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Background: We aimed to develop novel diagnostic and prognostic signatures based on preoperative 
inflammatory, immunological, and nutritional parameters in blood (PIINPBs) by machine learning 
algorithms for patients with oral squamous cell carcinoma (OSCC).
Methods: A total of 486 OSCC patients and 200 age and gender-matched non-OSCC patients who were 
diagnosed and treated at our institution for noninfectious, nontumor diseases were retrospectively enrolled 
and divided into training and validation cohorts. Based on PIINPB, 6 machine learning classifiers including 
random forest, support vector machine, extreme gradient boosting, naive Bayes, neural network, and logistic 
regression were used to derive diagnostic models, while least absolute shrinkage and selection operator 
(LASSO) analyses were employed to construct prognostic signatures. A novel prognostic nomogram 
integrating a PIINPB-derived prognostic signature and selected clinicopathological parameters was further 
developed. Performances of these signatures were assessed by receiver operating characteristic (ROC) curves, 
calibrating curves, and decision tree.
Results: Diagnostic models developed by machine learning algorithms from 13 PIINPBs, which included 
counts of white blood cells (WBC), neutrophils (N), monocytes (M), lymphocytes (L), platelets (P), albumin 
(ALB), and hemoglobin (Hb), along with albumin-globulin ratio (A/G), neutrophil-lymphocyte ratio (NLR), 
platelet-lymphocyte ratio (PLR), lymphocyte-monocyte ratio (LMR), systemic immune-inflammation index 
(SII), and prognostic nutritional index (PNI), displayed satisfactory discriminating capabilities in patients 
with or without OSCC, and among OSCC patients with diverse pathological grades and clinical stages. 
A prognostic signature based on 6 survival-associated PIINPBs (L, P, PNI, LMR, SII, A/G) served as an 
independent factor to predict patient survival. Moreover, a novel nomogram integrating prognostic signature 
and tumor size, pathological grade, cervical node metastasis, and clinical stage significantly enhanced 
prognostic power [3-year area under the curve (AUC) =0.825; 5-year AUC =0.845].
Conclusions: Our results generated novel and robust diagnostic and prognostic signatures derived from 
PIINPBs by machine learning for OSCC. Performance of these signatures suggest the potential for PIINPBs 
to supplement current regimens and provide better patient stratification and prognostic prediction.
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Introduction

Oral squamous cell carcinoma (OSCC) is the predominant 
type of oral malignancy that develops from the tongue, 
buccal, palate, and floor of the mouth, and poses a 
considerable clinical challenge as evidenced by its high 
mortality and morbidity (1,2). The past few decades have 
witnessed tremendous progress in therapeutic strategies 
against this malignancy, including in ablative surgery, 
radiotherapy, chemotherapy, and immunotherapy. 
However, the long-term survival of patients with OSCC 
has not been improved substantially, especially for those 
with advanced lesions at initial diagnosis (3). Currently, 
patient stratification, treatment selection, and prognostic 
prediction largely depend on tumor-node-metastasis 
(TNM) stage, histopathological characteristics of primary 
lesions, and cervical node metastases as determined by 
postoperative pathological examinations (4). However, 
the prognosis for patients within the same TNM stages 
varies remarkably, which might be in part explained by the 
imperfect specificity, sensitivity, and performance of these 
routine biomarkers. These facts highlight the urgent need 
to identify novel prognostic biomarkers with adequate 
performance and clinical feasibility. Moreover, preoperative 
biomarkers might be superior to those obtained after 
surgery due to their advantages in patient stratification and 
treatment planning before surgery.

Cancer-associated immunity,  inflammation and 
nutrition have been recognized as emerging hallmarks 
underlying tumorigenesis and increasingly been exploited 
as diagnostic, prognostic and therapeutic targets with 
translational promise (5). Indeed, immunity, inflammation, 
and nutrition have been revealed to be intricately 
interrelated with tumorigenesis. The immune and 
inflammatory cells such as lymphocytes, macrophages, 
and neutrophils have been demonstrated to have potent 
protumorigenic or tumor-suppressive roles that critically 
involved in cancer initiation and progression (5,6). In 
particular, recent breakthroughs in cancer immunotherapy 
have revolutionized the current paradigm in cancer 
therapeutics: it has been shown that reinvigorating the 
infiltrating lymphocytes in situ via blocking immune 
checkpoints can confer remarkable benefits across multiple 
types of cancers (7). From the clinical perspective, 
immune, inflammatory, and nutritional status has also 
been identified as source for novel biomarkers in patient 
diagnosis and prognostic prediction. For example, 
lymphocyte counts (L), lymphocyte-monocyte ratio 

(LMR), neutrophil-lymphocyte ratio (NLR), platelet-
lymphocyte ratio (PLR), systemic immune-inflammation 
index (SII), prognostic nutritional index (PNI), and 
C-reactive protein (CRP) have been developed and verified 
with prognostic values in a broad spectrum of cancers 
(8-12). In our previous studies, high SII and platelet-
neutrophil-lymphocyte score (PNL), low PNI, high counts 
of platelets and neutrophils, and low lymphocyte counts 
were significantly associated with reduced survival in 
patients with resectable OSCC (12-14). In addition, most 
cancer-induced profound metabolic and physiological 
alterations that undermine patients’ nutritional status and 
nutrient intake have been found to ultimately result in 
severe malnutrition and cachexia (15). Other studies have 
indicated that malnutrition manifests as low albumin in 
peripheral blood and is associated with immune deficiency 
and unfavorable prognosis in patients with various cancers 
(16,17). However, these studies generally focused on 
single parameters in the blood. We hypothesized that a 
prognostic signature that integrates multiple immune, 
inflammatory, and nutritional parameters in the blood 
might capture cancer-related status more comprehensively 
and offer thus superior performance in diagnostic 
differentiation and prognostic prediction.

Previous studies have typically used classical statistical 
approaches such as Cox regression to identify cancer 
biomarkers. Recent introduction of machine learning into 
the biomedical field has shown superiority in biomarker 
screening, disease diagnosis, treatment planning, and 
prognostic estimation in oncology (18). Machine learning 
is a branch of artificial intelligence that uses a series of 
statistical, probabilistic, and optimization techniques 
that enable computers to “learn” from past examples 
and discover difficult-to-recognize patterns (19). Several 
pioneering reports have revealed that machine learning 
algorithms use recognized patterns to optimize the 
complex combination of multiple biomarkers, thereby 
improving the accuracy and sensitivity of prediction 
(20,21). We previously reported that prediction of 
cervical node metastasis in early oral cancer by machine 
learning had better performance than did conventional 
methods (22). These previous findings point to the utility 
of machine learning algorithms in the diagnosis and 
prognosis of cancer, including OSCC.

In the present study, we retrospectively collected 13 
preoperative inflammatory, immunological, and nutritional 
parameters in blood (PIINPBs) reflecting the immune, 
inflammation, and nutritional status of patients with 
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OSCC. We aimed to develop novel signatures using 
machine learning algorithms for accurate diagnosis and 
prognostic prediction for OSCC. We present the following 
article in accordance with the Transparent Reporting of a 
Multivariable Prediction Model for Individual Prognosis 
or Diagnosis (TRIPOD) reporting checklist (available at 
https://dx.doi.org/10.21037/atm-21-631).

Methods

OSCC patients and non-OSCC controls

A total of 486 patients with primary OSCC and 200 age- 
and gender-matched non-OSCC patients were screened 
and enrolled from the disease registry at the Department 
of Oral and Maxillofacial Surgery, Affiliated Stomatological 
Hospital of Nanjing Medical University between January 
2010 and November 2019. Detailed criteria for patient 
inclusion were as follows: (I) patients with primary OSCC 
without prior history of treatment and who received radical 
resection of lesions and neck dissection when indicated; 
(II) patients without other tumors, infectious diseases, 
hematological diseases, autoimmune diseases, or severe 
liver/renal dysfunctions; and (III) detailed epidemiological, 
clinicopathological, and follow-up information available for 
these enrolled patients. Additionally, the criteria for patient 
exclusion were as follows: (I) patients with simultaneous 
steroid or other drugs which might affect the total amount 
of white blood cells, (II) patients with a history of any 
other malignancies, and (III) patients with inflammation 
or infectious diseases within 1 month prior to preoperative 
blood collection.

Histopathological grading of tumor and clinical staging 
of patients were assessed according to the World Health 
Organization (WHO) grading system and the American 
Joint Committee on Cancer (AJCC) 7th staging system, 
respectively. After undergoing ablative surgical treatment, 
the patients were followed up once every 3 months in the 
first 2 years, once every 6 months within 5 years, and then 
once every year thereafter. The overall survival (OS) and 
disease-free survival (DFS) were defined as the length of 
time between death, local recurrence, metastasis, or the 
last follow-up and initial ablative surgery. The age- and 
gender-matched nontumor patients served as controls 
who were diagnosed as noninfectious, nontumor diseases, 
such as supernumerary teeth, cysts in jaws, sialolithiasis, 
and sublingual gland cysts treated at the same period. In 
addition, the percentages of those who used alcohol and/

or tobacco were similar between OSCC patients and non-
OSCC controls. The study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). 
The study was reviewed and approved by the Ethics and 
Research Committee of Nanjing Medical University (No. 
2020-230), and individual consent for this retrospective 
analysis was waived.

We randomly divided the whole OSCC data set into 
the training cohort and validation cohort (training: 
validation =7:3) by using the createDataPartition function 
in caret package (6.0–86) until there was no significant 
difference (P>0.1) between these 2 cohorts in terms of 
clinicopathological variables. The non-OSCC data set was 
also split into 2 cohorts by a similar approach. Thus, there 
were 341 OSCC patients and 140 non-OSCC patients 
assigned to the training cohort, while 145 OSCC patients 
and 60 nontumor patients were allocated to the validation 
cohort (Table 1).

Data acquisition and preprocessing of PIINPBs

Routine blood was collected within 3 days of surgery, 
with results including white blood cell count (WBC), 
neutrophil count (N), monocyte count (M), lymphocyte 
count (L), platelet count (P), albumin (ALB), albumin–
globulin ratio (A/G), and hemoglobin concentration (Hb). 
According to our own and other authors’ studies (13,14,23), 
the NLR, PLR, LMR, SII, and PNI were calculated 
as follows: NLR = N/L, PLR = P/L, LMR = L/M, SII 
= P × N/L, and PNI = ALB (g/L) + 5 × L (per mm3).  
The inflammatory and immunological parameters 
included WBC, N, M, L, P, NLR, PLR, LMR, and SII, 
while the nutritional parameters included ALB, A/G, Hb, 
and PNI. The clinical and pathological parameters of 
patients, including age, gender, tumor size, clinical stage, 
pathological grade, and cervical node metastasis were 
collected from medical charts.

Diagnostic model constructed by machine learning 
classifiers

In this study, 6 commonly used types of supervised 
machine learning classifiers including random forest (RF), 
support vector machine (SVM), extreme gradient boosting 
(XGBoost), naive Bayes (NBS), neural network (NN), and 
logistic regression (LR) were initially used for diagnostic 
model development. These machine learning approaches 
were developed by using R package “Random Forest” (4.6-

https://dx.doi.org/10.21037/atm-21-631
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Table 1 The clinicopathological characteristics of patients in the training and validation cohorts

Clinical and pathological indexes
OSCC patients Non-OSCC patients

Training (N=341) Validation (N=145) Training (N=140) Validation (N=60)

Age (y)

≤60 130 55 53 23

>60 211 90 87 37

Gender

Male 190 70 78 29

Female 151 75 62 31

Smoking

No 234 99 96 41

Yes 107 46 44 19

Alcohol use

No 250 109 102 46

Yes 91 36 38 14

Tumor size

T1–T2 223 104

T3–T4 118 41

Pathological grade

I 186 81

II–III 155 64

Cervical node metastasis

N0 244 103

N+ 97 42

Clinical stage

I–II 182 79

III–IV 159 66

OSCC, oral squamous cell carcinoma.

12; The R Foundational for Statistical Computing) for 
RF, “e1071” package (1.7-3) for SVM and NB, “xgboost” 
package (1.1.1.1) for Xgboost, and “nnet” package (7.3-
14) for NN. Classifiers were trained using repeated 10-
fold cross-validations of the training cohort, and then 
their predictive performances were further evaluated in 
the validation cohort. In addition, the receiver operating 
characteristic (ROC) curve was plotted to evaluate the 
sensitivity and specificity of these classifiers via the 
“ROCR” package (1.0-9) in R software. All algorithms were 
implemented in R software (version 3.6.3).

Prognostic model construction by least absolute shrinkage 
and selection operator (LASSO)

Univariate Cox regression analyses were performed on 13 
parameters of interest to identify survival-related variables 
with a P value <0.05 in the training cohort with “Survival” 
package (3.2-3). Then, LASSO analyses were employed 
to screen significant parameters and construct prognostic 
signatures as previously reported (24). During the LASSO 
procedure, the absolute value of the regression coefficients 
of the assessed variables was continuously reduced through 
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the use of a penalty. With this penalty, which was the sum 
of the absolute size of the regression coefficients multiplied 
by a tuning parameter (lambda, λ), some coefficients were 
reduced to zero. The corresponding variables hold little 
predictive value and can be neglected during the fitting 
of the model. Variables with nonzero coefficients were 
extracted to construct the prognostic model. The risk score 
for each patient was calculated using the following formula: 

=1
Risk score = coefi*xin

i∑ , where coefi is the coefficient 

of LASSO regression and xi is the value of each blood 
parameter.

Statistical analyses

All analyses were performed using the R software (version 
3.6.3). Correlations between blood markers were evaluated 
using the Spearman rank coefficient, and the principal 
component analysis (PCA) was performed with the “pca3d 
package” (0.10.2). The LASSO analysis was performed with 
the “glmnet” package (4.0-2). Using the median risk score 
in the training cohort, we stratified patients into high-risk 
and low-risk subgroups. The Kaplan-Meier method was 
used to estimate the OS and DFS, and differences were 
compared using the logrank test. A time-dependent ROC 
curve with 3 and 5 years as the defining points was drawn 
with the “survivalROC” package to evaluate the predictive 
value of prognostic risk scores (1.0.3). Nomograms and 
calibration plots were drawn with the “rms” package (5.1-4), 
while decision curve analysis was conducted with the “stdca” 
package (1.2.1). Univariate and multivariate Cox regression 
analyses were employed to determine the prognostic factors 
associated with OS and DFS. All statistical tests were 2-sided 
and considered significant when the P value was less than 
0.05.

Results

Patient characteristics

A total of 486 patients with primary OSCC who met our 
inclusion criteria were enrolled, with 341 in the training 
cohort and 145 in the validation cohort. The baseline 
characteristics of patients from the 2 cohorts were compared 
and are listed in detail in Table 1. Based on follow-up 
information, 128 and 51 deaths occurred in the training and 
validation cohorts, respectively. The number of patients 
alive but with evidence of local recurrence or metastases, 
were 29 and 12 in these 2 cohorts, respectively. Hence, the 

OS ratios were 62.4% and 64.8%, while the DFS ratios 
were 53.9% and 56.5% in the training and validation 
cohorts, respectively.

Diagnostic models developed by machine learning 
algorithms based on PIINPB

The workflow of our study and the data analytic pipeline 
are illustrated in Figure 1. Initially, we sought to determine 
whether differences in PIINPBs existed between OSCC 
and non-OSCC controls, and if they existed, whether 
these differences were able to differentiate OSCC 
from non-OSCC. We used multiple machine learning 
algorithms to build the diagnostic classifiers based on 13 
PIINPBs including WBC, N, M, L, P, ALB A/G, Hb, 
NLR, PLR, LMR, SII, and PNI. The results showed that 
the predictive accuracy of 6 machine learning algorithms 
were 87.3% (SVM), 84.6% (Xgboost), 80.5% (NBs), 
83.8% (NN), 82.5% (LR), and 80.5% (RF) in the training 
cohort, respectively. As shown in Figure 2A, the highest 
AUC value was 0.846 with SVM, followed by 0.823 
with Xgboost, 0.819 with NBs, 0.799 with NN, 0.775 
with LR, and 0.744 with RF. Moreover, these findings 
were validated using data from the validation cohort. 
SVM, Xgboost, and NBs classifiers exhibited better 
performance in segregating OSCC from non-OSCC than 
did the other classifiers (Figure 2B). Next, the relative 
importance of variables of interest in differentiating 
OSCC from non-OSCC was calculated within these 
3 predictive approaches. As shown in Figure S1, PNI, 
ALB, LMR, lymphocyte, and PLR were identified as the 
top important factors in differential diagnosis classifiers. 
To complement this, violin plots were used to show the 
distributions of each variable between OSCC and non-
OSCC patients: most of these markers except WBC, 
were significantly different between these 2 cohorts. In 
particular, PNI was a critical variable in all analytical 
approaches, while the importance of other variables 
substantially varied among different models. Moreover, 
results from PCA indicated obvious differences between 
OSCC and non-OSCC (Figure 2C). In addition, as shown 
in Figure 2D, there were positive correlations between 
ALB and PNI, PLR and SII, and SII and NLR, and 
negative correlations between PLR and NLR, and PNI, 
lymphocyte count and LMR. However, several supervised 
machine learning algorithms, including RF, SVM, and 
Xgboost were resistant to multicollinearity interference 
and showed excellent predictive performance (21).

https://cdn.amegroups.cn/static/public/ATM-21-631-supplementary.pdf
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Next, we attempted to determine whether the classifiers 
derived from these preoperative parameters were able 
to predict clinical stages of OSCC. Our results showed 
that the predictive accuracy of the 6 machine learning 
algorithms was 83.6% (Xgboost), 81.1% (SVM), 80.6% 
(NN), 74.5% (LR), 74.2% (NBs), and 70.4% (RF) in 
the training cohort. As shown in Figure 3A, the highest 
AUC value was 0.833 with Xgboost, followed by 0.812 
with SVM, 0.807 with NN, 0.725 with LR, 0.724 with 
NBs, and 0.680 with RF. Noticeably, these classifiers also 
showed robustness using data from the validation cohort 
(Figure 3B). As expected, these parameters substantially 
differed between patients with stage I/II and III/IV 
diseases (Figure S2). We further aimed to determine 
whether these classifiers were able to predict pathological 
grades of OSCC. The results indicated that the predictive 
accuracy of 6 algorithms was 85.9% (NN), 84.7% (SVM), 
85.1% (Xgboost), 82.7% (LR), 82.1% (NBs), and 80.1% 
(RF) in the training cohort. As shown in Figure 3C, the 
highest AUC value was 0.854 with NN, followed by 0.842 
with SVM, 0.838 with Xgboost, 0.833 with LR, 0.818 
with NBs, and 0.791 with RF. These findings were also 
supported from results in the validation cohort (Figure 3D).  
As expected, these variables, except for Hb and P, 
significantly differed between patients with grade I and 
grade II/III diseases (Figure S3).

Construction of a prognostic signature for OSCC based on 
PIINPB

We initially performed the univariate Cox regression 
analyses in these 13 parameters and identified 10 survival-
related parameters including L, P, N, A/G, ALB, PLR, 
NLR, LMR, PNI, and SII (P value <0.05) using data from 
the training cohort. Next, the LASSO-Cox regression 
analyses were undertaken to identify 6 key parameters 
affecting patient prognosis (Figure 4A,4B). The coefficients 
of these 6 parameters were as follows: L, –0.0881252384; P, 
0.0026305767; PNI, –0.1241620762; LMR, 0.0372959535; 
SII, 0.0003013864; and A/G, –0.0703668172. Subsequently, 
a prognostic risk score for each patient was developed based 
on the following formula: risk score= (–0.0881252384) 
× lymphocyte count + (0.0026305767) × platelet + 
(–0.1241620762) × PNI + (0.0372959535) × LMR + 
(0.0003013864) × SII + (–0.0703668172) × A/G. Patients in 
the training cohort were stratified into subgroups with high-
risk or low-risk scores. The Kaplan-Meier analyses indicated 
that patients in the high-risk subgroup had significantly 
shorter OS than did those in the low-risk subgroup in both 
the training and validation cohorts (Figure 4C,4D). The 
time-dependent ROC curve revealed that this prognostic 
model was robust in predicting patient OS, with a 3- and 
5-year AUC of 0.806 and 0.822 in the training cohort and 

Figure 1 The workflow and analytical pipeline of the whole study.

Preoperative blood parameters for OSCC diagnosis and prognosis

Diagnostic analyses

Tumor and Non-tumor

Training cohort 1  
(341 tumors and 140 non-tumors) 

Clinical stage Pathological grade

Training cohort 2  
(341 OSCC)

Univariate Cox regression

LASSO-Cox regression

Diagnostic model 2Diagnostic model 1

ValidationValidation

Validation cohort 2  
(145 OSCC)

Validation cohort 1  
(145 tumors and 60 non-tumors)

Prognostic analyses

Training cohort  
(341 OSCC)

Survival-related 
blood parameters

Validation

Validation cohort  
(145 OSCC)

Prognostic models based on blood 
parameters 

Machine learning

https://cdn.amegroups.cn/static/public/ATM-21-631-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-631-supplementary.pdf
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Figure 2 Diagnostic model for oral squamous cell carcinoma (OSCC) by machine learning based on PIINPBs. (A,B) The receiver operating 
characteristic (ROC) curves for differentiating OSCC from non-OSCC using 6 supervised machine learning algorithms based on 13 
preoperative parameters in both the training cohort (A) and validation cohort (B). (C) Principal component analysis (PCA) for the abundance 
of 13 preoperative parameters to distinguish OSCC from non-OSCC in the training cohort. Red plots represent OSCC patients and blue 
plots represent non-OSCC patients. (D) Correlations between 13 markers evaluated using Spearman rank coefficient.

0.791 and 0.767 in the validation cohort (Figure 4E,4F). 
Consistently, similar findings were observed in predicting 
patient DFS in both cohorts (Figure 5). To further verify 
the values of this prognostic risk score, we carried out 
univariate and multivariate Cox regression analyses. 
Not surprisingly, our data identified the risk score as an 
important factor affecting patient survival in both cohorts 
(Figure 6). Moreover, as illustrated in Figure 7, results from 
the multivariate Cox regression analyses revealed that the 
proposed risk score was an independent factor affecting 
patient survival in both cohorts after adjustment were made 
for well-established prognostic factors, like clinical stage, 
pathological grade, tumor size, and cervical node metastasis. 

Together, these findings support the clinical value of a risk 
score established from routine presurgical blood parameters 
in OSCC prognostication.

To develop a more robust prognostic nomogram, we set 
out to integrate the abovementioned prognostic signature 
with additional routine clinicopathological parameters 
(Figure 8A). As shown in Figure 8B, the nomogram worked 
well in predicting patient survival as evidenced by the 
AUC of 3- and 5-year time-dependent ROC of 0.825 and 
0.845, respectively. Moreover, the calibration curve of this 
nomogram showed good agreement between prediction 
and clinical observation in both cohorts (Figure 8C,8D). In 
addition, decision curve analyses were performed for this 



Wu et al. Preoperative blood parameters-derived signatures for OSCC

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(15):1220 | https://dx.doi.org/10.21037/atm-21-631

Page 8 of 16

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

RF AUC: 0.680 (0.629–0.730) 

SVM AUC: 0.812 (0.769–0.854) 

Xgboost AUC: 0.833 (0.793–0.874) 

NN AUC: 0.807 (0.765–0.849) 

NBs AUC: 0.724 (0.675–0.773) 

LR AUC: 0.725 (0.670–0.774)

RF AUC: 0.791 (0.748–0.836) 

SVM AUC: 0.842 (0.802–0.882) 

Xgboost AUC: 0.838 (0.798–0.878) 

NN AUC: 0.854 (0.816–0.892) 

NBs AUC: 0.818 (0.776–0.860) 

LR AUC: 0.833 (0.793–0.874)

RF AUC: 0.739 (0.666–0.813) 

SVM AUC: 0.786 (0.717–0.854) 

Xgboost AUC: 0.750 (0.678–0.822) 

NN AUC: 0.785 (0.717–0.852) 

NBs AUC: 0.699 (0.622–0.775) 

LR AUC: 0.771 (0.701–0.841)

RF AUC: 0.738 (0.666–0.811) 

SVM AUC: 0.782 (0.712–0.851) 

Xgboost AUC: 0.773 (0.703–0.843) 

NN AUC: 0.776 (0.708–0.844) 

NBs AUC: 0.698 (0.620–0.776) 

LR AUC: 0.802 (0.735–0.869)

Tr
ue

 P
os

iti
ve

 R
at

e
Tr

ue
 P

os
iti

ve
 R

at
e

Tr
ue

 P
os

iti
ve

 R
at

e
Tr

ue
 P

os
iti

ve
 R

at
e

Training cohort

Training cohort

Validation cohort

Validation cohort

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

B

D

A

C

Figure 3 Prediction of clinical stage and pathological grade of oral squamous cell carcinoma (OSCC) with machine learning classifiers. 
(A,B) The receiver operating characteristic (ROC) curves for machine learning-based prediction of clinical stages of OSCC in the training 
cohort (A) and validation cohort (B). (C,D) The receiver operating characteristic (ROC) curves for machine learning-based prediction of the 
pathological grade of OSCC in the training cohort (C) and validation cohort (D).

nomogram, pathological grade, and clinical stage. Results 
revealed that the nomogram established here showed a 
higher net benefit and better predictive accuracy than did 
pathological grade and clinical stage (Figure 8E,8F).

Discussion

Unfavorable long-term prognosis in OSCC highlights 
the urgent need to identify more simple, accurate, and 
convenient biomarkers to facilitate early diagnosis, 
patient stratification, treatment guidelines, and prognostic 
prediction. Mounting evidence has demonstrated that 

inflammatory, immunological, and nutritional factors 
are critically involved in tumor initiation, progression, 
recurrence, and metastatic spread, which affect not only in 
tumor sites, but also blood circulation (5,25). Importantly, 
these parameters in pretreatment blood circulation hold 
great translational potential as biomarkers for patient 
diagnosis, prognostic estimation, and therapeutic response 
(26-28). Here, we developed both diagnostic and prognostic 
models for OSCC by integrating 13 preoperative 
parameters from routine blood examinations via machine 
learning algorithms and LASSO, respectively. Our results 
strongly suggest that these novel optimized diagnostic 
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Figure 4 Construction and validation of prognostic models for oral squamous cell carcinoma (OSCC) based preoperative inflammatory, 
immunological, and nutritional parameters in blood (PIINPB). (A) The coefficient profile plot of 6 survival-related preoperative parameters 
in blood was generated from the log lambda sequence. (B) Tuning parameter (lambda) selection in the least absolute shrinkage and selection 
operator (LASSO) model used tenfold cross-validation via minimum criteria. Dotted vertical lines were drawn at the optimal values using 
the minimum criteria and 1 standard error of the minimum criteria (the 1-SE criteria). (C,D) Kaplan-Meier plots revealed significant 
associations between the prognostic signature and overall survival (OS) in patients in the training (C) and validation cohorts (D). (E,F) The 
time-dependent receiver operating characteristic (ROC) curve analyses with 3 and 5 years as the defining point were performed to evaluate 
the predictive value of the prognostic signature for OS in the training (E) and validation cohorts (F).

and prognostic signatures had superior performance, thus 
warranting further validation and clinical translation.

Under current clinical settings, OSCC diagnosis largely 
depends on histopathological examinations in samples 
obtained from pretreatment biopsy or postoperative 
resected lesions. The advent and increasing popularization 
of liquid biopsy allows presurgical measurements of cells, 
proteins, DNA and RNA molecules, and exosomes for early 
diagnosis of cancer, representing a viable alternative and 
complement to routine examinations for disease diagnosis 
and differential diagnosis (29). For example, circulating 
tumor cells were found to be an independent prognostic 
marker predicting relapse with higher sensitivity than 
routine staging procedures in OSCC (30). RNA sequencing 

of tumor-educated blood platelets can distinguish cancer 
patients from healthy individuals and differentiate between 
6 primary tumor types of patients with high accuracy (31).  
Furthermore, machine learning, a branch of artificial 
intelligence, has played an increasingly important role in 
cancer diagnosis and prognosis prediction. For example, 
several models and classifiers with considerable translational 
potential have been developed by machine learning to 
predict the lymph node metastasis, survival, and hypoxia-
immune microenvironment in OSCC (22,32,33). Here, 
we retrospectively enrolled OSCC patients and age and 
gender- matched non-OSCC patients and constructed 
a diagnostic signature based on PIINPBs via multiple 
machine learning algorithms. Our results revealed that 
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Figure 5 The prognostic signature predicts patients’ disease-free survival. (A and B) Kaplan-Meier plots revealed significant associations 
between the prognostic signature and disease-free survival (DFS) in patients in the training (A) and validation cohorts (B). (C,D) The time-
dependent receiver operating characteristic (ROC) curve analyses with 3 and 5 years as the defining point were performed to evaluate the 
predictive value of the prognostic signature for DFS in the training (C) and validation cohorts (D).

most models developed from diverse machine learning 
algorithms had potent ability to discriminate between 
OSCC and non-OSCC in both the training and validation 
cohorts. Notably, models derived from SVM, Xgboost, 
and NBs seemed more stable and had better performance 
than did other algorithms as evidenced from the AUCs. 
In addition, we compared the abilities of 6 algorithms to 
discriminate between patients in terms of pathological grade 
and clinical stage. Our data indicated that these algorithms 
robustly stratified patients into subgroups with a different 
pathological grade and clinical stage. These findings suggest 
that important information regarding OSCC might be 
more easily obtained from pretreatment blood parameters 
followed by machine learning as compared to postoperative 
data. This might be helpful for clinicians to stratify patients 
and select individualized treatment options. Of course, 

much work is needed to optimize and standardize this 
diagnostic pipeline for OSCC diagnosis and further verify 
its feasibility and efficiency in the routine clinical practice.

Although tremendous progress has been made in OSCC 
therapy during the past decades, long-term prognosis 
in patients with OSCC remains dismal. The prognostic 
prediction mainly relies on conventional TNM staging 
and select clinicopathological parameters. However, these 
prognostic factors are far from optimal in offering accurate 
information, since survival substantially varies among 
patients with the same TNM stage. Previous studies have 
usually focused on a single or a few parameters in blood 
to identify prognostic predictors for cancer (9,17,34). We 
previously reported that high counts of circulating P, N, and 
low P were significantly associated with reduced survival in 
patients with OSCC (13). Moreover, systemic inflammatory 
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Figure 6 Univariate Cox-regression analyses of the prognostic signature and clinicopathological parameters associated with overall survival 
(OS) (A,C) and disease-free survival (DFS) (B,D) for oral squamous cell carcinoma (OSCC) in the training (A,B) and validation cohorts (C,D).
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indexes such as NLR, PLR, LMR, and SII calculated by 
N, M, P, and L, have been demonstrated to be associated 
with cancer prognosis (12,23,35). However, this prognostic 
model derived from a single parameter might be limited in 
its accuracy and sensitivity. To address this, we constructed 
a novel prognostic signature derived from routine blood 
parameters and found that this signature robustly stratified 
patients into subgroups with high or low survival. Moreover, 
to further improve the accuracy of our prognostic 
signature, we integrated it with other well-established 
clinicopathological parameters into a nomogram. Our 
results indicate that this nomogram outperformed all other 
parameters, thus supporting its value and translational 
potential as a novel prognostic biomarker. It is reasonable to 
assume that this analytic approach can enable simultaneous 
integration of multiple parameters and may impact patient 
prognosis, which together enhances accuracy and sensitivity 
of prognostic prediction.

The diagnostic and prognostic significance of these 

blood parameter-derived biomarkers highlights the key 
roles of inflammatory, immunological, and nutritional 
parameters in the blood on tumorigenesis. Moreover, 
these parameters might, at least in part, reflect the status 
of host response malignancies and systemic effects induced 
by tumor. For example, one study found that peripheral 
blood monocytes from bone marrow are recruited locally 
and then differentiate into tumor-associated macrophages 
in response to chemokines produced by tumor cells. These 
tumor-associated macrophages promote tumor initiation 
and metastasis, inhibit antitumor immune responses 
mediated by T cells, and stimulate tumor angiogenesis 
and subsequently tumor progression in diverse cancer 
contexts (36). Moreover, platelet-derived transforming 
growth factor beta (TGF-β) and direct platelet–tumor 
cell contacts synergistically activate the TGF-β/Smad and 
necrosis factor kappa-B (NF-κB) pathways, resulting in 
their transition to an invasive mesenchymal-like phenotype 
and enhanced metastasis in vivo (31,37). Given the high 
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Figure 7 Multivariate Cox regression analyses of the prognostic signature and clinicopathological parameters associated with overall survival 
(OS) (A,C) and disease-free survival (DFS) (B,D) for oral squamous cell carcinoma (OSCC) in the training (A,B) and validation cohort (C,D).
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complexity and heterogeneity of blood parameters, our 
classifiers based on routine blood parameters may not 
provide enough information to identify OSCC-specific 
inflammatory or immune status. Large data sets from high-
throughput multiomics analyses, such as genomewide RNA 
sequencing and metabolomics in preoperative peripheral 
blood, may facilitate the identification of the OSCC-specific 
inflammatory/immune state.

The advantages of both diagnostic and prognostic 
models established here lie in the integrative analyses of 
multiple parameters rather than in individual ones, as 
reported in previous studies (8,38). This type of integrative 
analysis simultaneously covers multiple parameters related 
to diverse aspects of the disease and host, which might 
contribute to its effectiveness and performance. Moreover, 
the powerful machine learning algorithms based on 
artificial intelligence further enhanced the accuracy and 
efficiency of models developed here. Among 6 machine 
learning algorithms used for model development, results 
from SVM, Xgboost, and NN were relatively stable and 
consistent. However, which machine learning algorithm 
is best suited for model construction still needs to be 
determined by further study.

Nonetheless, there are several limitations in our study. 
First, the number of patients with OSCC is relatively 
small, and these diagnostic and prognostic models need to 
be independently validated in multiple cohorts. Second, 
this study was a retrospective analysis and inevitably had 
selection bias. However, our research design of training-
validation cohorts might have partially compensated for 
these disadvantages. Third, some key prognostic factors 
such as margin status, depth of invasion (DOI), presence 
of extracapsular extension, or perineural invasion were not 
included in the univariate and multivariate survival analyses. 
Furthermore, the aim of our present study was to integrate 
preoperative blood parameters to develop a novel and 
potent prognostic signature for individualized treatment 
planning and prognostication. Therapeutic options 
which might significantly affect prognosis among patients 
were not included. Finally, although machine learning 
algorithms have inherent advantages in data processing 
and analyses, they cannot provide detailed information 
on decision-making processes, reflecting their black box 
nature. Collectively, these weaknesses necessitate further 
optimization and independent validation of these signatures 
before they can be applied in routine clinical practice.
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Figure 8 The nomogram integrating prognostic signature and select clinicopathological parameters showed superior performance in 
prognostic prediction. (A) Nomogram for predicting 3- and 5-year overall survival (OS) for oral squamous cell carcinoma (OSCC) patients 
in the training cohort based on risk score and select clinicopathological parameters (clinical stage, pathological grade, tumor size, and 
cervical node metastasis). (B) The time-dependent receiver operating characteristic (ROC) curve analysis with 3 and 5 years as the defining 
point was performed to evaluate the predictive value of nomogram for OS in the training cohort. (C,D) The calibration curves of nomogram 
in terms of agreement between predicted and observed 3- and 5-year outcomes in the training (C) and validation cohorts (D). The dashed 
line of 45° represents perfect prediction, and the actual performances of the nomogram are shown by blue and red lines. (E,F) The decision 
curve analyses of the nomogram, pathological grade and clinical stage for 3- and 5-year risk in the training (E) and validation cohorts (F).
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Conclusions

We developed novel diagnostic and prognostic signatures 
for OSCC based on preoperative routine blood parameters 
with satisfactory accuracy and sensitivity, and further 
confirmed that inflammatory, immunological,  and 
nutritional parameters in blood have clinical significance 
and potential biological functions in driving tumorigenesis. 
Our findings indicate that machine learning algorithms 
can be successfully leveraged for biomarker discovery and 
data integration and analyses. More research is warranted 
to further validate our findings in multiple, independent 
OSCC cohorts.
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Figure S1 Distribution of 13 preoperative parameters in blood and their importance in separating oral squamous cell carcinoma (OSCC) 
from non-OSCC. (A) Relative importance of variables for segregation of OSCC from non-OSCC patients calculated using random forest, 
extreme gradient boosting (XGBoost), and support vector machine (SVM). Variable importance is represented as a percentage of the highest 
value. (B) The violin plots represent the distribution of 13 preoperative parameters in blood for distinguishing OSCC from non-OSCC.
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Figure S2 The violin plots represent the distribution of 13 preoperative parameters in blood for machine learning method-based 
prediction of clinical stage of oral squamous cell carcinoma (OSCC). (A) hemoglobin (Hb); (B) white blood cells (WBC); (C) monocyte; (D) 
lymphocyte; (E) neutrophil; (F) platelet; (G) albumin (ALB); (H) albumin-globulin ratio (A/G); (I) prognostic nutritional index (PNI); (J) 
neutrophil-lymphocyte ratio (NLR); (K) platelet-lymphocyte ratio (PLR); (L) lymphocyte-monocyte ratio (LMR); (M) systemic immune-
inflammation index (SII).
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Figure S3 The violin plots representing distribution of 13 preoperative parameters in blood for machine learning method-based prediction 
of pathological grade of oral squamous cell carcinoma (OSCC). (A) hemoglobin (Hb); (B) white blood cells (WBC); (C) monocyte; (D) 
lymphocyte; (E) neutrophil; (F) platelet; (G) albumin (ALB); (H) albumin-globulin ratio (A/G); (I) prognostic nutritional index (PNI); (J) 
neutrophil-lymphocyte ratio (NLR); (K) platelet-lymphocyte ratio (PLR); (L) lymphocyte-monocyte ratio (LMR); (M) systemic immune-
inflammation index (SII).
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