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Background: The hemodynamic variations of cardiac and cerebral blood monitoring during 
pneumoperitoneum and head-down tilt position in general anesthetized elderly patients remain unresolved. 
We evaluated the time course of cerebral tissue oxygen saturation (SctO2) and cardiac output (CO) and 
investigated how the changes in hemodynamic values during the surgery would affect cerebral perfusion in 
elderly patients.
Methods: In this prospective observational study of 47 elderly patients (≥65 years old, American Society 
of Anesthesiologists Physical status I to III) undergoing laparoscopic colorectal radical resection with head-
down position, SctO2 by near-infrared spectroscopy and arterial pressure-based cardiac output (APCO), 
Cardiac index (CI), stroke volume (SV), and SV index (SVI) according to FloTrac/Vigileo were measured 
at 9 time points. Heart rate (HR), mean arterial blood pressure (MAP), end-tidal carbon dioxide (ETCO2), 
bispectral index (BIS), central venous pressure (CVP), and ventilator settings were recorded. Results are 
reported as medians [95% confidence interval (CI)].
Results: Heart Rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), MAP, CO, 
CI, SV, SVI, and SctO2 before incision decreased significantly compared with the waking state (P<0.05). 
SBP, CO, CI, SV, and SVI before incision decreased significantly compared with induction and intubation 
(P<0.05). SBP, DBP, MAP, and CVP increased significantly after pneumoperitoneum and head-down 
tilt, and then decreased during the following hour. CO and SVI decreased, while CI and SV increased 
after pneumoperitoneum and head-down tilt. CO, CI, SV and SVI decreased at the following 20, 40, and  
60 minutes respectively. SctO2 increased after pneumoperitoneum and head-down tilt and remained stable 
during the following hour. CVP decreased while CO, CI, SV, and SVI increased significantly at the end of 
pneumoperitoneum and head-down tilt (P<0.05). HR and MAP increased significantly at the end of surgery 
compared to at the end of pneumoperitoneum and head-down tilt (P<0.05). CI was associated with SctO2 as 
indicated by a Pearson r of 0.035 (P<0.05).
Conclusions: Anesthesia, pneumoperitoneum, and head-down tilt affect cardiac function and cerebral 
perfusion in elderly patients. cardiac index independently affects elderly patients’ cerebral blood flow.
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Introduction 

Laparoscopic surgery has been widely used in recent 
decades because of its favorable short-term outcomes, such 
as less pain, reduced blood loss, and improved recovery 
time (1). During laparoscopic surgery, the combined effect 
of anesthesia, pneumoperitoneum, and body position can 
alter the patient’s cardiovascular, respiratory, and cerebral 
physiology. Several studies suggested that laparoscopic 
surgery caused few hemodynamic changes that were well 
tolerated by the majority of the elderly patients with head-
up tilt position that affect venous return subtly (2,3). 
While central venous pressure will increase with tilt-down 
position during laparoscopic surgery and affect venous 
return significantly, which may compound the changes in 
hemodynamics, organ perfusion, and tissue oxygenation, 
especially in vulnerable patients such as the elderly. The 
hemodynamic variations of cardiac and cerebral blood 
monitoring during pneumoperitoneum and head-down tilt 
position in general anesthetized elderly patients remain 
unresolved.

Recently, a few studies have reported the simultaneous 
monitoring of cerebral perfusion during laparoscopic 
surgery with head-up or head-down tilt (4). However, these 
studies recruited healthy patients [American Society of 
Anesthesiologists (ASA) Physical status 1–2] or excluded 
patients with cerebral disease. In our study, we investigated 
ASA physical status 1–3 in elderly patients with comorbidities 
of cardiovascular and cerebral diseases. We used the 
FloTrac/Vigileo system (Edwards Lifesciences, Irvine, CA, 
USA) to provide important information on hemodynamics, 
such as arterial pressure-based cardiac output (APCO), 
stroke volume (SV), cardiac index (CI), stroke volume index 
(SVI), and tissue near infrared spectroscopy (NIRS) to 
monitor cerebral tissue oxygen saturation (SctO2), with the 
probe placed on the forehead. We wanted to explore the 
relationship between cardiac dynamic changes and cerebral 
perfusion at different time points during surgery.

We present the following article in accordance with the 
STROBE reporting checklist (available at https://dx.doi.
org/10.21037/atm-21-3407).

Methods

All procedures performed in this study involving human 
participants were in accordance with the Declaration 
of Helsinki (as revised in 2013). This prospective, 
observational study was conducted between November 
21, 2019, and December 20, 2020, after approval was 
obtained from the Ethics Committee of Beijing Hospital 
(no. 2019BJYYEC-032-04). The trial was registered 
with the Chinese Clinical Trial Registry (registration no. 
ChiCTR1900026143). Written informed consent from 
either the patients or their families was obtained. Patients 
aged over 65 years undergoing elective laparoscopic 
colorectal radical resection with head-down tilt were enrolled 
in this study, and the ASA physical status ranged from I 
to III. Patients with known aortic valve regurgitation and 
arrhythmia were not included, as these are contraindications 
for the use of the FloTrac/Vigileo system. This study had a 
prospective, observational design.

Anesthesia procedure

In the operating room, all the patients inhaled 100% 
oxygen at 5 L/min with a mask. Arterial catheters were 
inserted into the left radial artery followed by connection 
to the FloTrac sensor and Vigileo monitoring device 
(Edwards Lifesciences, Irvine, CA, USA), and continuous 
APCO, SV, APCI, and SVI monitoring were commenced. 
SctO2 was measured using 2 probes placed on the left and 
right forehead (EGOS-600A; Enginmed Bio-Medical 
Electronics, Suzhou, China). A bispectral index (BIS) was 
used to monitor the depth of anesthesia. Propofol and 
sufentanil were infused by target controlled infusion (TCI) 
system (Orchestra Base Primea, Fresenius，Badendburg, 
Germany). The initial target effect site concentration (Ce) 
of sufentanil was set at 0.25 ng/mL, while that of propofol 
was set at 2.0 µg/mL. Ce of propofol was then increased in 
0.5 µg/mL increments until the patient lost consciousness. 
Tracheal intubation was facilitated with cisatracurium 
0.2–0.3 mg/kg, and patients were mechanically ventilated. 
Patients were ventilated by tidal volume control ventilation 
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with 40% oxygen in air, with tidal volumes at 8 mL/kg of 
ideal body weight and an inspiratory to expiratory ratio of 
1:2. Central venous catheters were then inserted through 
the right subclavian venous or right internal jugular vein, 
and central venous pressure (CVP) was measured. Other 
monitoring of anesthesia included pulse oximetry, heart rate 
(HR), 5-lead electrocardiogram, and capnography.

Anesthesia was maintained with inhalation of sevoflurane, 
bolus injection of cisatracurium, and TCI of propofol and 
sufentanil. The BIS was maintained between 40 and 60.

Pneumoperitoneum was created by intraperitoneal 
insufflation of CO2, and intraperitoneal pressure was 
kept at 11 to 14 mmHg throughout the procedure. A few 
minutes after induction of pneumoperitoneum, patients 
were tilted head-down by 20 to 30 degrees. At the end of 
the procedure, the patient was returned to a horizontal 
position, and pneumoperitoneum was terminated. Then, 
toward the end of surgery, 4 mg of ondansetron was 
given intravenously to prevent postoperative nausea and 
vomiting. Intermittent doses of phenylephrine (100 mcg) 
or a phenylephrine infusion were used when appropriate to 
uphold mean arterial pressure (MAP). After carbon dioxide 
insufflation, the intraperitoneal pressure was kept at 11 to 
14 mmHg throughout the procedure. 

Values were recorded at the following 9 time points: [1] 
awake patients in OR (T1); [2] approximately 5 minutes 
after induction anesthesia and intubation (T2); [3] 
before incision (T3); [4–7] approximately 5 minutes after 
pneumoperitoneum and the head-down tilt (T4) and 20 (T5), 
40 (T6), and 60 (T7) minutes after head-down tilt; [8] at the 
end of pneumoperitoneum and return to the horizontal 
position (T8); and [9] at the end of surgery (T9).

Statistical analysis

Reported values are medians with 95% confidence intervals 
(CIs) calculated by the Hodges-Lehmann estimate, unless 
otherwise noted. The Friedman test was used to test for 
differences across the 9 related time points. The Wilcoxon 
matched-pairs signed-rank test against a 2-sided alternative 
was used to test for differences between time points for 
our primary outcome variable, SctO2. For this test, the 
level of significance was Bonferroni-corrected and set at 
a P value <0.05. For ease of comparison with other work, 
the percentage changes in cardiac index, MAP, and HR 
between states were also calculated for each participant; this 
included medians and 95% CI of the percentage change. 
The statistical significance level was set at a P value <0.05. 

Results

Patient demographics and operative variables are shown 
in Table 1. A total of 47 patients, 31 men and 16 women, 
aged 74 years (range, 65–86 years), with a mean body mass 
index (BMI) of 24.3 (range, 17.6–31.4 years) and an ASA 
physical status from I–III were recruited. The patients’ 
comorbidities included type 2 diabetes (1 male, 6 females), 
hypercholesterolemia (3 males, 3 females), idiopathic 
hypertension (20 males, 8 females), asthma (1 male), anemia 
(2 males), chronic obstructive pulmonary disease (COPD) 
(1 female), coronary heart disease (7 men), and cerebral 
infarction (1 male, 3 females).

Table 2 presents absolute values of cerebrovascular 
and cardiovascular variables at each time point. Figure 1 
summarizes group mean HR, SBP, DBP, MAP, CVP, CO, 
CI, SV, SV index, SctO2, THI at each time point.

Effects of anesthesia

Induction of anesthesia and tracheal intubation resulted 
in an 16.3% reduction in MAP compared with the waking 
state (P<0.05). Subsequently HR, SBP, DBP, MAP, CO, 

Table 1 Patient demographics and medical characteristics

Characteristic Total

Age [years] 74 [65–86]

ASA PS (1/2/3) 0/32/15

Male/female 31/16

BMI 24.3 (17.6–31.4)

Comorbidities

Hypertension 28

Diabetes mellitus 7

Hypercholesterolemia 6

Asthma 1

Anemia 2

COPD 1

Coronary heart disease 7

Cerebral infarction 4

Data are expressed as mean ± SD or median (IQR). ASA PS is 
the number of the patients in each category. ASA PS, American 
Society of Anesthesiologists physical status; BMI, body mass 
index; COPD, chronic obstructive pulmonary disease.
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Figure 1 Cerebrovascular and cardiovascular changes at different time points during laparoscopic head-down tilt in 47 ASA physical status I–
III patients. Vales were measured at nine time points: [1] awake patients in OR (T1); [2] approximately 5 minutes after induction anesthesia 
and intubation (T2); [3] before incision (T3); [4–7] approximately 5 minutes after pneumoperitoneum and the head-down tilt (T4) and 20 
(T5), 40 (T6), and 60 (T7) minutes after head-down tilt; [8] at the end of pneumoperitoneum and return to the horizontal position (T8); 
and [9] at the end of surgery (T9). (A) HR changes at different time points; (B) SBP changes at different time points; (C) DBP changes at 
different time points; (D) MAP changes at different time points; (E) CVP changes at different time points; (F) CO changes at different time 
points; (G) CI changes at different time points; (H) SV changes at different time points; (I) SVI changes at different time points;(J) SctO2, 
changes at different time points; (K) THI changes at different time points. HR, heart rate; SBP, systolic blood pressure; DBP, diastolic blood 
pressure; MAP, mean arterial blood pressure; CVP, central venous pressure; CO, cardiac output; CI, cardiac index; SV, systolic volume; SVI, 
systolic volume index; SctO2, cerebral tissue oxygen saturation; THI, tissue hemoglobin index.

CI, SV, SVI, and SctO2 measured before incision decreased 
significantly compared with those measured during the 
waking state (P<0.05). SBP, CO, CI, SV, and SVI before 
incision decreased significantly compared with those during 
induction and intubation (P<0.05). The duration between 
tracheal intubation and induction was about 30–40 minutes 
for surgical preparation.

Effect of pneumoperitoneum and head-down tilt

Since the interval between pneumoperitoneum and head-
down tilt was very short, we investigated the combined 
effects of these 2 factors. SBP, DBP, MAP, and CVP 
increased significantly after pneumoperitoneum and head-

down tilt compared with T3 (<0.05) and reached the 
maximum at T4, then decreasing during the following hour. 
CO decreased to 3.5 L/min after pneumoperitoneum and 
head-down tilt, and then decreased from 2.9 to 3.1 L/min 
and 3.2 L/min at 20, 40, and 60 minutes respectively. CI 
increased to 2.3 L/min/m2 after pneumoperitoneum and 
head-down tilt, and then maintained at 1.8 to1.7 L/min/m2 

in the following hour. SV increased to 62.9 mL after 
pneumoperitoneum and head-down ti lt ,  and then 
maintained at 57.1 to 59.2 mL in the following hour. SVI 
decreased to 37.2 mL/m2 after pneumoperitoneum and 
head-down tilt, and then remained at 32.5 to 33.5 mL/m2 in 
the following hour. 

SctO2 increased after pneumoperitoneum and head-
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down tilt and remained stable during the following hour. 

End of pneumoperitoneum and horizontal position

CVP decreased while CO, CI, SV, and SVI increased 
significantly at the end of pneumoperitoneum and head-
down tilt (P<0.05). 

End of surgery

HR and MAP increased significantly at the end of surgery 
compared to at the end of pneumoperitoneum and head-
down tilt (P<0.05). 

Pearson correlation coefficient between different variables 
and SctO2 

CI, HR, DBP were associated with SctO2 by Pearson 
correlation coefficient significantly. Table 3 showed CI was 
associated with SctO2 as indicated by a Pearson r of 0.035 
(P<0.05).

Discussion

Our study demonstrated that in elderly patients undergoing 
elective laparoscopic surgery, SctO2 declined as CO, CI and 
MAP decreased between intubation and incision. During 

this period, the elderly patients showed larger hemodynamic 
fluctuations compared with those reported in other studies, 
which focused on ASA I–II or younger patients (5). Another 
period of marked cardiovascular changes occurs in the 
pneumoperitoneum and head-down tilt procedure. We 
found 12 of 43 elderly patients suffered a sharp decline 
above 40% in CO and CI with a higher CVP.

SctO2 can also be written as tissue oxygenation index 
(TOI), which refers to the percentage of regional tissue 
oxygenated hemoglobin Ce to total hemoglobin Ce. TOI 
is the weighted average of the blood oxygen saturation 
in arterioles, venules. and capillaries in regional tissues. 
Since the ratio of venule blood to arteriolar blood is 
approximately 3:1, tissue oxygen saturation is closer to the 
oxygen saturation of venule blood in the tissue. TOI can 
directly reflect the dynamic balance between oxygen supply 
and consumption in regional tissue. 

Meanwhile, THI is an absolute quantity, and has the same 
value as the product of the reduced scattering coefficient 
(K), blood volume (BV), and hematocrit (HCT) of the tested 
regional tissue. THI does not have a normal value range, 
just as the value of K varies with different people, tissues, 
and even distinct parts of the tissue. Therefore, comparisons 
of THI between different people, tissues, or distinct parts 
of the tissue do not have any clinical implications. K can 
be considered constant if the position of the probe is fixed 
throughout the measurement. HCT, being the volume 
ratio of red blood cells in the whole blood, changes little 
during laparoscopic surgery and can also be considered 
constant. BV, being the BV of the regional tissue, can reflect 
the diastolic and constrictive state of microvasculature in 
regional tissue. Microvascular diastole and BV increase when 
there is hyperemia in the tissue but decrease when there is 
ischemia. Therefore, in laparoscopic surgery, the change of 
THI can reflect the hyperemia or ischemia of microvascular 
in regional tissues, which can assist the clinical evaluation of 
microcirculation from the perspective of BV.

Cerebral autoregulation (CA) is the intrinsic tendency 
of cerebral vessels to maintain stable blood flow despite 
fluctuations in perfusion pressure (6). Defects in CA increase 
the risk of tissue hypoperfusion during hypotension, 
hyperperfusion during hypertension, and unstable flow 
with fluctuating blood pressure. Hypo- or hyperperfusion 
may cause brain injury (7-9). CA is not invariant. We often 
use the curve of cerebral blood flow varying with perfusion 
pressure to represent CA. The platform stage as well as the 
lower limit and upper limit of this curve may be influenced 
by various factors such as age, disease, anesthesia, and CO2, 

Table 3 Pearson correlation coefficient between different variables 
and SctO2

Variables r 95% CI P value

CO 0.109 −0.083 to 0.278 0.282

CI 0.213 0.022 to 0.368 0.035

SV −0.079 −0.242 to 0.103 0.439

MBP 0.135 −0.071 to 0.326 0.184

SVI −0.046 −0.190 to 0.100 0.648

CVP 0.147 −0.053 to 0.326 0.146

HR 0.374 0.172 to 0.519 <0.05

BIS −0.013 −0.227 to 0.177 0.901

SBP 0.079 −0.123 to 0.272 0.439

DBP 0.208 0.003 to 0.388 0.039

CO, cardiac output; CI, cardiac index; SV, systolic volume; SVI, 
systolic volume index; CVP, central venous pressure; HR, heart 
rate; BIS, Bispectral index; SBP, systolic blood pressure; DBP, 
diastolic blood pressure.
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and it is thus important to evaluate the CA of each patient 
in real time (6). 

A large number of methods to assess the quality of CA 
have been proposed over the last 30 years. However, no 
single method has been universally accepted as a gold 
standard (10). CA can be divided into two main groups, 
static cerebral autoregulation (sCA) and dynamic cerebral 
autoregulation (dCA); sCA describes the ability to maintain 
stable cerebral blood flow during slow and progressive 
changes in blood pressure and is calculated using the linear 
relationship between blood pressure and cerebral blood  
flow (11). The change of cerebral blood flow in the change 
of blood pressure is described as dCA, which is often 
evaluated by using phase difference and gain in the method 
of transfer function (12).

TOI reflects the blood oxygen saturation of regional 
tissues. When the blood oxygen saturation of arteries, the 
metabolic rate of brain tissue, and the oxygen diffusion 
ability of brain tissue are stable, as they are when under 
stable general anesthesia, TOI changes can, to some 
extent, reflect the change of cerebral blood flow (13,14). 
Therefore, THI can be considered capable of reflecting 
the change of microvascular diameter in brain tissue, while 
TOI can be considered capable of reflecting the change of 
microcirculation flow in brain tissue under stable general 
anesthesia. If the patient's CA function is normal, when the 
whole-body hemodynamic index changes due to various 
causes, the microvascular diameter of brain tissue changes 
accordingly, resulting in the change of cerebrovascular 
resistance, while the microcirculation flow of brain tissue 
remains relatively stable. Therefore, from the point of 
view of CA, THI embodies the self-regulating behavior of 
cerebral vessels, while TOI can reflect the results of self-
regulating of cerebral vessels.

In this study, we found that the overall degree of CI 
data was more discrete in head-down laparoscopic surgery, 
which showed that the same operation (pneumoperitoneum 
and head-down tilt) had different effects on CO in 
different patients. In order to maintain stable cerebral 
blood flow, the self-regulating behavior of intracerebral 
blood vessels varied, which led to greater THI dispersion 
in this study. In addition, this study also found that the 
TOI dispersion was relatively slight, indicating that the 
TOI changes in different patients are relatively consistent. 
In summary, we believe that when the CO changes of 
individual patients are different, each stimulates different 
cerebrovascular self-regulation behaviors, thereby ensuring 
that the overall cerebrovascular self-regulation results are 

relatively consistent. So cardiac and cerebral perfusion 
monitorings should be performed in elderly patients to 
find the hemodynamic variables and provide individualized 
treatment.

Conclusions

Our findings suggest that anesthesia, pneumoperitoneum, 
and head-down tilt affect cardiac function and cerebral 
perfusion in elderly patients. Rigid surveillance of cardiac 
and cerebral perfusion should be performed in elderly 
patients to provide individualized treatment.
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