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Genomic instability-associated lncRNA signature predicts 
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Background: Characterized by multiple features, genomic stability-related markers, such as microsatellite 
instability (MSI), were regulated as an important predictor of chemotherapy and immunity responses in 
cancer treatment. The aim of our study was to identify a genomic instability-associated long non-coding 
RNA (lncRNA) signature to help predict the survival and therapy response of gastric cancers (GCs).
Methods: We used RNA sequencing and single nucleotide variant (SNV) data from The Cancer Genome 
Atlas-stomach adenocarcinoma (TCGA-STAD) datasets to explore genomic instability-associated lncRNAs. 
Hierarchical cluster analyses of 197 differentially expressed genomic instability-associated lncRNAs were 
performed to separate GC patients into two groups, namely, the genomically unstable (GU)-like group and 
the genomically stable (GS)-like group.
Results: Cox regression analysis was conducted to finally identify six lncRNAs (LINC02678, HOXA10-AS, 
RHOXF1-AS1, AC010789.1, LINC01150, and TGFB2-AS1) with independent prognostic value to establish 
the genomic instability-associated lncRNA signature (GILncSig). Based on the SNV analysis, GILncSig was 
correlated with accumulation of gene mutation counts. Further comparisons between different risk score 
groups were performed to assess chemotherapy drug sensitivity and immune landscape variations.
Conclusions: Our study not only revealed the genomic instability-associated lncRNAs in GCs, but 
provided a key method and resource for further studies of the role of these lncRNAs play, and introduced a 
potential new way to identify genomic instability-associated cancer biomarkers.
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Introduction

As a heterogeneous disease with a worldwide presence, 
gastric cancer (GC) is the fifth most common malignant 
tumor and the third leading cause of cancer-related 
mortality worldwide (1). Despite efforts in the past decade 
to improve treatment effects, treatment outcomes for GC 

remain unsatisfactory. Previous studies have concluded that 
less than one-third of GC cases worldwide are diagnosed 
at an early stage (2). Based on data from the National 
Cancer Database Research Unit of the American College 
of Surgeons, GC patients in east Asia were diagnosed at 
a relatively early stage and the survival rate was higher; 
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however, there is still much room for the improvement 
of treatment outcomes (3). The complex classification of 
GC shows its strong heterogeneity. Based on phenotype 
observed under a microscope, GC is categorized to three 
major histological subtypes based on Lauren’s classification, 
as follows, intestinal, diffuse, and mixed types (4). Though 
considered as a relatively old and rough classification 
method, it is still widely used because of its simplicity and 
robustness. Currently, the World Health Organization 
(WHO) c lass i f icat ion system is  the  most  widely 
acknowledged pathological system, which divides GC 
into four main types, namely, papillary adenocarcinoma, 
tubular adenocarcinoma, mucinous adenocarcinoma, and 
poorly cohesive carcinoma (5). The last decade has seen 
the establishment of different molecular classifications of 
GC. The Cancer Genome Atlas (TCGA) project system, 
which has attracted the most attention, divides GC into 
four subtypes, namely, Epstein-Barr virus (EBV)-positive, 
microsatellite instability (MSI), genomically stable (GS), 
and chromosomal instability (CIN) GC (6). 

As one of the most important signatures of cancer, 
genomic instability is characterized by the accumulation 
of somatic mutations. Carcinogenesis tends to result from 
increasing numbers of somatic mutations, especially driver 
mutations that affect multiple aspects of tumor growth (7).  
Tumor mutation burden (TMB) is defined as the total 
number of somatic mutations present in a single tumor 
sample. The TMB provides a quantitative description of 
somatic mutation events in each sample. Previous studies 
have reported that somatic mutations in tumor DNA can 
trigger the development of neoantigens, which can be 
recognized and targeted by the immune system (8,9). The 
extent of TMB is largely dependent on the tumor type, 
with melanoma and non-small cell lung cancers (NSCLCs) 
being associated with the highest TMB and leukemias and 
pediatric tumors being associated with the lowest TMB. 
The extent of TMB has been shown to be highly consistent 
with immune checkpoint blocker (ICB) activity in clinical 
experiments (10). There is accumulating evidence that a 
higher TMB is an indicator of a better response to ICB 
treatment (1-3). A relationship between GCs and genomic 
instability has been previously reported (4,5). However, it 
remains unclear how GC is affected by TMB.

The TMB can be affected at multiple biological levels. 
Defined as transcripts that are longer than 200 nt, long 
non-coding RNAs (lncRNAs) have been identified as crucial 
factors affecting tumor behavior. Aberrant expression of 
lncRNAs has been shown to exert a profound impact on 

the biological behaviors of cancer such as proliferation, 
progression, and metastasis (6). It has been found that 
lncRNAs associated with MSI influence the prognosis of 
GCs (7); however, the mechanism remains unknown. As 
one of the members of the ubiquitin-like and ubiquitin-
associated (UBL-UBA) protein family, UBQLN4 plays an 
important role in sustaining genomic stability by affecting 
nucleotide excision repair. Recent studies have revealed that 
the mutation of UBQLN4 could reflect genomic instability 
in cancers, thus affecting prognosis and the chemotherapy 
response (8). In this study, we established a six-lncRNA-
based signature by comparing high and low TMB groups 
using data obtained from TCGA. The signature was further 
analyzed to assess tumor immune microenvironment 
variations. We assessed the predictive value of the signature 
for sensitivity to chemotherapy and immunotherapy. This 
study not only provides an explanation for why GC patients 
with high TMB experience better survival, but also provides 
clues for predicting the prognosis and drug sensitivity of 
GC patients. We present the following article in accordance 
with the STARD reporting checklist (available at https://
dx.doi.org/10.21037/atm-21-3569).

Methods

Data source

The RNA-seq, clinical, and single nucleotide variant (SNV) 
data from patients with GC were derived from the TCGA 
Data Portal (https://portal.gdc.cancer.gov/, 10 December 
2020). Integral lncRNA and messenger RNA (mRNA) 
expression profiles, somatic mutation data, common 
clinicopathological characteristics and survival data of 375 
patients were used for signature establishment. We divided 
GC patients with follow-up data (time of follow-up =0 were 
excluded) into two groups, namely, the training cohort and 
the testing cohort, as previously reported (9). A flowchart of 
this study is presented in Figure 1. The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013).

Identification of genomic instability associated lncRNAs

The RNA sequencing and SNV data from patients with 
GC from TCGA datasets were used to identify genomic 
instability-associated lncRNAs. First, SNV data from all the 
patients were rearranged in order of decreasing number of 
cumulative somatic mutations. The top quarter of patients 
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Figure 1 Flowchart of the study. lncRNA, long non-coding RNA.
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were defined as the genomically unstable (GU) group (n=91), 
while the bottom quarter were defined as the GS group 
(n=90). The “Limma” R package was applied to identify the 
differentially expressed lncRNAs under the thresholds of 
|log2 FC| >1 and P value <0.05. The lncRNAs that met the 
criteria were regarded as genomic instability-concerned.

Functional enrichment analysis

The paired expression profiles of lncRNAs and mRNAs were 
matched based on the Pearson correlation algorithm. The 
mRNAs with higher correlations (top 10) were regarded as 
the co-expressed partners of their corresponding lncRNAs. 
The selected mRNAs were subjected to Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway analysis.

Construction and evaluation of genomic instability 
lncRNA-based gene signature

By using Ward’s linkage and Euclidean distance methods, 
hierarchical cluster analyses were performed to separate GC 
patients into two groups, namely, the GU-like group (n=318) 
and the GS-like group (n=57). Cox regression analysis 
was conducted to identify genomic instability-associated 
lncRNAs with prognostic value. The selected lncRNAs 
were used to construct a genomic instability-associated 
lncRNA signature (GILncSig) scoring system for survival 
prediction with the following formula:

( ) ( )1
 n

i
GILncSig score = coef lncRNAi expr lncRNAi

=
×∑ 	 [1]

In Eq.  [1] ,  lncRNAi represents  the prognosis-
related lncRNAs derived from Cox regression analysis; 
expr(lncRNAi) indicates the expression of lncRNAi; and 
coef(lncRNAi) is the predictive value of lncRNAi for 
GILncSig-based risk scores, which were obtained from the 
multivariate Cox analysis. Patients in the training cohort 
were divided into high-risk group and low-risk group based 
on their risk scores.

Kaplan-Meier curves were applied to calculate the 
survival difference between the high- and low-risk groups 
with a threshold of P value ≤5%. The newly established 
GILncSig was further tested by Cox regression analysis 
to assess whether it is a better independent prognostic 
factor for GC than clinical features such as tumor, node, 
metastasis (TNM) stage. A receiver operating characteristic 
(ROC) curve was also drawn to validate the performance of 
the signature in predicting prognosis.

Exploration of immune landscapes based on different risk 
stratifications

Based on the transcriptional data derived from TCGA 
dataset, single-sample Gene Set Enrichment Analysis 
(ssGSEA) was performed with “ssGSEA” in R software 
(3.6.1) to elucidate the immune spectra. The “GSVA” 
package in R software 3.6.1 (http://www.R-project.org/) 
was also utilized for the presentation of ssGSEA results. 
At the same time, the ESTIMATE algorithm was utilized 
by using the “estimate” package in R (3.6.1) to obtain the 
immune score, stromal score, and ESTIMATE score (the 
sum of the previous two data points) for each sample from 
GC patients obtained from TCGA. To determine the 
relationship between the risk score and the tumor immune 
microenvironment, currently well-known methods, 
including TIMER, XCELL, QUANTISEQ, MCP-
counter, EPIC, and CIBERSORT, were applied to calculate 
the proportions of infiltrating immune cells. Spearman 
correlation analysis was further conducted to analyze the 
correlations between the GILncSig and the immune cells. 
The correlation coefficients of the results are shown in a 
lollipop diagram under the threshold of R>0.1 and P<0.05.

Evaluation of the response of chemotherapy and 
immunotherapy based on different risk stratifications

To explore the sensitivity of each GC patient from 
TCGA to different chemotherapeutic agents,  the 
“pRRophetic” package in R 3.6.1 was applied to predict 
the half maximal inhibitory concentration (IC50) of GC-
related chemotherapy drugs, and the high- and low-risk 
groups were compared. This algorithm was published 
previously and has been widely used in several studies 
(10,11). The online tool Tumor Immune Dysfunction 
and Exclusion (TIDE) (http://tide.dfci.harvard.edu) was 
used to predict the TIDE score, which has been shown to 
be positively correlated with anti-PD1 and anti-CTLA4 
immunotherapy responses. The immunophenoscore (IPS) 
refers to the four parts [immunosuppressive cells, effector 
cells, major histocompatibility complex (MHC) molecules 
and immunomodulators] determining immunogenicity 
which is calculated without bias using machine learning 
methods. The IPS (range: 0 to 10) is calculated based on 
the gene expression in representative cell types. The IPS 
results of stomach adenocarcinoma (STAD) patients were 
downloaded from The Cancer Immunome Atlas (TCIA) 
(https://tcia.at/home).



Annals of Translational Medicine, 2021 Page 5 of 16

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2021;9(16):1326 | https://dx.doi.org/10.21037/atm-21-3569

Statistical analysis

The statistical analyses were all generated by R-3.6.1 in 
this study. For quantitative data, statistical significance 
for nonnormally distributed variables were estimated by 
the Wilcoxon rank-sum test, and normally distributed 
variables were analyzed by Student’s t-tests. Kruskal-
Wallis tests and one-way analysis of variance were used as 
nonparametric and parametric methods for comparisons of 
more than two groups, respectively. Spearman method was 
applied for correlation analysis between two continuous 
variables. Contingency tables were analyzed by two-sided 
Fisher exact tests. Kaplan-Meier survival analysis and the 
Cox proportional hazards model were used to analyze 
the association between the two risk stratifications with 
the R package ‘Survminer’. The prognosis classification 
performance of the SRLncSig score model was assessed by 
the ROC curve, and the area under the curve (AUC) were 
calculated using ‘timeROC’ package.

Results

Identification of genomic instability-related lncRNAs in 
TCGA datasets

Genomic instability-related lncRNAs were identified based 
on differential expression analysis between the groups with 
high and low numbers of cumulative somatic mutation. The 
top one-quarter of patients were defined as the GU group 
(n=91), while the bottom one-quarter were defined as the 
GS group (n=90). The “Limma” R package was applied 
to identify the differentially expressed lncRNAs under 
the thresholds of |log2 FC| >1 and P value <0.05. There 
were 53 upregulated and 144 downregulated lncRNAs 
that met the criteria (Table S1). The top 40 genes ranked 
by |log2 FC| are presented in Figure S1A. Based on the 
197 differentially expressed lncRNAs that were discovered, 
hierarchical cluster analyses were performed to separate the 
GC patients into two groups, namely, the GU-like group 
(n=318) and GS-like group (n=57) (Figure 2A). The somatic 
mutation counts are presented in Figure 2B. The expression 
level of UBQLN4 was also higher in the GU-like group 
than in the GS-like group (Figure 2C).

Functional enrichment analysis

Based on the method presented above, we established a 
lncRNA-mRNA network based on correlation analysis. 
The red nodes indicate lncRNAs, while the blue nodes 

represent mRNAs (Figure 2D). The details are all listed in 
https://cdn.amegroups.cn/static/public/atm-21-3569-1.
xlsx. The lncRNA-correlated mRNAs were further used to 
conduct KEGG pathway analysis. The results revealed that 
immune-related pathways, such as the chemokine signaling 
pathway, T cell receptor signaling pathway, and leukocyte 
transendothelial migration pathway, were enriched. The 
GC-related pathways, such as gastric acid secretion, GC 
and focal adhesion, were also enriched. These results 
indicate that genomic instability-related lncRNAs are highly 
correlated with GC development and that immune landscape 
changes could play a role in the disease (Figure 2E).

Establishment and validation of the robustness of 
6-lncRNA based GILncSig

To improve the prognostic predictive value of the genome 
instability-associated lncRNAs, TCGA GC patients were 
randomly divided into two cohorts, namely, a training 
cohort (n=169) and a testing cohort (n=168). To identify the 
lncRNAs prognostic value, the training cohort was used to 
establish a signature by conducting univariate Cox regression 
analysis of the 197 genomic instability-related lncRNAs. 
Of all the 197 genomic instability-related lncRNAs, 8 
lncRNAs were identified to be prognosis-related (P<0.05; 
Figure S1B). Multivariate Cox regression analysis of the 
eight selected lncRNAs was carried out, and 6 lncRNAs 
with independent prognostic value, namely, LINC02678, 
HOXA10-AS, RHOXF1-AS1, AC010789.1, LINC01150, 
and TGFB2-AS1, were identified. We established GILncSig 
based on the values of coefficients from multivariate Cox 
analysis and the expression level of the six lncRNAs as 
follows: GILncSig risk score = (0.1485 × expression level 
of LINC02678) + (–0.5348 × expression level of HOXA10-
AS) + (0.0547 × expression level of RHOXF1-AS1) + (0.245 
× expression level of AC010789.1) + (0.7888 × expression 
level of LINC01150) + (0.0917 × expression level of 
TGFB2-AS1). The risk score of each TCGA GC sample 
was obtained based on the formula. First, the risk score 
was used to separate the training cohort into low and high-
risk groups. A Kaplan-Meier curve was applied, and it was 
found that the low-risk group had better survival than the 
high-risk group (Figure 3A). An ROC curve was also drawn 
to assess the predictive value of the signature for survival 
(AUC =0.712) (Figure 3B). The median of the risk score 
was set as the cutoff value (Figure 3C) and the low-risk 
group presented with a larger number of somatic mutations 
(Figure 3D) and a higher expression level of UBQLN4 than 

https://cdn.amegroups.cn/static/public/ATM-21-3569-supplementary.pdf
https://cdn.amegroups.cn/static/public/ATM-21-3569-supplementary.pdf
https://cdn.amegroups.cn/static/public/atm-21-3569-1.xlsx
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Figure 2 Exploration and functional enrichment analysis of genomic instability-related lncRNAs in GC patients from TCGA datasets. 
(A) Expression profiles of 197 candidate genomic instability-related lncRNAs are applied to conduct unsupervised clustering of 375 GC 
patients. Blue cluster is GS-like group while red cluster is GU-like group. (B) The comparison of somatic mutations counts between the 
GU-like group and GS-like group reveals that GU-like group are significantly higher than those in the GS-like group. (C) The comparison 
of UBQLN4 expression levels between the GU-like group and GS-like group reveals that GU-like group is significantly higher than that in 
the GS-like group. (Student’s t-test, *** for P<0.001). (D) Correlation network of genomic instability-related lncRNAs and mRNAs, red balls 
represent lncRNAs while blue ones represent mRNAs. (E) KEGG analysis for mRNAs co-expressed lncRNAs indicates that not only GC-
related but also immune-related pathway is enriched. lncRNA, long non-coding RNA; GC, gastric cancer; TCGA, The Cancer Genome 
Atlas; GS, genomically stable; mRNA, messenger RNA; GU, genomically unstable; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 3 Establishment of GILncSig based on the training cohort. The GILncSig containing six lncRNA (LINC02678, HOXA10-
AS, RHOXF1-AS1, AC010789.1, LINC01150, TGFB2-AS1) separated the integral cohort into low and high-risk groups. (A) Kaplan-
Meier estimates of overall survival of patients with low or high risk predicted by the GILncSig revealed that the low-risk group presented 
with a better survival. (B) The time-dependent ROC curve presented with an AUC value of 0.712 for the signature. (C) The signature 
separated the integral cohort into low and high-risk groups based on the medians of the risk score. (Horizontal lines: median values). (D,E) 
Comparison between two groups revealed a higher level of somatic mutation counts (D) and UBQLN4 expression level (E) in low-risk ones. 
(Student’s t-test, * for P<0.05 and *** for P<0.001). GILncSig, genomic instability-associated lncRNA signature; lncRNA, long non-coding 
RNA; ROC, receiver operating characteristic; AUC, area under the curve.
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the high-risk group (Figure 3E). The established GILncSig 
was further applied to test it’s prognosis-predictive value 
in the testing cohort. The results were highly consistent 
except for the insignificant expression levels of UBQLN4 
between two risk groups (Figure 4A-4E). Finally, the integral 
cohort was examined by the GILncSig. The results were 
also highly consistent (Figure 4F-4J). Compared with other 
GC-related lncRNA signatures (WangLncSig’ AUC =0.589 
and ZhangLncSig’ AUC =0.536), GILncSig performed 
better in prognosis prediction in TCGA STAD datasets 
(GILncSig’ AUC =0.681) (Figure 4K) (12,13). Moreover, 
GILncSig was identified as an independent prognostic factor 
based on univariate and multivariate Cox regression analysis  
(Figure 4L). The clinical baseline data of the two cohorts 
were also compared, and no statistically significant 
differences were found (Table S1). The predictive value 
of GILncSig was further tested based on different clinical 
characteristics and other GC-related lncRNA signatures. 
The results indicated that GILncSig is still a good 
prognostic predictor regardless of age, gender, tumor grade, 
and TNM stage (Figure 5A-5H).

Correlations between GILncSig and SNVs

Somatic mutations in MUC16 and TNN have been reported 
as correlated with better survival in GC (14). The SNV 
datasets of TCGA STAD projects were acquired and the 
top 30 frequently mutated genes were presented by waterfall 
maps (Figure 6A). The details of the mutations were also 
summarized (Figure 6B). As for the GILncSig, the high-risk 
group presented with higher mutation rates for most of the 
genes. The top 5 genes were enrolled for the comparison 
between two groups. The results indicated that most of the 
genes harbored higher mutation rates in the high-risk group 
(Figure 6C).

Differences in tumor immune microenvironment 
landscape based on risk stratification

The ESTIMATE algorithm was used to determine 
ESTIMATE scores, immune scores, and stromal scores, 
and the two risk groups were compared (Figure 7A). The 
results indicated that ESTIMATE scores, immune scores, 
and stromal scores were significantly higher in the high-
risk cohort than the low-risk cohort (Figure 7B). To further 
evaluate the hidden functional components, the mainstream 
software for qualifying the infiltrative immune cells were 
applied. Immune cells generally considered to have anti-

tumor function for higher antigen-processing events 
(T cells CD4+ memory cells, CD8+ T cells, and T cells 
CD8+ effector memory cells) were higher in the low-risk 
group while cells with immune regularity function (M2 
macrophages and cancer-associated fibroblasts) were higher 
in the high-risk group (Figure 7C).

Distinct response to immunotherapy and chemotherapy in 
the high- and low-risk groups

The online tool TIDE was applied to investigate the 
predictive value of immune checkpoint inhibitors based 
on the newly established signature. The results revealed 
that the TIDE value was significantly higher in the high-
risk group than the low-risk group, which indicates a 
favorable immunotherapy response for the high-risk group 
(Figure 7D). We predicted the IC50 of four GC-concerning 
chemotherapy drugs included in the “pRRophetic” 
package (cisplatin, doxorubicin, gemcitabine, and lapatinib) 
in samples from high- and low-risk patients with the 
pRRophetic algorithm (Figure 7E). The results revealed that 
the IC50 values of doxorubicin and gemcitabine were higher 
in the high-risk group than the low-risk group. It can be 
inferred that the high-risk group is more likely to benefit 
from immune checkpoint therapy and that risk stratification 
can be a predictor of the sensitivity of GC patients to 
different drugs.

Discussion

The past few years have witnessed the explosion of ICB 
treatment regardless of clinical experiments or basic  
studies (3). There have been various challenges for GC-
related studies due to the negative outcomes obtained 
in clinical trials. However, numerous studies have 
indicated that genomic instability is a valuable predictor 
of immunotherapy and chemotherapy responses (15). 
Genomic instability has been revealed to be a unique 
feature of cancers and to influence the tumor immune 
microenvironment in GC (16,17). Genomic instability may 
play a crucial role in cancer progression and recurrence 
and may affect the prognosis of cancer in multiple ways 
(9,18). For example, low-grade gliomas (a tumor type with 
relatively low genomic instability), chemotherapy with 
temozolomide was associated with high rates of tumor 
progression. Meanwhile, the study also discovered that 
at least half of the mutations in the initial tumor were 
undetected at recurrence including driver mutations in 

https://cdn.amegroups.cn/static/public/ATM-21-3569-supplementary.pdf
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Figure 5 Validation of GILncSig in different clinical sets. GILncSig exerted an effective prognosis-predictive value in non-elderly and 
elderly (A,B), male and female (C,D), lower and higher grade (E,F) early and advanced stage (G,H) for TCGA GC patients. GILncSig, 
genomic instability-associated lncRNA signature; TCGA, The Cancer Genome Atlas; GC, gastric cancer.
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Figure 6 Correlations between the tumor mutation spectrum and GILncSig. (A,B) The waterfall map (A) The top 30 genes with the highest 
mutation rates. The details of the SNV are summarized (B). (C) The mutation rates of the top 5 genes were compared between the low 
and high-risk groups. Most of the genes were more frequently mutated in low-risk groups except for ARD1A (chi-square test). GILncSig, 
genomic instability-associated lncRNA signature; SNV, single nucleotide variant.

TP53, ATRX, SMARCA4, and BRAF; this suggests that 
recurrent tumors are often seeded by cells derived from the 
initial tumor at a very early stage of their evolution (19).  
Previous studies have suggested that many somatic gene 
mutations could predict better survival in GC patients 
(14,20,21). Of all the reported genes, MUC16 has attracted 
the most attention because of the highly consistent findings 
in both Eastern and Western countries (20). Our results 
confirm the results of previous studies, however from 

another perspective. The five most frequently mutated 
genes were also extracted to make a comparison based 
on the established GILncSig. The result indicated the 
effectiveness of GILncSig for genomic state prediction. 
The genomic instability reflected by somatic mutation 
counts was higher in low-risk patients who presented 
with better survival than high-risk patients. The results 
are controversial because most of the reported mutated 
genes in other types of tumors have been shown to indicate 
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Figure 7 Immune landscape variations between two risk groups. (A) ssGSEA analysis and ESTIMATE algorithm results for two risk 
groups were demonstrated by heatmap. (B) The ESTIMATEScore, ImmuneScore, and StromalScore were all higher in high-risk group. 
(C) Immune cells generally considered with anti-tumor function for higher antigen-processing events (T cells CD4+ memory cells, CD8+ 
T cells, and T cells CD8+ effector memory cells) were higher in low-risk group while cells present with immune regularity function (M2 
macrophages and cancer associated fibroblasts) were higher in the high-risk group. (D) The TIDE value is significantly higher in high-
risk groups. (E) four chemotherapy drugs to predicted the IC50 of each sample (cisplatin, doxorubicin, gemcitabine, and lapatinib) in high- 
and low-risk patients. IC50 for doxorubicin and gemcitabine is higher in high-risk group. (Student’s t-test, * for P<0.05 and ** for P<0.01). 
ssGSEA, single sample Gene Set Enrichment Analysis; TIDE, the online tool Tumor Immune Dysfunction and Exclusion; IC50, half 
maximal inhibitory concentration.
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a worse prognosis. The variation in immune landscape 
between the two risk groups may explain this finding. As 
presented in the results, the proportions of immune cells 
generally considered to have antitumor function for higher 
antigen-processing events (memory activated CD4 T cells 
and follicular helper T cells) were higher in the low-risk 
group than the high-risk group, while the proportions of 
cells with immune regularity function (regulatory T cells 
and M2 macrophages) were higher in the high-risk group. 
The results can be explained by the fact that the immune 
system is triggered by accumulating somatic mutations. 
However, direct evidence for immune landscape changes is 
still limited. To further explore the clinical application value 
of GILncSig, we used two ICB therapy-related algorithms 
to estimate the predictive value of this signature for 
immunotherapy. Both algorithms revealed that the high-
risk group may be more likely to benefit from ICB therapy. 
The results may indicate that GILncSig has potential for 
use in guiding ICB therapies.

Multiple research fields have linked lncRNAs and 
GC. The novel lncRNA, GClnc1 could play a role in 
recruiting both WDR5 and the KAT2A complex to 
affect the transcription of target genes and promote the 
carcinogenesis of GC (22). Circulating exosomal lncRNA-
GC1 was discovered to have the potential to be developed 
into a noninvasive indicator for the early detection of 
GCs (23). Unfortunately, the study was established based 
on a single center cohort, more validations cohort were 
needed to confirm the effeteness of this method. Autophagy 
can be regulated by lncRNA-MALAT1 via miR-23b-
3p sequestration in GC, and lncRNA-MALAT1 was 
also revealed to be associated with chemoresistance (24). 
Although the related studies are too numerous to list, few 
have tried to explore the potential link between genomic 
instability-related lncRNAs and GC. A total of 16 lncRNA-
based signatures were identified as predictors to classify GC 
patients’ MSI status, and the signature was also discovered to 
have the potential to distinguish patients with good survival 
from those with poor survival (7). Most of the lncRNAs 
included in GILncSig were found to be associated with 
multiple cancers other than GC. The lncRNA, AC010789.1, 
was reported to promote the progression of colorectal 
cancer by targeting the microRNA-432-3p/ZEB1 axis 
and activating the Wnt/β-catenin signaling pathway (25).  
It has been reported that HOX-lncRNAs have the capacity 
to influence the carcinogenesis of lung cancer (26). 
Transforming growth factor (TGF)-β-induced TGFB2-
AS1 lncRNA was found to have an inhibitory impact on 

TGF-β/BMP signaling (27). However, more investigations 
are needed to explore the biological function of the six 
lncRNAs identified in this study.

As an important protein that is involved in DNA double-
strand break repair, UBQLN4 has attracted increasing 
attention in recent years. Regardless of the mutation state or 
expression level, UBQLN4 was revealed to be an excellent 
indicator of genomic state (8). Recently, GC-related studies 
on UBQLN4 have emerged. In GCs, UBQLN4 may play a 
protective role to prevent the progression of cancer cells by 
affecting the stability of P21 in a p53-independent or p53-
dependent manner (28). Moreover, UBQLN4 has also been 
revealed to have the potential to affect cell cycle arrest and 
suppress the progression of GC. The results of this study 
are consistent with ours in terms of UBQLN4’s tumor 
suppressive role in GCs.

We were driven to further explore the effect of genomic 
instability on the immune spectrum for two reasons. 
First, functional enrichment analysis identified pathways 
previously found to be associated with GC and pathways 
that play crucial roles in the immune response. Second, the 
low-risk group, which presented with better survival, had 
more severe genomic instability. As mentioned previously, 
somatic mutations in genes, especially driver mutations, 
can induce the development of neoantigens, which can 
be recognized by the adaptive immune system to develop 
a specific immune reaction. Functional mutations can be 
transcribed and translated into neoantigen-containing 
peptides and presented by MHC molecules on the cell 
surface. However, only a small portion of mutations lead to 
the development of neoantigen-containing peptides that can 
be properly processed and presented by MHC complexes. 
Moreover, even fewer of these peptides can be recognized 
properly by T cells (29). Although the theory can partially 
explain why the low-risk group had a higher TMB than the 
high-risk group, it remains unclear why this phenomenon 
is completely different between GC and breast cancer. 
The potential explanations might be attributed to the 
accumulations of gene mutations. Higher level of TMB had 
been revealed as important trigger of anti-cancer response 
and thus leaded to better prognosis of low-risk group. 
However, the hypothesis remained to be proved (30).

Besides lncRNAs, other non-coding RNAs also played a 
role in genomic instability. For examples, genomic instability-
derived plasma extracellular vesicle-microRNA signature was 
established and perform as a minimally invasive predictor 
of risk and unfavorable prognosis in breast cancer. The 
correlations between microRNA and genomic instability 
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characteristics were also revealed (30). Circular RNAs were 
also identified as important factors affecting the age-related 
genomic regulation (31). As for the therapeutic potential of 
genomic instability, relevant studies were emerging in recent 
years. Genomic instability and CIN are nearly ubiquitous 
feature of human cancers, and a therapy that can exploit the 
fitness tradeoffs associated with CIN under the condition of 
the normal function of healthy diploid cells would represent 
a critical step forward in precision oncology. In summary, 
these studies implicated that spindle assembly checkpoint 
(SAC) protein KIF18A may be a therapeutic target that is 
specifically required in cells characterized by CIN or other 
related ploidy abnormalities (32).

Although our study has provided fresh insight into 
the impact of genome instability on the prognosis of GC 
patients, limitations still exist. Considering that GILncSig 
was established based on the TCGA cohort, which consists 
of whole exon sequencing and whole transcriptional 
sequencing data, it is difficult to validate the signature 
using other data. The efficiency of GILncSig needs further 
validation. In addition, GILncSig was identified based on 
bioinformatics. The results should be further confirmed by 
biological experiments.

Conclusions

This work proposed a computational frame derived from 
the mutator hypothesis to identify genome instability-
associated lncRNAs. The combination analysis of lncRNA 
expression profiles with somatic mutation profiles and 
clinical information of GC patients in TCGA STAD 
datasets helped us to identify a genome instability-derived 
lncRNA signature as an independent prognostic marker to 
stratify risk subgroups. The prior KEGG analysis based on 
the mRNAs correlated with genome instability-associated 
lncRNAs further drove us to study the immune landscape 
changes based on different risk subgroups. In addition, the 
IPS and TIDE value and estimated IC50 for chemotherapy 
drugs were also calculated for comparison of different risk 
subgroups. The results also revealed the predictive value 
of therapy response for the GILncSig. Through further 
prospective validation, the GILncSig may have important 
implications for genome instability and customized 
decision-making in GC patients.
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Figure S1 Identification of the genomic instability-associated lncRNA. (A) Patients were ranked in decreasing order of the cumulative 
number of somatic mutations. The top 25% of patients (n=91) were defined as the GU group, and the last 25% (n=90) were defined as 
the GS group. Forty lncRNA (top 20 increasing and top 20 decreasing lncRNA) are presented in heatmap. (B) Eight genomic instability-
associated lncRNA identified by univariate Cox regression method. lncRNA, long non-coding RNA; GU, genomically unstable; GS, 
genomically stable.
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Table S1 Clinical baseline of training and testing cohorts

Covariates Type Total cohort, n (%) Training cohort, n (%) Testing cohort, n (%) P value

Age ≤65 153 (45.4) 70 (41.42) 83 (49.4) 0.156

>65 181 (53.71) 98 (57.99) 83 (49.4)

Unknown 3 (0.89) 1 (0.59) 2 (1.19)

Gender Female 119 (35.31) 60 (35.5) 59 (35.12) 1

Male 218 (64.69) 109 (64.5) 109 (64.88)

Grade G1–2 129 (38.28) 64 (37.87) 65 (38.69) 1

G3 199 (59.05) 98 (57.99) 101 (60.12)

Unknow 9 (2.67) 7 (4.14) 2 (1.19)

Stage Stage I–II 152 (45.1) 68 (40.24) 84 (50.00) 0.1298

Stage III–IV 171 (50.74) 92 (54.44) 79 (47.02)

Unknown 14 (4.15) 9 (5.33) 5 (2.98)

T T1–2 89 (26.41) 41 (24.26) 48 (28.57) 0.4377

T3–4 244 (72.4) 126 (74.56) 118 (70.24)

Unknown 4 (1.19) 2 (1.18) 2 (1.19)

M M0 303 (89.91) 149 (88.17) 154 (91.67) 0.2761

M1 22 (6.53) 14 (8.28) 8 (4.76)

Unknown 12 (3.56) 6 (3.55) 6 (3.57)

N N0 99 (29.38) 49 (28.99) 50 (29.76) 1

N1–3 227 (67.36) 114 (67.46) 113 (67.26)

Unknown 11 (3.26) 6 (3.55) 5 (2.98)

T, tumor; N, node; M, metastasis.
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