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Spindle and kinetochore-associated complex subunit 3 (SKA3) 
promotes stem cell-like properties of hepatocellular carcinoma 
cells through activating Notch signaling pathway
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Background: Cancer stemness contributes to hepatocellular carcinoma (HCC) initiation, metastasis, drug 
resistance, and recurrence. The spindle and kinetochore-associated (SKA) complex has been shown to be 
involved in tumor progression; however, its effects on cancer stem cell-like properties have not yet been 
examined. This research sought to study each subunit of the SKA complex in HCC systematically.
Methods: Bioinformatic analyses were carried out to examine the expression and clinical data of the SKA 
complex’s each subunit in HCC. The expression of the target genes was detected by quantitative reverse 
transcription-polymerase chain reaction and Western blot assays. Clone formation and Transwell assays 
were performed to assess the proliferation and migration abilities of the SKA complex’s each subunit. Sphere 
formation assays and subcutaneous xenograft experiments were performed to investigate the effects of SKA 
complex subunit 3 (SKA3) on the self-renewal and tumorigenic abilities of HCC.
Results: Each subunit of the SKA complex was highly expressed in HCC, but only SKA complex subunit 
1 (SKA1) and SKA3 were associated with the poor overall survival of HCC patients. Additionally, the HCC 
cells overexpressing SKA3 exhibited increased migration, invasion, proliferation, self-renewal, Sorafenib 
resistance and tumorigenic abilities. Notch signaling played a vital role in the process by which SKA3 
promoted HCC stemness.
Conclusions: SKA3 promotes HCC stem cell-like properties via the Notch signaling pathway. As SKA3 
appears to act as a regulator of stemness in HCC, it might be a potential molecular target for HCC.

Keywords: Hepatocellular carcinoma (HCC); spindle and kinetochore-associated complex (SKA complex); 

spindle and kinetochore-associated complex subunit 3 (SKA3); stem cell-like properties; Notch signaling pathway

Submitted Mar 31, 2021. Accepted for publication Jul 23, 2021.

doi: 10.21037/atm-21-1572

View this article at: https://dx.doi.org/10.21037/atm-21-1572

1361

Original Article

https://crossmark.crossref.org/dialog/?doi=10.21037/atm-21-1572


Bai et al. SKA3 promotes HCC stemness

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(17):1361 | https://dx.doi.org/10.21037/atm-21-1572

Page 2 of 17

Introduction

Hepatocellular carcinoma (HCC) is a highly lethal tumor. 
With more than 841,000 new cases and 781,000 deaths 
annually, HCC accounts for 5.7% of all cancers and 
8.2% of all cancer-related deaths, and constitutes a major 
health problem worldwide (1). As the vast majority of 
HCC patients are diagnosed at an advanced stage, surgical 
treatment is difficult, and many patients have to receive 
systemic treatment; however, the overall survival rate 
of patients is poor (2). Additionally, even after surgical 
treatment, HCC still has a high recurrence and metastasis 
rate (3). There is increasing evidence that a subpopulation 
of cancer cells possesses stem cell-like properties, such 
as self-renewal, treatment resistance, and permanent 
proliferation abilities, which lead to complex tumor 
heterogeneity, cancer initiation and development (4,5). 
However, the mechanism of HCC stemness has not yet 
been fully elucidated. Clarifying the influencing factors 
and molecular mechanisms involved in HCC stem cell-like 
properties, could help develop new therapeutic targets.

Spindle and kinetochore-associated (SKA) complex 
subunit 1 (SKA1), SKA complex subunit 2 (SKA2), 
and SKA complex subunit 3 (SKA3) compose the SKA 
complex, which plays a vital role in the process of 
precise chromosome separation in cell mitosis (6,7). 
This key complex stabilizes the kinetochore-microtubule 
interface through interactions with the Ndc80 complex, 
which is comprised of Nuf2, Spc24, and Spc25 (8,9). 
Welburn showed that the SKA complex binds directly to 
microtubules (10). Recently, numerous studies have been 
conducted on the relationship between the SKA complex 
and cancer. These researches have shown that the SKA 
complex is related to tumor metastasis and proliferation 
in various kinds of cancers (11-15). Further, the altered 
expression of the SKA complex has been shown to mediate 
various cellular processes in cancer and be associated with 
poor prognosis of cancer (16,17); however, its role in cancer 
stem cell-like properties has not yet been explored.

We systematically investigated the role of the whole SKA 
complex in HCC stemness and its potential mechanism. 
After examining The Cancer Genome Atlas (TCGA) data 
sets, we found that each subunit of the SKA complex was 
up-regulated in HCC, and that SKA1 and SKA3 (but not 
SKA2) were associated with the poor overall survival of 
HCC patients. We further examined the effects of SKA1 
and SKA3 on the proliferation and migration in HCC. Our 
results revealed that SKA3 promoted HCC stem cell-like 

properties through the activation of the Notch signaling 
pathway.

This article is presented following the ARRIVE 
reporting checklist (available at https://dx.doi.org/10.21037/
atm-21-1572).

Methods

Clinical HCC samples

All of the samples (primary HCC and their corresponding 
adjacent non-HCC tissues) were collected from patients 
undergoing surgical resection at the Tongji Hospital, 
Huazhong University of Science and Technology (HUST, 
Wuhan, China). None of the patients received radiotherapy 
or chemotherapy before surgery. All the samples were 
histopathologically diagnosed as primary HCC. A small 
part of the tumorous and adjacent tissues was fixed with 
4% paraformaldehyde for each pair of samples and then 
embedded in paraffin for immunohistochemistry (IHC) 
analysis. The rest were stored in an ultra-low temperature 
refrigerator for later use. Informed consent was obtained 
from the patients before surgery. The study was conducted 
following the Declaration of Helsinki (as revised in 2013). 
The collection and use of human samples were approved by 
the Ethics Committee of Tongji Hospital, HUST, Wuhan, 
China (IRB ID: TJ-IRB20210729).

IHC

After fixing the HCC patients’ tumorous and adjacent 
tissues with 4% paraformaldehyde, IHC staining with 
antibodies against SKA3 was performed to detect the 
protein expression levels. For the mice tumor tissues, IHC 
staining with antibodies against Ki67 was performed to 
detect the cell proliferation.

Cell lines and cell culture 

Human-hepatic L02 cell line (KCB Cat# KCB 200511YJ, 
RRID: CVCL_6926), Chang-liver cell line [CLS Cat# 
300139/p774_Chang-Liver_(HeLa), RRID: CVCL_0238], 
and HCC cell lines MHCC-97h (RRID: CVCL_4972) 
were obtained from the Cell Bank of the Chinese Academy 
of Sciences (Shanghai, China). SNU-398 (KCLB Cat# 
00398, RRID: CVCL_0077) was purchased from the 
American Type Culture Collection (ATCC, Manassas, VA, 
USA), and cultured in RPMI 1640 Medium (GIBCO). 

https://dx.doi.org/10.21037/atm-21-1572
https://dx.doi.org/10.21037/atm-21-1572
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The other cell lines were cultured in Dulbecco’s Modified 
Eagle’s Medium (DMEM; GIBCO). All medium was 
supplemented with fetal bovine serum (FBS; 10%, 
GIBCO). The cells were cultured at 37 ℃ [5% carbon 
dioxide (CO2) condition].

Western blot and antibodies

Western blot assay was performed as described previously (18).  
The primary antibodies were as follows: SKA3 (rabbit 
polyclonal antibody, Abcam Cat# ab91559, RRID: 
AB_2049220), Notch1 (Cell Signaling Technology Cat# 
3608, RRID: AB_2153354), cleaved Notch1 (Cell Signaling 
Technology Cat# 4147, RRID: AB_2153348), GLI1 (Cell 
Signaling Technology Cat# 3538, RRID: AB_1903989), 
β-catenin (Cell Signaling Technology Cat# 8480, RRID: 
AB_11127855), Hes1 (Cell Signaling Technology Cat# 
11988, RRID: AB_2728766) and Oct4 (Cell Signaling 
Technology Cat# 2750, RRID:AB_823583). Anti-β-
actin (Proteintech, 66009-1-ig, 1:5,000) was used as an 
internal control. The blot density of the protein bands was 
quantified by the ImageJ software (NIH, America).

RNA extraction and quantitative reverse  
transcription-polymerase chain reaction (qRT-PCR) 

Following the manufacturer’s instructions, the ribonucleic 
acid (RNA) was extracted using trizol reagent (Invitrogen, 
Carlsbad, CA, USA). The complementary deoxyribonucleic 
acid (cDNA) was synthesized by reverse transcription 
using the Prime Script RT Reagent Kit (Takara, Tokyo, 
Japan). The qRT-PCR assay was carried out as previously 
described (19). The differences the between different 
samples were measured using the 2−∆∆Ct method. The 
SKA3 primer sequence was as follows: sense strand: 
5'-TACACGAGCAAGAAGCCATTAAC-3'; and antisense 
strand: 5'-GGATACGATGTACCGCTCAAGT-3'. 
The CD44 primer sequence was as follows: sense strand: 
5'-CTGCCGCTTTGCAGGTGTA-3'; and antisense 
strand: 5'-CATTGTGGGCAAGGTGCTATT-3'.

siRNA, plasmids and lentivirus

The transfection of the small-inhibitory RNA (siRNA) 
and plasmid was performed using the reagent of 
Lipofectamine 3000 (Invitrogen, Carlsbad, America) 
following the instructions of the manufacturer. The 
sequences of siRNA for SKA3 were as follows: SKA3 

siRNA1, 5'-GACCCAGAGTTGTCTAATT-3'; SKA3 
siRNA2, 5'-GGTACATCGTATCCCAAGT-3'; SKA3 
siRNA3, 5'-GAATCCAGGCTCAATGATA-3'. The 
human full-length SKA3 gene was acquired and inserted 
into the pGV plasmid to achieve the over-expression of 
SKA3. The sequence for lentivirus-based RNA interference 
(RNAi) targeted SKA3 was as follows: SKA3 shRNA, 
5'-GACCCAGAGTTGTCTAATT-3'. The sequence for 
lentivirus-based RNAi targeted Notch1 was as follows: 
5'-GGAGCATGTGTAACATCAA-3'. The knockdown 
and over-expression of SKA3 were verified by qRT-PCR 
and Western blot assays.

Colony formation assay

One thousand cells per well were seeded in 6-well plates. 
About 2 weeks later, clones were fixed with 4% methanol 
for 20 minutes and dyed with crystal violet solution. A 
light microscope was used to count the clone (>50 cells) 
numbers.

Cell counting kit-8 (CCK8) and CCK8 toxic assay

HCC cell proliferation was analyzed CCK8 (Promoter, 
China). Cells were planted in 96-well plates (1,000 cells/plate) 
and incubated at 37 ℃. Absorption value at 450 nm was 
measured at 24, 48, 72, and 96 h, respectively. CCK8 was 
used to detect the sensitivity of the cells to Sorafenib. 
After cell adhesion in the 96-well plates, they were treated 
by Sorafenib (Sigma-Aldrich) at different concentrations 
(2.5, 5, 10 or 20 μM). After incubating for 24 h, CCK8 was 
used to detect the absorbance value.

Transwell migration and invasion assays

Transwell chambers (8 μm pore size; Millipore, Billerica, 
MA, USA) were used to detect the migration and invasion 
abilities of HCC cells. For the invasion assay, 50 mg/L  
Matrigel (1:8 diluent) was added to coat the Transwell 
chamber surface. Two hundred μL of the cell suspension 
without FBS was added to the upper chamber, and 10% 
FBS culture medium was added as a chemoattractant. The 
data are shown as mean ± standard deviation (SD).

Sphere formation assay

A single-cell suspension was prepared in serum-free DMEM/
F12 medium (cat# 12400–024; GIBCO, Grand Island, 
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NY, USA) with 100 μg/mL streptomycin, 100 IU/mL 
penicillin, 20 ng/mL human recombinant epidermal growth 
factor (EGF, cat# PHG0311; GIBCO), 10 ng/mL human 
recombinant basic fibroblast growth factor (bFGF, cat# 
PHG0266; GIBCO), 2% B27 supplement (cat# 17504–044; 
GIBCO, Grand Island, NY, USA), 1% N-2 supplement 
(cat# 17502–048; GIBCO, Carlsbad, CA, USA), and 1% 
methyl cellulose (cat# M0262; Sigma-Aldrich). The cells 
were then seeded in ultra-low attachment 24-well plates 
(Corning, NY, USA) at a density of 2×103 cells/mL. Spheres 
more than 100 μm in diameter were counted by a light 
microscope.

Mouse xenograft tumor assay

The experiments were approved by the Institutional 
Animal Care and Use Committee of the HUST (ID: TJH-
201912001), in compliance with the guidelines on the care 
and use of animals. We obtained 4-week-old BALB/c nude 
mice from Beijing Huafukang Biotechnology Company and 
fed them in pathogen-free conditions. In the subcutaneous 
xenograft tumor model, 1×106, 1×105 cells were injected 
subcutaneously. Mice were randomly divided into 4 groups 
(with 3 mice per group). Mice were monitored for 4 weeks  
in specific pathogen free (SPF) animal house and examined 
for the growth of subcutaneous tumors. After being 
anesthesia, the mice were killed, and the tumors were 
dissected. Tumor volume was calculated using the following 
formula: V = LW2/2, where L is the length and W is the 
width of the tumor. The data are shown as mean ± SD.

Statistical analysis

Results were analyzed by the GraphPad Prism 6.0 
statistical software. We performed the logistic regression 
and Wilcoxon signed-rank test to estimate the correlation 
b e t w e e n  S K A 3  a n d  H C C  c l i n i c a l - p a t h o l o g i c a l 
characteristics. To analyze whether SKA3 expression can 
be regarded as an independent risk factor, we performed 
univariate and multivariate Cox regression analysis. For 
comparisons between two groups, Student’s t-test was used. 
One-way analysis of variance (ANOVA) test was used for 
comparisons between more than two groups. All of the 
analyses were performed using R (http://www.R-project.org, 
version 3.5.2) or Statistical Product and Service Solutions 
(SPSS, IBM Corp, Armonk, NY, USA), version 25. The 
data are expressed as mean ± SD. P<0.05 was regarded as 
significant difference.

Results

The SKA family was highly expressed in HCC

To learn about the contribution of the SKA family to HCC, 
we downloaded TCGA transcriptome data sets, including 
50 normal liver samples and 374 HCC samples. The clinical 
data of the 374 HCC samples are showed in Figure S1. 
According to the analysis, the expression of SKA1, SKA2, 
and SKA3 in HCC were higher in HCC tumour tissues 
than normal liver samples (see Figure S2A). Among them, 
the SKA3 expression level in HCC tumour tissues was 
significantly higher than in normal tissues, and the log2[fold 
change (FC)] is 17.55. Additionally, Kaplan-Meier analysis 
revealed that high levels of SKA1 and SKA3 were associated 
with the poor overall survival of patients with HCC, but 
the association between SKA2 and overall survival was not 
significant (see Figure S2B). By conducting a pretest study, 
we found that SKA3 had a greater ability to promote the 
proliferation and metastasis of HCC cells than SKA1 (see 
Figure S3); thus, we chose SKA3 for further study. 

SKA3 was upregulated in HCC and predicted poor 
prognosis

According to the analysis of TCGA LIHC dataset, compare 
with normal liver samples, the SKA3 expression was 
significantly increased in HCC samples (see Figure 1A).  
To examine the expression of SKA3 in HCC tissues, we 
randomly selected 32 pairs of samples and quantified 
the protein levels for SKA3 in HCC tissues and adjacent 
normal liver tissues. β-actin was used as the housekeeping 
gene for confirmation. The protein level of SKA3 in HCC 
tissues (T) was higher than that in non-tumor tissues (N) (see 
Figure 1B,1C). The qRT-PCR revealed that SKA3 was more 
highly expressed in HCC cell lines than normal liver cell 
lines (see Figure 1D). We examine the expression of SKA3 
by IHC staining in HCC tissues and adjacent normal liver 
tissues. The results showed that the expression of SKA3 
was overexpressed in HCC tissues compared with adjacent 
normal liver tissues (see Figure 1E). 

Next, we investigated the correlation between SKA3 
expression and clinical-pathological characteristics. The 
results suggested that a higher SKA3 level was correlated 
with a higher grade (P=1.723e−10), higher stage (P=0.002), 
and larger tumor size (T) (P=0.002) (see Figure 1F-1H). 
Using the logistic regression analysis, we found that 
SKA3 level was one of the categorical dependent variables 
(according to the median value of expression) related to 

https://cdn.amegroups.cn/static/public/ATM-21-1572-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-1572-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-1572-Supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-1572-Supplementary.pdf
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Figure 1 SKA3 was upregulated in HCC and predicted poor prognosis in HCC patients. (A) Bioinformatic analysis of the SKA3 expression 
level in normal liver samples and HCC samples, including 50 normal liver samples and 374 HCC samples. (B,C) Western blot analysis of 
SKA3 protein levels in HCC tissues and adjacent non-tumor tissues selected randomly (n=32; P<0.0001, Student’s t-test). β-actin was used 
as a normalized control. (D) Relative expression levels of SKA3 in HCC cell lines (MHCC-97h, and SNU-398), L02 cells, and Chang-liver 
cells were measured by using qRT-PCR. (E) Representative images of IHC staining of SKA3 in tumor and adjacent non-tumor tissues (scale 
bar: 50 μm). (F-H) The relationship between SKA3 expression and grade, stage, tumor size (T) in TCGA. For the statistical analysis (Student’s 
t-test), ****, P<0.0001. HCC, hepatocellular carcinoma; IHC, immunohistochemistry; qRT-PCR, quantitative reverse transcription-
polymerase chain reaction; SKA3, spindle and kinetochore-associated complex subunit 3; TCGA, The Cancer Genome Atlas.
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pathological features (see Table 1). The results indicated 
that HCC with a higher SKA3 level tended to have a worse 
grade, stage, and T classification. The multivariate and 
univariate Cox regression analyses revealed that among 
patients with HCC, SKA3 level was an independent 
risk factor of overall survival [hazard ratio (HR) =2.07, 
P=4.38e−06; see Table 2].

Together, these results indicated that SKA3 expression 
was significantly up-regulated in HCC samples and was 
related to poor clinical outcomes in patients with HCC.

SKA3 promoted HCC cell migration and invasion

SKA3 expression was downregulated by siRNA in MHCC-
97h and SNU-398 cell lines, and the transfection efficiency 
was detected by qRT-PCR and Western blot. The results 
showed that siSKA3-1 had the highest downregulation 
efficiency (see Figure 2A). In the following article, we will 
use siSKA3 instead of siSKA3-1. pGV plasmids were used 
to upregulate SKA3 expression in MHCC-97h and SNU-
398 cell lines, and the transfection efficiency was also 

Table 1 The expression† of SKA3 related to clinicopathological features (logistic regression)

Clinical features Total (n) OR in the SKA3 expression (95% CI) P value

Age (age >50 vs. ≤50 years) 370 0.52 (0.31–0.86) 0.012

Gender (male vs. female) 371 0.84 (0.54–1.29) 0.420

Grade

(G2 vs. G1) 232 1.64 (0.87–3.19) 0.131

(G3 vs. G1) 177 4.42 (2.26–8.93) 2.095772e−05*

(G4 vs. G1) 67 11.18 (2.60–78.06) 0.003*

Stage (III vs. I) 256 1.97 (1.16–3.36) 0.012*

T

(T2 vs. T1) 275 1.79 (1.08–2.97) 0.024*

(T3 vs. T1) 261 1.97 (1.16–3.38) 0.013*

N (N1 vs. N0) 256 1.00 (0.12–8.44) 1.000

M (M1 vs. M0) 270 0.33 (0.02–2.60) 0.338

*, P<0.05; †, categorical dependent variable, greater or less than the median expression level. CI, confidence interval; OR, odds ratio; 
SKA3, spindle and kinetochore-associated complex subunit 3.

Table 2 Associations of overall survival with clinicopathological features in TCGA patients (Cox regression)

Clinicopathological features
Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Age 1.01 (0.99–1.02) 0.591 1.01 (0.99–1.04) 0.15

Gender (male vs. female) 0.78 (0.49–1.25) 0.301 1.03 (0.61–1.74) 0.91

Grade 1.02 (0.75–1.39) 0.914 1.00 (0.72–1.39) 0.99

Stage 1.86 (1.46–2.39) 8.07e–07* 0.91 (0.35–2.37) 0.85

T classification 1.80 (1.43–2.27) 4.73e–07* 1.81 (0.77–4.27) 0.18

M classification 3.85 (1.21–12.18) 0.023* 2.54 (0.64–10.03) 0.18

N classification 2.02 (0.49–8.28) 0.328 2.35 (0.37–14.90) 0.36

SKA3 expression (high vs. low) 2.05 (1.53–2.74) 1.24e−06* 2.07 (1.52–2.82) 4.38e−06*

*, P<0.05. CI, confidence interval; HR, hazard ratio; SKA3, spindle and kinetochore-associated complex subunit 3; TCGA, The Cancer 
Genome Atlas. 
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Figure 2 SKA3 promoted HCC cell migration and invasion. (A,B) The selection of siRNA sequences and the regulation of SKA3 in HCC 
cell lines. qRT-PCR and Western blot assays were used to detect transfection efficiency. (C,D) Representative images of Transwell migration 
and invasion in siSKA3 MHCC-97h and SNU-398 cells staining with crystal violet solution (scale bar: 200 μm). (E,F) Representative images 
of Transwell migration and invasion in SKA3 MHCC-97h and SNU-398 cells staining with crystal violet solution (scale bar: 200 μm). For 
the statistical analysis (Student’s t-test), **, P<0.01; ***, P<0.001; ****, P<0.0001. HCC, hepatocellular carcinoma; qRT-PCR, quantitative 
reverse transcription-polymerase chain reaction; SKA3, spindle and kinetochore-associated complex subunit 3.
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detected by qRT-PCR and Western blot (see Figure 2B).
We carried out Transwell migration and invasion assays 

to investigate the effects of SKA3 on the migration and 
invasion ability of HCC cells. The number of migratory 
cells and invasion cells decreased when SKA3 was 
downregulated (see Figure 2C,2D). Conversely, the number 
of migratory cells and invasion cells increased when SKA3 
was upregulated (see Figure 2E,2F). 

SKA3 promoted HCC cell proliferation and protected HCC 
cells from apoptosis

The colony-forming assay showed that the down-regulation 
of SKA3 weakened cell proliferation and colony-forming 
ability (see Figure 3A). The CCK8 assay showed that 
suppressing SKA3 decreased cell viability and proliferation 
ability (see Figure 3B). Conversely, over-expression of 
SKA3 had the opposite effects (see Figure 3C,3D). Thus, 
the downregulation of SKA3 was found to decrease HCC 
cell proliferation capacity, while the upregulation of SKA3 
was found to increase HCC proliferation ability. Next, we 
conducted an apoptosis assay to test the effect of SKA3  
in vitro. Using annexin V and propidium iodide (PI) staining, 
we found that the cells downregulating SKA3 had a higher 
apoptosis rate (see Figure 3E) and that the upregulation of 
SKA3 inhibited cell apoptosis (see Figure 3F). Together, these 
data indicated that SKA3 promoted HCC cell proliferation 
and protected HCC cells from apoptosis.

SKA3 promoted stem cell-like properties of HCC cells

Previous research has suggested that SKA3 promotes HCC 
cell metastasis, invasion, proliferation and inhibit apoptosis (15). 
To study the relationship between SKA3 and HCC stemness, 
we analyzed the correlations among SKA3 and stemness 
markers in TCGA at the GEPIA website (http://gepia.
cancer-pku.cn/). The results showed that SKA3 had positive 
correlations with CD44 and Oct4 in HCC (see Figure 4A). As 
CD44 and Oct4 are well-accepted stemness markers (20,21), 
the above data suggested that SKA3 plays a role in regulating 
HCC stemness.

We then investigated the effects of SKA3 on the stem 
cell-like properties of HCC. Sphere formation assays were 
performed to evaluate the self-renewal ability of HCC cells. 
The over-expression of SKA3 in SNU-398 cells led to more 
and larger spheres, while the suppression of SKA3 in SNU-
398 cells led to the formation of fewer and smaller spheres 
(see Figure 4B). Next, different concentrations of Sorafenib 

were used to treat MHCC-97h and SNU-398 cells for 24 h.  
The results showed that cells down-regulating SKA3 were 
less resistant to Sorafenib, while cells up-regulating SKA3 
were more resistant to Sorafenib (see Figure 4C). Western 
blot and qRT-PCR suggested that inhibiting SKA3 
expression suppressed the expression of Oct4 and CD44 
in MHCC-97h and SNU-398, while overexpressing SKA3 
increased the expression of Oct4 and CD44 (see Figure 4D 
and Figure S4). Finally, the tumor-initiating capacity of 
HCC cells was evaluated using a subcutaneous xenograft 
tumor model in the BALB/c nude mice. MHCC-97h cells 
were used to establish stable cell lines, shSKA3-MHCC-
97h cells and SKA3-MHCC-97h cells with lentivirus 
infection (see Figure 4E). The grouping and treatment of 
animal experiments are shown in Table 3. An analysis of 3 
mice in each group showed that the knockdown of SKA3 
decreased the tumor growth of MHCC-97h cells, while 
the overexpression of SKA3 increased the tumor growth 
of MHCC-97h cells, which was further confirmed by IHC 
staining for Ki67 in the xenograft tumors of different groups 
(see Figure 4F-4H). Thus, these results confirmed that SKA3 
enhanced the tumorigenic capacity of HCC cells. 

SKA3 promoted stem cell-like properties through the Notch 
signaling pathway

Through the previous experiments, we demonstrated that 
SKA3 displayed marked tumor promoting effects in vitro 
and in vivo, and promoted stem cell-like properties, such as 
metastasis, invasion, proliferation, self-renewal, resistance 
to Sorafenib, and tumorigenic abilities. 

To decipher the underlying mechanism of SKA3 in 
regulating stem cell-like properties, we evaluated 3 major 
signaling pathways critical for stem cell-like properties; 
that is, the Hedgehog (22), Notch (23), and Wnt signaling 
pathways (24). First, we tested the expressions of GLI1, 
NICD, and β-catenin, which are the key factors in the 
Hedgehog, Notch and Wnt signaling pathways, respectively. 
As Figure 5A shows, after the down-regulation of SKA3, 
the expression of NICD (but not GLI1 and β-catenin) 
decreased. In TCGA, the regression analysis about HCC 
clinical-pathology showed that SKA3 was positively 
related to Notch1 at GEPIA website (see Figure 5B).  
As stated above, we examined whether SKA3 promoted 
HCC stem cell-like properties via the Notch signaling 
pathway. Western blot suggested that inhibiting SKA3 
expression significantly suppressed Notch signaling in 
MHCC-97h and SNU-398, while overexpressing SKA3 

https://cdn.amegroups.cn/static/public/ATM-21-1572-Supplementary.pdf
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Figure 3 SKA3 promoted HCC cell proliferation and protected HCC cells from apoptosis. (A) Colony formation assay was performed using 
siSKA3 MHCC-97h and SNU-398 cells. The crystal violet was used for dyeing. (B) CCK8 assay was performed using siSKA3 MHCC-97h 
and SNU-398 cells. (C) Colony formation assay was performed using SKA3 MHCC-97h and SNU-398 cells. The crystal violet was used 
for dyeing. (D) CCK8 assay was performed using SKA3 MHCC-97h and SNU-398 cells. (E,F) Apoptosis was assessed by flow cytometry 
in indicated cells. Cells were treated with annexin V (an indicator of apoptosis) and propidium iodide. For the statistical analysis (Student’s 
t-test), **, P<0.01; ***, P<0.001; ****, P<0.0001. CCK8, cell counting kit-8; HCC, hepatocellular carcinoma; SKA3, spindle and kinetochore-
associated complex subunit 3.
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activated Notch signaling (see Figure 5C). Notably, after we 
knocked down the expression of Notch1 in SKA3 cells via 
lentivirus transfection, SKA3-mediated HCC migration, 
proliferation, self-renewal, and resistance to Sorafenib 
capacities were remarkably inhibited (see Figure 6). Thus, 
SKA3 was found to promote HCC stem cell-like properties 
by activating the Notch signaling pathway.

Discussion

The stemness of cancer is considered as the “source power” 

of tumorigenesis and development. There is increasing 
evidence that due to the existence of liver cancer stem cells, 
the risk of tumorigenic, metastasis, drug resistance, and 
recurrence of HCC is increased (25). For example, cancer 
stem cells expressing high epithelial cell adhesion molecule 
(EpCAM) are thought to be responsible for the initiation 
of tumor progression, metastasis, drug resistance, and 
recurrence (26). Thus, it is necessary to explore the factors 
and molecular mechanisms that regulate the stem cell-like 
properties of HCC. In this study, we found that SKA3, one 
subunit of the SKA complex, was highly expressed in HCC 

Figure 4 SKA3 promoted HCC stem cell-like properties. (A) Correlations among SKA3 and stemness markers in TCGA HCC tumor are 
denoted with Pearson’s correlation coefficients. (B) Representative images of spheres and histogram analysis in siSKA3 and SKA3 SNU-398 
cells (scale bar: 200 μm). (C) siSKA3 cells and SKA3 cells were treated with Sorafenib for 24 h and evaluated by CCK8 toxic assay. (D) The 
expression of Oct4 were tested by Western blot in indicated cells. β-actin was used as the loading control. (E) MHCC-97h cells were used to 
establish stable cell lines. (F) The efficiency of tumor formation of LV-shCtl and LV-shSKA3 MHCC-97h cells (number of injected cells: 1×106, 
1×105; n=3). (G) Efficiency of tumor formation of LV-Ctl and LV-SKA3 MHCC-97h cells (number of injected cells: 1×106, 1×105; n=3). (H) The 
expression of Ki67 determined by IHC in tumors from subcutaneous xenografts in the above groups. For the statistical analysis (Student’s t-test), 
*, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001. CCK8, cell counting kit-8; HCC, hepatocellular carcinoma; IHC, immunohistochemistry; 
SKA3, spindle and kinetochore-associated complex subunit 3; TCGA, The Cancer Genome Atlas; TPM, transcript per million.

Table 3 Characteristics and health status of animals and the treatment to them

Mouse Weight (g) (4 weeks old) Microbiological status Injected cells

1/2/3 12.3/13.1/15.2 Sterile LV-shCtl (1×106)

4/5/6 13.5/13.9/15.7 Sterile LV-shSKA3 (1×106)

7/8/9 12.7/15.3/16.1 Sterile LV-shCtl (1×105)

10/11/12 14.1/14.7/16.9 Sterile LV-shSKA3 (1×105)

13/14/15 13.9/15.5/16.0 Sterile LV-Ctl (1×106)

16/17/18 12.9/16.7/17.1 Sterile LV-SKA3 (1×106)

19/20/21 13.8/15.6/17.7 Sterile LV-Ctl (1×105)

22/23/24 14.5/17.2/18.0 Sterile LV-SKA3 (1×105)

SKA3, spindle and kinetochore-associated complex subunit 3.
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Figure 5 SKA3 activated the Notch signaling pathway in HCC cells. (A) Western blot analysis of featured protein levels of Notch, 
Hedgehog and Wnt pathways in siSKA3 cells. β-actin was used as the loading control. (B) Correlations among Notch1 and SKA3 in TCGA 
HCC tumor are denoted with Pearson’s correlation coefficients. (C) The core components of Notch signaling, including Notch1 receptor, 
NICD and Hes1 were tested in siSKA3 and SKA3 MHCC-97h and SNU-398 cells by Western blot. β-actin was used as a normalized 
control. HCC, hepatocellular carcinoma; SKA3, spindle and kinetochore-associated complex subunit 3; TCGA, The Cancer Genome Atlas; 
TPM, transcript per million.
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Figure 6 SKA3 promoted the stem cell-like properties through the Notch signaling pathway. We knocked down the expression of Notch1 
in SKA3 cells via lentivirus transfection. (A) Transwell migration and invasion assays were performed in indicated cells. The crystal violet 
was used for dyeing (scale bar: 200 μm). (B) Representative images of colony formation assay in indicated cells. The crystal violet was used 
for dyeing. (C) Representative images of spheres and histogram analyses in indicated cells (scale bar: 200 μm). (D) CCK8 toxic assay showed 
that the ability of cell resistance in indicated cells. For the statistical analysis (Student’s t-test), *, P<0.05; **, P<0.01; ***, P<0.001. CCK8, cell 
counting kit-8; SKA3, spindle and kinetochore-associated complex subunit 3.
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and associated with poor overall survival of HCC patients. 
We also demonstrated that SKA3 promoted HCC stem 
cell-like properties of self-renewal, proliferation, migration, 
invasion, resistance to Sorafenib, and tumorigenic 
capacities. Finally, our results showed that SKA3 promoted 

HCC stem cell-like characteristics via the Notch signaling 
pathway.

The SKA complex, which comprises 3 subunits (i.e., 
SKA1, SKA2, and SKA3), plays a vital role in cell mitosis. 
Previous study has shown that the complex is related to 
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various tumors (12,13,16). In this study, we systematically 
examined the relationship between each subunit of the 
SKA complex, and the clinical outcomes, and the malignant 
biological behavior in HCC. Our results indicated that 
compared to SKA1 and SKA2, SKA3 was more closely 
related to clinical outcomes and the stem cell-like properties 
of HCC. 

SKA3 plays an important role in cell mitosis and tumour 
development. Abad found that SKA3 could interact directly 
with microtubules to ensure timely mitotic progression (27). 
The current results highlighted the importance of SKA3, as 
one subunit of the SKA complex, playing a role in spindle 
checkpoint silencing and the maintenance of chromosome 
cohesion in mitosis (28-31). SKA3 has been reported 
in various cancers, and appears to promote cancers’ 
progression. For example, previous studies have shown that 
SKA3 promotes cell proliferation and invasion in breast 
cancer and cervical cancer (32,33). In lung adenocarcinoma, 
SKA3 was found to promote cell migration through the 
EGFR-PI3K-Akt axis (34). In addition, Hou et al. showed 
that SKA3 promoted tumor growth in HCC (15). In this 
study, we demonstrated that HCC cells overexpressing 
SKA3 exhibited increased stem cell-like properties of self-
renewal, migration, invasion, proliferation, resistance to 
Sorafenib and tumorigenic capacities.

To decipher the underlying mechanisms of SKA3 in 
regulating stem cell-like properties, we evaluated 3 major 
signaling pathways critical for cancer stemness: Hedgehog, 
Notch, and Wnt signaling pathways. The results showed 
that the expression of Notch signaling pathway was 
correlated with SKA3. Notch signaling pathway is a highly 
conserved signaling pathway, that plays a key role in the 
proliferation, self-renewal, differentiation, and apoptosis 
of cancer cells (35). It is considered as a classical stem-cell 
pathway, which can maintain and promote the stemness 
of a variety of cancers (36-39). Our previous studies have 
demonstrated that the Notch signaling pathway plays a 
crucial role in promoting the stemness properties of liver 
cancer stem cells (40-42). In this study, we found that the 
deletion of Notch1 remarkably inhibited the increasing 
stem cell-like properties by over-expressing SKA3. Thus, 
the Notch signaling pathway was shown to play a vital role 
in promoting the HCC stemness, which was consistent with 
our previous experimental results. However, the specific 
sites mediating the association between SKA3 and the 
Notch signaling pathway are not known. Thus, we intend 
to investigate the mechanism further and identify the 
molecular cross-talk. Recombination signal binding protein 

for immunoglobulin kappa J region (RBPJ) is a transcription 
factor that can activate human Notch1 (43). We found that 
SKA3 was positively correlated with RBPJ (see Figure S5), 
which may be meaningful in our mechanism research in the 
future.

The cancer stem cells may provide a therapeutic 
opportunity to cure and prevent relapse of cancer. 
Increasingly studies indicated that stem cell specific 
markers or signaling pathways contribute to maintain 
and promote the stemness of cancer. Thus, the selective 
targeting of specific markers and/or signaling pathways is 
now thought to be an effective therapeutic strategy. Wang 
et al. demonstrated that CD44 antibody-targeted liposomal 
nanoparticles, reduced tumor growth and promoted 
apoptosis by specifically targeting CD44 (44). γ-secretase 
inhibitors, a type of Notch inhibitors, have been shown 
to have antitumor effects and have been subject to clinical 
trials in cancers (45). In the present study, we showed that 
SKA3 was positively correlated with CD44 and Notch1. 
Thus, SKA3, which acted as a regulator of stemness in 
HCC, might be a potential molecular target for HCC.

Conclusions

In the present study, we systematically examined the 
relationship between each subunit of the SKA complex, and 
the clinical outcomes, and the stem cell-like properties of 
HCC. The results showed that SKA3 promoted HCC stem 
cell-like properties via the Notch signaling pathway. 
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Figure S2 The SKA family was highly expressed in HCC. (A) The expression level of SKA1, SKA2 and SKA3 in the normal liver samples 
(n=50) and the HCC samples (n=374), as indicated by the TCGA LIHC data set. (B) Kaplan-Meier overall survival curves of patients with 
HCC in the TCGA cohort (log-rank test). SKA, spindle and kinetochore-associated; SKA1, spindle and kinetochore-associated complex 
subunit 1; SKA2, spindle and kinetochore-associated complex subunit 2; SKA3, spindle and kinetochore-associated complex subunit 3; 
HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; LIHC, liver hepatocellular carcinoma.

Figure S1 The clinical data of the 374 HCC samples in TCGA LIHC datasets. HCC, hepatocellular carcinoma; TCGA, The Cancer 
Genome Atlas; LIHC, liver hepatocellular carcinoma.
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Figure S3 SKA3 had stronger effects on proliferation and migration than SKA1 in HCC. (A) Representative images of colony formation 
assay in indicated cells staining with crystal violet solution. (B) Representative images of Transwell migration assay in indicated cells staining 
with crystal violet solution (scale bar: 200 μm). For the statistical analysis (Student’s t-test), *, P<0.05; **, P<0.01. ns, not significant; SKA1, 
spindle and kinetochore-associated complex subunit 1; SKA3, spindle and kinetochore-associated complex subunit 3; HCC, hepatocellular 
carcinoma.

Figure S4 The expression of CD44 were tested by qRT-PCR in indicated cells. For the statistical analysis (Student’s t-test), *, P<0.05; 
**, P<0.01; ***, P<0.001; ****, P<0.0001. SKA3, spindle and kinetochore-associated complex subunit 3; qRT-PCR, quantitative reverse 
transcription-polymerase chain reaction.
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Figure S5 Correlations between RBPJ and SKA3 in TCGA HCC tumor are denoted with Pearson’s correlation coefficients. SKA3, spindle 
and kinetochore-associated complex subunit 3; TCGA, The Cancer Genome Atlas; HCC, hepatocellular carcinoma; TPM, transcript per 
million.
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