIMATE and CIBERSORT algorithms, gene expression 
matrix data can be converted into an immune score and 
proportions of infiltrating immune cells, which can be used to 
study the immune activity of the TME (15-17). With the help 
of these 2 algorithms, many studies have explored immunity 
in the TME of lung cancer (18), breast cancer (19), and 
liver cancer (20). These studies provide direction for tumor 
immunotherapy by exploring the immune-related genes and 
immune cells that play crucial roles in the TME. Investigating 
the TME using these algorithms may provide new insights 

into immunotherapy for OS.
In this study, we collected the expression profiles and 

clinical information of OS patients using public databases, 
namely the Therapeutically Applicable Research to 
Generate Effective Treatments (TARGET) database and 
the GSE39058 dataset from the Gene Expression Omnibus 
(GEO) database. It was found that the immune score of 
the TME is statistically significant for the prognosis of 
patients with OS. Subsequently, we developed a prognostic 
signature based on the multivariate Cox regression and 
identified mitogen-activated protein kinase kinase kinase 15 
(MAP3K15) as an important prognostic gene. We estimated 
infiltrating immune cells by the CIBERSORT algorithm 
and investigated the relationship between the prognostic 
signature and tumor immune infiltrating cells. Ultimately, 
a positive correlation was found between MAP3K15 
expression and several infiltrating immune cells, which is 
expected to provide novel ideas for OS immunotherapy. In 
addition, OS patients with higher MAP3K15 expression 
had a poorer prognosis. We present the following article in 
accordance with the REMARK reporting checklist (available 
at https://dx.doi.org/10.21037/atm-21-3181).

Methods

Samples

A total of 48 OS tissues were obtained from patients at Sun 
Yat-sen Memorial Hospital of Sun Yat-sen University and 
The Eighth Affiliated Hospital of Sun Yat-sen University 
between December 2010 and March 2018. None of the 
patients underwent chemotherapy or radiotherapy before 
surgery. The tissues were immediately snap-frozen and 
stored at −80 ℃ in an ultralow temperature freezer until 
further analysis. The study was approved by the Ethics 
Committee of Sun Yat-sen Memorial Hospital of Sun Yat-
sen University and The Eighth Affiliated Hospital of Sun 
Yat-sen University (Approval no.: 2019r013; Approval 
date: 1/3/2019). Informed consent forms were signed by all 
individuals prior to acquiring and studying their tissues. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Obtaining expression data from publicly available data

OS primary data were downloaded from the TARGET 
database and GEO database. Accession number GSE39058 
was chosen from GEO for data analysis, and it contained a 
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total of 164 samples, of which 46 included mRNA profiling 
data. Additionally, clinical outcomes were included in the 
dataset. Then, the microarray data of mRNA expression 
were normalized via a log2 scale transformation, and the 
average expression was used when a gene was detected with 
more than 1 probe. In addition, the RNA-seq data and 
relevant clinical information were downloaded from the 
TARGET database (https://ocg.cancer.gov/programmes/
target). Both fragments per kilobase of transcript per 
million mapped reads (FPKM) and counts were used for 
further data processing. This study followed the publication 
guidelines of the GEO and TARGET databases.

Identification of the TME and infiltrating immune cells

First, the ESTIMATE algorithm (15) was performed to 
calculate the immune score and stromal score. According 
to the median values of the stromal/immune scores, we 
divided OS patients into a high-risk group and a low-risk 
group. Then, Kaplan-Meier survival curves were used to 
analyze the correlation between the clinical outcomes and 
the stromal/immune scores.

Additionally, the characterization of the cellular 
composition of OS was analyzed based on the CIBERSORT 
algorithm (17). A heatmap was used to visualize the 
proportions of immune cells in the low- and high-risk 
immune score groups. In addition, we further applied 
Spearman’s correlation coefficient to verify the relationship 
between immune/stromal scores and immune cells. Both the 
ESTIMATE and CIBERSORT algorithms were performed 
based on R 4.0.2 and RStudio (version 1.2.5001).

Differential expression analysis and functional analysis

The Limma R package (21) was applied to identify the 
differentially expressed immune genes (DEIGs) between 
the low and high immune score groups. Then, the common 
DEIGs were obtained from GSE39058 and TARGET-OS. 
Here, |log2FC| ≥1 and P<0.05 were set as the cutoff values.

Furthermore, to explore the potential functions of these 
DEIGs, Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) analyses were performed 
via the Metascape database (http://metascape.org). 
Additionally, overexpressed and underexpressed immune 
gene groups were input, and the protein-protein interaction 
(PPI) network and molecular complex detection (MCODE) 
were used to further identify the densely connected regions. 
P<0.05 was used as a cutoff value.

Construction of the prognostic immune gene signatures

TARGET-OS and GSE39058 were used to establish a 
prognostic immune gene signature, with TARGET-OS 
being the training set and GSE39058 being the validation 
set. Univariate Cox regression analysis was first performed 
to identify survival-related immune genes via the SangerBox 
database (http://sangerbox.com/). Additionally, a robust 
likelihood-based survival analysis was used to increase 
the reliability and accuracy, allowing for iterative forward 
selection of multiple sets of genes based on the partial 
likelihood of the Cox model.

Then, multivariate Cox regression was implemented 
to explore the independent prognostic predictor genes. 
Additionally, the survival receiver operating characteristic 
(ROC) curve was obtained from SangerBox, then the 
area under the ROC curve (AUC) was used to assess the 
efficiency of the predictive signature. P<0.05 was considered 
statistically significant.

Correlation analysis between immune cells and the 
prognostic signature

The proportions of 22 infiltrating immune cells were 
obtained according to the CIBERSORT algorithm. The 
Wilcoxon signed-rank test (2 groups) or Kruskal-Wallis 
rank sum test (more than 2 groups) were conducted to 
calculate the correlation between immune cells and clinical 
characteristics. Additionally, a log-rank test was used to 
evaluate the association between immune cells and the 
prognostic signature. P<0.05 was regarded as statistically 
significant.

Quantitative polymerase chain reaction (qPCR) assay

Extraction of total RNA was performed with TRIzol 
reagent (Life Technologies) following the manufacturer’s 
instructions, and the extracted RNA was then quantified. 
Next, qPCR was performed using a BeyoFast™ SYBR 
Green One-Step qRT-PCR Kit (Beyotime, D7268S). 
The expression of MAP3K15 was normalized to that of 
GAPDH. Relative expression levels were calculated with 
the 2−∆∆Ct method.

Immunohistochemistry validation

Immunohistochemistry (IHC) was performed according to 
the antibody supplier instructions. The slices of the clinical 
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samples were incubated with a primary antibody against 
MAP3K15 at different dilution ratios overnight at 4 ℃. 
Images were captured at an appropriate magnification under 
a microscope (Nikon Microsystems, Shanghai, China). 
The antibody used in the study was anti-MAP3K15 (SAB, 
#45534).

Statistical Analysis

All statistical analyses were performed using R-version 4.0.3. 
The differential analysis was performed using the “limma 
R” package. The development of prediction signature was 
performed by “survival R” package, “survminer R” package, 
“caret R” package, “glmnet R” package, “time ROC R” 
package. The assessment of TME and infiltrated immune 
were calculated by the “ESTIMATE R” and “CIBERSORT 
R” package. The correlation plot was drawn by the “ggpubr 
R” package. 

Results

Immune and stromal scores were evaluated by the 
ESTIMATE algorithm

First, 86 OS patients with gene expression profiles and clinical 
characteristics were identified in the TARGET-OS dataset. 
The ESTIMATE algorithm was then performed to calculate 
the immune and stromal scores of tumor tissues. Depending 
on the calculations, immune scores were distributed between 
−1,842.4 and 2,013.6, while stromal scores ranged from 
−2,124.1 to 3,901.0. To explore the prognostic significance of 
immune and stromal scores, we divided the OS patients into 
high and low immune score groups according to their scores. 
As shown in the Kaplan-Meier curves, although the survival 
differences in estimated group was not statistically significant 
(P=0.05), the stromal group (P=0.014) and immune group 
(P=0.0019) were positively correlated with prognosis, 
indicating that both were positive factors in the prognosis of 
OS patients (Figure 1A,B,C).

Additionally, the same processes were performed on 
the GSE39058 dataset. According to the ESTIMATE 
calculation, the immune scores ranged from −1,116.8 to 
1,676.5, while stromal scores were between −2,677.4 and 
2,916.059471. However, when the groups were divided into 
high and low immune score groups according to their scores, 
the results showed that there was no statistically significant 
difference in the prognosis between the immune group 
(P=0.23) and the stromal group (P=0.84) (Figure 1D,E,F). 

Although the survival analysis of immune score in GSE39058 
was not significant, the curves of high and low immune score 
groups were divergent, which might be due to insufficient 
samples.

DEIGs and functional analysis

To explore the correlation between immune genes and 
immune scores, we compared 46 OS patients in the 
GSE39058 dataset and 86 patients in the TARGET-
OS dataset. A total of 1,446 DEIGs were discovered in 
GSE39058, including 729 genes that were upregulated and 
735 that were downregulated. In addition, a total of 565 
DEIGs were identified in the TARGET-OS dataset, with 
502 genes that were upregulated and 63 genes that were 
downregulated. Then, 100 commonly upregulated genes 
and 3 commonly downregulated genes were extracted via a 
Venn diagram (Figure 2A,B,C).

Subsequently, GO enrichment analysis indicated that 
the common DEIGs were enriched in various immune 
processes, such as leukocyte proliferation, regulation of 
leukocyte differentiation, negative regulation of leukocyte 
activation, regulation of innate immune response, and 
leukocyte-mediated cytotoxicity, while KEGG pathway 
analysis suggested that osteoclast differentiation, natural 
killer (NK) cell-mediated cytotoxicity, and the adaptive 
immune system were the most pivotal pathways affected 
by these genes (Figure 2D,E). Thus, these dysregulated 
immune genes might be the basis of the changes in the 
TME and might enhance the mechanism of immune escape.

Furthermore, the PPI network and MCODE plugin 
based on the Metascape database identified the significant 
modules in these DEIGs. Module 1 included 33 edges and 
9 nodes, and involved MAP3K15, CDC247, and HLA-
DRB1. Module 2 included 6 edges and 4 nodes, and 
involved CCL23, CCL5, GPR55, and LNP3 (Figure 2F).

Identification of a prognosis-related gene

Since 103 common DEIGs were obtained from the 
previous step, univariate Cox regression analysis was first 
performed to filter the survival-related genes. According 
to the median expression levels of immune genes, OS 
patients were divided into high and low expression groups. 
As shown in Figure 3, 3 and 12 genes were identified to be 
correlated with prognosis in the GSE39058 and TARGET-
OS datasets, respectively. 

Then, we noticed that only MAP3K15 was common 
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Figure 2 Overview of the DEIGs in OS. (A) A heatmap of the expression profiles in the TARGET-OS dataset. (B) A heatmap of the 
expression profiles in the GSE39058 dataset. (C) A Venn diagram showing the common DEIGs in both datasets. (D) Bar plots displaying 
GO and KEGG analysis results based on Metascape. (E) Network display of GO and KEGG analysis results based on Metascape. 
(F) MCODE results obtained from the PPI network. DEIG, differentially expressed immune gene; OS, osteosarcoma; TARGET, 
Therapeutically Applicable Research To Generate Effective Treatments; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; PPI, protein-protein interaction.
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Figure 3 Survival curves of the DEIGs were created using Kaplan-Meier curves. (A) DEIGs with prognostic value in the TARGET-OS dataset. (B) DEIGs with prognostic value in the GSE39058 dataset. DEIG, differentially expressed immune gene; TARGET, Therapeutically Applicable Research To 
Generate Effective Treatments; OS, osteosarcoma.
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in the results from the 2 datasets. Thus, multivariate Cox 
regression was implemented to explore the independent 
prognostic value of MAP3K15. As shown in Figure 4, 
MAP3K15 was verified to be statistically significant. 
Moreover, ROC curves were used to determine the 
efficiency of the Cox regression, and the 5-year AUC was 
0.65. In addition, the result was verified in GSE39058, with 
an AUC of 0.63 (Figure S1). Therefore, the expression 
of MAP3K15 could serve as an independent prognostic 
signature to predict OS patients’ clinical outcomes, and may 
provide novel insights into the changes in the TME and the 
mechanism of immune escape.

Immune landscapes evaluated by CIBERSORT

There are a considerable number of tumor cells and 
immune cells in the TME. Understanding the immune 
landscape of the tumor may reveal the underlying 
mechanism of refractory tumors. Thus, the CIBERSORT 
algorithm was applied to explore the proportions of immune 
cells in the GSE39058 and TARGET-OS datasets based on 
the gene expression data. Here, analysis of the GSE39058 
and TARGET-OS datasets was processed separately. 
Although the proportions of immune cells suggested 
different immune landscapes in the 2 datasets, CD4+ naive 
T cells, CD4+ memory resting T cells, M0 macrophages, 
M2 macrophages, and naive B cells accounted for a large 
proportion of infiltrating immune cells in OS (Figure 5A,B). 

Moreover, violin plots were used to visualize the immune 
cell subsets between the high and low immune score groups 
(Figure 5C,D), and the results showed that the proportions 
of memory B cells, naive T cells, M2 macrophages, and 
activated NK cells were significantly increased. 

Additionally, to investigate the rationality of our 
predictive signature, we further calculated the proportions 
of immune cells in the high- and low-risk immune score 
groups (Figure 5E,F). The results demonstrated that the 
proportions of CD4+ T cells, M1 macrophages, and M2 
macrophages were significantly increased. Thus, the 
differences between the high- and low-risk score groups 
may provide insights into the mechanism of immune 
microenvironment regulation.

Correlations between the prognostic signature and 
infiltrating immune cells

Since the results above revealed that MAP3K15 might play 
important roles in the TME, we questioned the association 
between MAP3K15 and the relevant immune cells. According 
to the calculation of immune cells by the CIBERSORT 
algorithm, a correlation between MAP3K15 and infiltrating 
immune cells was found. As shown in Figure 6A,B,C, the 
expression of MAP3K15 and CD4+ T cells, M0 macrophages, 
and M1 macrophages were positively correlated, which 
indicated that MAP3K15 in involved in immune cytotoxicity.

Furthermore, according to the ESTIMATE algorithm, 

Figure 4 Kaplan-Meier plot of MAP3K15 and ROC curve of the prognostic immune signature. (A) The predictive immune model 
constructed from MAP3K15. (B) ROC curves of the immune signature with the corresponding AUCs indicated on the side. ROC, receiver 
operating characteristic; AUC, area under the receiver operating characteristic curve.
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Figure 6 Correlations between the prognostic signature and infiltrating immune cells. (A,B,C) The expression of MAP3K15 and CD4 T 
cells, M0 macrophages, and M1 macrophages were positively correlated. (D) MAP3K15 was positively correlated with the immune score.
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we found that MAP3K15 was positively correlated with the 
immune score, which further suggested the significance of 
MAP3K15 in the TME (Figure 6D).

Validation

To verify the results obtained by bioinformatics analysis, 
we performed a qPCR assay of MAP3K15 expression in 
OS tissues from 48 patients. Primer sequences are shown 
in Table 1. The patients were divided into 2 groups, the 
high expression and low expression groups, according to 

MAP3K15 expression. Results showed that patients with 
high MAP3K15 expression had a significantly poorer 
prognosis (Figure 7A). Moreover, the IHC results further 
confirmed the expression trend of MAP3K15 protein in 
these samples (Figure 7B).

Discussion

Recently, tumor immunotherapy has attracted an increasing 
amount of attention, and it is considered one of the most 
likely treatment methods to improve the survival rate of 

Table 1 Primer sequence references for MAP3K15 and GAPDH

Gene Forward primer Reverse primer

MAP3K15 5'-CCTTCTACGACGCAGATGTTG-3' 5'-GCATCGGTGTCATGGTACAAGA-3'

GAPDH 5'-CAACTCCCTCAAGATTGTCAGCAA-3' 5'-GGCATGGACTGTGGTCATGA-3'
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Figure 7 MAP3K15 expression validation and prognosis analysis. (A) The OS rates of patients with high and low expression of MAP3K15 
were evaluated by the log-rank method. (B) Representative histopathological images of MAP3K15 expression in OS. Brown staining of cell 
indicates positive staining and the lack of brown staining indicates negative staining. Scale bar =100 μm for ×200, scale bar =50 μm for ×400. 
OS, osteosarcoma.
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cancer patients. Immunotherapy has been successful in a 
variety of malignant tumors, including lung cancer, and 
several immunotherapy drugs have been approved by the 
Food and Drug Administration (FDA) (22,23). However, 
the application of immunotherapy in OS has been slow 
due to the complexity of the immune system and the subtle 
differences in the tumor-specific microenvironment, as well 
as the fact that the tumor itself may resist immunotherapy 
in various ways (24). It is necessary to determine predictive 
biomarkers with higher sensitivity and specificity to stratify 
patients and to maximize the benefits for patients. In 
the TME, the interactions among tumor cells, immune 
cells, and stromal cells promote tumor proliferation and 
metastasis (25,26). Therefore, a clear understanding of the 
complex TME and the complex immune characteristics of 
tumors and immune cells may be helpful for guiding clinical 
immunotherapy.

The ESTIMATE and CIBERSORT algorithms are 
currently widely used to study the infiltration of immune 
cells and the proportions of cell subtypes in the TME. 
These 2 algorithms can transform the information of the 
gene expression matrix into an immune score and immune 
cell infiltration ratio. For instance, Lai et al. (27) studied 
the TME in renal cell carcinoma and identified effective 
biomarkers. Moreover, other tumor-related studies, such 
as lung cancer (28,29) and liver cancer (30,31), were also 
reported to use these algorithms. Interestingly, Hong  
et al. (32) studied the TME of OS using bioinformational 
methods, but no validation was performed in OS tissue. 

Therefore, further studies to understand the immune 
microenvironment of OS will be helpful to reveal the 
mechanism of tumor occurrence and discover effective 
biomarkers.

We searched the currently available public databases for 
OS, and the TARGET-OS and GSE39058 datasets were 
used in this study. Through the ESTIMATE algorithm, 
TARGET-OS showed that the immune score of the 
immune microenvironment of OS was closely related 
to prognosis. That is, the higher the immune score, the 
better the prognosis. Although no statistically significant 
differences were found in GSE39058, it can be concluded 
from the survival curve that there was a significant 
difference between the high and low immune score groups. 
Therefore, we speculated that this might be caused by the 
insufficient number of patients. 

Then, we obtained the DEIGs by analyzing the 
difference between the high and low immune score groups 
and determined the intersection of DEIGs in the 2 datasets. 
The GO results revealed that these DEIGs were involved 
in various key immune responses, such as leukocyte 
proliferation, regulation of leukocyte differentiation, 
negative regulation of leukocyte activation, regulation 
of innate immune response, and leukocyte-mediated 
cytotoxicity, while KEGG pathway analysis suggested that 
osteoclast differentiation, NK cell-mediated cytotoxicity, 
and the adaptive immune system were the most pivotal 
pathways affected by these genes. These findings provide 
a direction for us to further study the mechanism of the 
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immune response. Using univariate and multivariate 
regression analyses, we found that only MAP3K15 was 
statistically significant in both databases. MAP3K15, also 
known as ASK3, is a member of the mitogen-activated 
protein kinase (MAPK) family. To our knowledge, this is the 
first report of MAP3K15 in tumor. However, some studies 
have found that the MAPK family members function in 
a protein kinase signal transduction cascade, where an 
activated MAPK kinase kinase (MAP3K) phosphorylates 
and activates a specific MAPK kinase (MAP2K), which then 
activates a specific MAPK. This MAP3K protein plays an 
essential role in apoptotic cell death triggered by cellular 
stresses (33). This result suggests that MAP3K15 may play 
a significant role in tumor initiation and progression.

Subsequently, the CIBERSORT algorithm further 
identified the proportions of infiltrating immune cells in 
the TME of OS. We found that memory B cells, naive T 
cells, M2 macrophages, and NK cell-activated cells were the 
main infiltrating cells. Then, we discussed the correlations 
between these immune cells and MAP3K15, as well as the 
correlations between these immune cells and the high- 
and low-risk groups. Finally, we found that MAP3K15 can 
predict the prognosis of patients with OS, and MAP3K15 
is closely related to CD4+ T cells, M0 macrophages, and 
M1 macrophages. These results may provide new ideas for 
immunotherapy in the clinic.

We noticed that Hong et al. (32) also studied the 
microenvironment of OS. Although we both studied the 
TME of OS, we believe that the 2 studies are different. In 
this research, we found a common DEIG (MAP3K15) by 
intersecting the analysis results, while in the study of Hong 
et al., they determined that SIGLEC7 and SP140 were 
DEIGs. This is reasonable as different research strategies 
were utilized. Moreover, we performed Cox regression 
analysis and analyzed the correlation between MAP3K15 
and immune cells. Specifically, no validation assays were 
performed in Hong et al.’s study, and they did not further 
study the relationship between genes and immune cells.

Immune cell infiltration and the TME are hot research 
topics at present, and the development of bioinformatics 
methods has further improved our understanding of tumor 
molecular biology. However, there are still many limitations 
in this study. Although we validated the expression of 
MAP3K15 using qPCR and IHC and found that patients 
with high MAP3K15 expression had a significantly poorer 
prognosis, the correlation between infiltrating immune 
cells and MAP3K15 expression was not tested because of 
restrictions associated with our experimental conditions. 

Since we found a potential association between MAP3K15 
expression and immunity, further mechanisms need to be 
explored.

Taken together, our study found that MAP3K15, whose 
expression level is closely related to immune activity in 
tumors, is a critical immune-related biomarker, and our 
findings may provide a basis for OS immunotherapy.
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Figure S1 Kaplan-Meier plot of MAP3K15 and ROC curve of the prognostic immune signature in validation set. (A) The predictive 
immune model constructed from MAP3K15 in GSE39058. (B) ROC curves of the immune signature with the corresponding AUCs 
indicated on the side in GSE39058. ROC, receiver operating characteristic; AUC, area under the receiver operating characteristic curve.
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