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Background: The immunosuppressive tumor microenvironment produced by cancer cells is a key 
mechanisms of cancer immune escape. In this study, we investigated the relationship between the metabolic 
patterns and tumor immune environment in the TME of lung adenocarcinoma (LUAD) with the p53 
mutation.
Methods: The clinical data of 495 LUAD patients was obtained from The Cancer Genome Atlas as 
transcriptomic and somatic mutation data. Using differential analysis, survival analysis, and a LASSO regression 
model based on metabolic unigenes from KEGG pathways, a tumor metabolic model was constructed 
to predict the prognosis of LUAD patients. Subsequently, nomogram, receiver operating characteristic, 
and decision curve analyses were conducted to assess the predictive ability of the model. In addition, the 
ESTIMATE and CIBERSORT algorithms were used to detect tumor purity and estimate the fractions of 22 
immune cell types in each patient, respectively. We found a correlation between the composition of immune 
cells and the tumor metabolic model. The results were validated using an independent GSE72094 dataset with 
442 patients, as well as an immunohistochemistry assay, RT-qPCR, and western blot.
Results: The tumor metabolic model reassigned the risk score of every patient, and a tumor metabolic risk score 
(TMRS) was generated to show the predictive ability for patient prognoses (hazard ratio =0.39; 95% confidence 
interval: 0.18–0.85). Using a combination of TMRS and clinical features, a nomogram was produced with a 
predictive accuracy of 0.72. Further analysis showed that CD4 memory resting T cells and M1 macrophages may 
by correlated with the TMRS, which corresponded to immunoediting in p53 mutant patients. Additionally, the 
similar expression of ALDH3A1 and MGAT5B were also verified by wetlab experiments.
Conclusions: Based on the identified tumor metabolism-immune landscape, we were able to predict 
a metabolism risk score for patient prognosis and identify a correlation with two types of infiltrating 
lymphocytes in the TME of p53-mutated LUAD. This landscape provides insights that will help identify the 
molecular mechanisms of immune-editing tumor metabolism.
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Introduction

Lung adenocarcinoma (LUAD), is the most common 
histological subtype of lung cancer, and has an average 
5-year survival rate of only 15% (1,2). Thus, understanding 
the biology of lung cancer, which is a molecularly 
heterogeneous disease, is crucial to the development of 
effective therapies (3). Indeed, lung cancer treatment 
has developed from the empirical use of physician-
recommended cytotoxic therapy towards personalized 
medicine. In this approach, subsets of patients are treated 
according to the genetic changes in their tumors and the 
status of programmed death ligand-1 (PD-L1), which 
predict the responsiveness to targeted therapies and immune 
checkpoint blockade, respectively (4). Chemotherapy still 
represents an effective, evidence-based treatment option 
for lung cancer (5). In recent studies, the tumor mutational 
burden (TMB) has been proposed as a distinct biomarker 
of checkpoint blockade therapy responses (6). This suggests 
the possibility of variables that simultaneously affect two or 
more predictive factors; identifying models based on such 
variables would improve predictive value and ultimately 
therapeutic outcomes (6).

The identification of somatic mutations that activate 
specific oncogenic drivers in LUAD has transformed the 
treatment of non-small cell lung carcinoma. However, 
it remains unclear how the p53 mutant, which occurs 
frequently in lung cancer, mediates specific immune-related 
pathways to produce substantial effects on the tumor 
microenvironment (TME) (7). In lung cancer, p53 mutation 
leads to the transcription of downstream target genes 
involved in the formation of intratumor heterogeneity 
and may contribute to tumor progression, potentially 
bearing relevant predictive implications for treatment in 
many LUAD cases (8). Given that activation of specific 
oncogenic pathways has broad effects on gene expression, it 
is reasonable to suggest that the genetic make-up of cancer 
cells likely has major effects on the TME by driving specific 
immunoescape.

In the dynamic immune system, metabolic reprogramming 
induces substantial  parallel  changes that mediate 
immunological functions and responses. Recently, glucose 
metabolism has been associated with the phenotype 
and activation of immune cells, including macrophage  
polarization (9), dendritic cells (10), and CD8+ T cells (11). 
Since immune cells are crucial to TME signals, the various 
metabolic configurations during tumor progression are of 
great interest, particularly in patients whose tumors harbor 
activating p53 mutations.

In the present study, in order to assess the potential 
associations between unique immune cell compositions 
and metabolic reprogramming, and thereby identify 
potential biomarkers, we used an integrative approach 
that incorporated analysis of the TMB, tumor-associated 
immune cells, and a metabolic model of the TME in 
LUAD harboring the p53 mutation. We also validated the 
prediction model in other independent datasets and wetlab 
experiments. We present the following article in accordance 
with the TRIPOD reporting checklist (available at https://
dx.doi.org/10.21037/atm-21-3234).

Methods

Study design

This was an observational study that made use of 
transcriptomic and somatic mutation data. We developed 
a model for estimating the tumor metabolic risk score 
(TMRS) of al l  LUAD samples (n=495) from The 
Cancer Genome Atlas (TCGA; https://tcga-data.nci.
nih.gov, downloaded on 10/09/2020), and evaluated the 
comprehensive immune landscape by estimating the 
immune cell composition of the TME. The samples were 
divided into two distinct clusters based on p53 mutation, 
and the characteristics of each sample in each cluster, 
including differences in the TMRS and enrichment of 
immune cell types, were investigated. The prognostic value 
of the TMRS and metabolism-related genes was evaluated, 
and correlations between the TMRS and immune cells 
were derived. Finally, the results were validated in an 
independent Gene Expression Omnibus (GEO, https://
www.ncbi.nlm.nih.gov/geo) dataset (GSE72094, n=442), as 
well as an immunohistochemistry (IHC) assay, real time-
polymerase chain reaction (RT-PCR), and western blot.

Pan-cancer computational analyses

Collection and procession of TCGA datasets
For the 495 TCGA LUAD samples, somatic mutations were 
determined from Mutation Annotation Format (MAF) files 
using the VarScan2 algorithm with the default parameters; 
preprocessed RNA sequencing (RNA-seq) data (level 3) was 
generated using the Illumina HiSeq 2000 RNA Sequencing 
Version 2 platform. The reference gene transcript set was 
the Genome Reference Consortium Human Build 38 patch 
release 12 (GRCh38.p12) annotation file downloaded 
from the Ensembl genome browser (http://asia.ensembl.
org/biomart), which was used to convert gene symbols. To 
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prepare the expression data profiles for further analysis, 
count-type RNA-seq data were normalized using the voom 
method (12) (variance modeling at the observational level), 
with count data converted to values more similar to those 
resulting from microarrays.

Construction of p53-related metabolism signatures
The TMRS was  compared  wi th  gene  s ignatures 
representing metabolism. Seventy metabolism-related gene 
sets were obtained from the relevant Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways database (13),  
which included 186 genes in total, via the Gene Set 
Enrichment Analysis (GSEA) website (http://software.
broadinstitute.org/gsea/downloads).

To assess whether distinct patterns of tumor metabolism 
were caused by p53 mutations in LUAD and whether these 
patterns were associated with patient survival, metabolism 
signatures were obtained as follows. Differentially expressed 
metabolic genes associated with the p53 mutant were 
selected using the edgeR package (https://bioconductor.
org/packages/edgeR). Significantly differentially expressed 
genes were defined as where a false discovery rate (FDR) 
cutoff value of 0.05 was met and |log2 fold change value| 
was ≥1.

Important variables possibly correlated with the p53 
mutant could potentially be excluded when confounding 
factors were controlled for when variables from differential 
analyses were selected. To address this issue, LASSO logistic 
regression models were fitted via the estimated likelihood 
of deviance with the R package “glmnet” (https://glmnet.
stanford.edu). The LASSO model was established depending 
on the coefficients of the features. We employed K-fold cross-
validation with K=10 and the best tuning parameter value 
with the minimum value of lambda. Based on the coefficients 
in the LASSO regression model formula, the TMRS of every 
patient was calculated to obtain the metabolic risk score. To 
provide comparability of LUAD patients between the high 
and low TMRS score subsets, the relative metabolic risk 
scores were scaled according to the median value.

Function annotation and gene set enrichment analysis
The differentially expressed genes between high and 
low TMRSs were clustered into various KEGG pathway 
ontologies using the ClueGO Cytoscape plug-in for the 
visualization of non-redundant biological terms for large 
clusters of genes in a functionally grouped network. GSEA 
was performed to identify potential biological processes 
(BPs) by categorically labelling the samples according to 

the high and low TMRS type. We tested approximately 
1,500 gene sets from the molecular signatures databases 
(c5.bp.v7.0.symbols) using GSEA v4.1 based on JAVA v8.0 
script. The number of random sample permutations was set 
at 1,000 and the selection threshold was based on the value 
of the FDR q value <0.05 as a cutoff for inclusion.

Nomogram construction and validation
Clinicopathology (age and gender), p53 mutation status, 
and TMRS were selected to develop a nomogram via the 
multivariable Cox proportional hazard model in rms R 
package (https://hbiostat.org/R/rms). In the multivariate 
analysis, the nomogram of combined potential risk variables 
was applied to visualize the predicting survival efficiency. 
The 1- and 3-year discriminations of the nomogram were 
validated by Harrell’s concordance index (C-index) and 
calibration curves. Decision curve analysis (DCA) was 
performed to show clinical usefulness by calculating the net 
benefit of the nomogram (14).

TME landscape mapping and clustering
To visualize immune-related cell heterogeneity in the TME, 
two machine learning methods of gene expression profiles 
were used: the Estimation of STromal and Immune cells in 
Malignant Tumors using Expression data (ESTIMATE) (15)  
and CIBERSORT (16) algorithms (https://cibersort.
stanford.edu). First, to obtain the tumor purity of each 
patient, we used the ESTIMATE algorithm, which reveals 
the infiltration of tumor and stromal cells. Samples were 
considered eligible for further analysis when the percentage 
composition of tumor purity was >0.6. Second, to assess the 
proportions of 22 tumor-infiltrating lymphocytes in LUAD 
tissues, “1,000 permutations” was applied as a parameter 
in CIBERSORT, with the leucocyte gene signature matrix 
(termed LM22) used as a reference (17). CIBERSORT 
derives an empirical P value (with a cutoff of <0.05 chosen), 
which represents the reliability of the deconvolution results. 
In each sample, the sum of all 22 estimated immune cell 
type fractions was equal to 1.

The LM22 matrix  with 547 genes can be used 
to distinguish the following 22 human immune cell 
phenotypes: naive and memory B cells; naive CD4+ T and 
CD8+ cells; regulatory T cells (Tregs); resting and activated 
CD4+ memory T cells; follicular helper T cells; γδ T cells; 
resting and activated mast cells; resting and activated natural 
killer cells; resting and activated dendritic cells; M0, M1, 
and M2 macrophages; plasma cells; monocytes; eosinophils; 
and neutrophils.

http://software.broadinstitute.org/gsea/downloads
http://software.broadinstitute.org/gsea/downloads
https://bioconductor.org/packages/edgeR
https://bioconductor.org/packages/edgeR
https://glmnet.stanford.edu
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https://cibersort.stanford.edu
https://cibersort.stanford.edu
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Validation in an independent cohort

To verify the associations found among the immune 
landscape, tumor metabolism, and prognosis, additional 
analyses were performed in an independent LUAD cohort 
(GSE72094). The normalized gene expression data of 
442 LUAD samples were downloaded from GSE72094. 
For comparison, the TMRS and immune-related cell 
proportions of GSE72094 were calculated by the same 
methods used for TCGA data. The association between 
GSE72094 variables, including TMRS, immune cells, and 
overall survival (OS), were analyzed to validate TCGA 
dataset.

Validation in LUAD cell lines

Cell culture and transient transfections
A549 (p53Wild type, p53Wt) and H1299 (p53Null) LUAD cell 
lines were routinely cultured in RPMI 1640 medium 
(GIBCO Thermo Fisher Scientific, MA, USA) containing 
10% fetal bovine serum (FBS, Israel), 100 units/mL 
penicillin, and 100 mg/mL streptomycin (Solarbio, 
Beijing, China) in an incubator at 37 ℃ with 5% CO2. The 
cDNAs for wild type p53 and dominant negative mutant 
p53 (R248W) were purchased from GenePharma Co, 
Ltd (Shanghai, China) and transiently transfected using 
jetPRIME® Transfection Reagent (Polyplus Transfection, 
Illkirch, France) according to the manufacturer’s protocol, 
as described previously (18).

Western blotting
Equal amounts of total protein from cells (30 μg) 
were separated by SDS-PAGE and transferred onto 
polyvinylidene fluoride (PVDF) membranes (Millipore 
Immobi lon-P,  MA,  USA) .  The membranes  were 
incubated at 4 ℃ overnight with primary antibodies 
against  mannosyl  (α-1,3-)-glycoprotein β-1,2-N-
acetylglucosaminyltransferase 5B (MGAT5B, ab165538, 
Abcam, UK), aldehyde dehydrogenase 3A1 (ALDH3A1, 
ab76976, Abcam, UK),and p53 (#2527, Cell Signaling 
Technology, USA). After washing, goat anti-mouse/rabbit 
immunoglobulin G (IgG) antibody was added for 1 h at 
room temperature. Antibody-antigen binding was detected 
by high-sig ECL western blotting substrate and visualized 
by the Tanon 5500 imaging system (Shanghai, China). The 
protein loading variation was normalized by a-tubulin or 
GAPDH (ab8245, Abcam, UK). Blot density was analyzed 
by NIH ImageJ software (Bethesda, MD, USA).

RT-PCR
Total RNA samples were extracted from cells using Trizol 
reagent (Life Technologies, Carlsbad, CA, USA) using a 
TissueLyser II (Retsch, Newtown, PA, USA). Extracted 
RNA samples were subjected to clean-up using 75% ethanol 
and then reverse transcribed by Prime Script RT reagent 
Kit (Takara, Dalian, China), as described previously (18).  
Real-time fluorescence detection was performed using 
SYBR Premix Ex Taq mix (Takara, Dalian, China) with 
5 μg cDNA and 0.1 μM primers on QuantStudio 6 
Flex Real-time PCR System (Applied Biosystems, Life 
Technologies). The thermal cycling parameters were as 
follows: 95 ℃ for 10 min, 40 cycles of 95 ℃ for 15 s, and 
60 ℃ for 1 min, followed by melting curve analysis. The 
qPCR product was resolved by agarose gel electrophoresis 
to ensure the correct amplicon length. The primers were 
designed using Primer Express 4 (Applied Biosystems) and 
synthesized by Takara Co., Ltd. (Takara, Dalian, China). 
The following sets of primers were used: MGAT5B (forward 
5'-ATCCGCACAGAAGTGATGGG-3' and reverse 
5'-CAGCGATGTCGGAGACGTT-3'), ALDH3A1 (forward 
5'-TGGAACGCCTACTATGAGGAG-3' and reverse 
5'-GGGCTTGAGGACCACTGAG-3'), p53 (forward 
5'-CAGCACATGACGGAGGTTGT-3' and reverse 
5'-TCATCCAAATACTCCACACGC-3'), and β-ACTIN 
(Forward 5'-CTCCATCCTGGCCTCGCTGT-3' and 
reverse 5'-GCTGTCACCTTCACCGTTCC-3'). The 
mRNA levels of β-ACTIN were used for normalization and 
calculations, as described previously (19).

Validation in LUAD tissues by IHC

Clinical samples for immunohistochemical staining
To validate the target genes’ protein levels, we obtained 
a  tota l  of  10 pairs  of  pr imary tumor t i ssues  and 
corresponding adjacent normal tissues from LUAD 
patients who underwent surgical  resection at the 
Department of Thoracic Surgery, First Affiliated Hospital 
of China Medical University, between May 2020 and 
October 2020. The location of tumor occurrence in 10 
patients included six cases of left lung and four cases of 
the right lung. There were four cases in males and six 
cases in females. All patients had postoperative pathology-
confirmed LUAD, and underwent surgery prior to 
chemotherapy or radiotherapy. All samples were used 
for IHC staining. Our study was conducted according 
to the Declaration of Helsinki (as revised in 2013) and 
approved by the First Affiliated Hospital of China Medical 
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University’s Ethics Committee. All patients signed an 
informed consent form.

Histopathology and immunostaining
Tissues were fixed overnight with 4% paraformaldehyde in 
PBS. After dehydration in graded concentrations of ethanol, 
the samples were washed with xylene until opaque. They were 
then embedded in paraffin and sectioned. Sections (5 μm) were 
used for IHC as described previously (18). Histopathological 
images were captured using an immunofluorescent microscope 
(80I, Nikon Corporation, Tokyo, Japan).

Statistical analyses

Data on age, gender, survival time, and status were 
collected. The clinical endpoint, OS, was defined as the 
length of time between the date of diagnosis and the date of 
death by any cause. Survival analysis was performed using 
an unadjusted univariate Cox proportional hazard model 
to test the associations between OS and the other variables 
in the entire cohort. All statistical tests were performed by 
survminer package (https://rpkgs.datanovia.com/survminer/
index.html) and were two-sided, and P values <0.05 were 
considered statistically significant. The covariate p53 
mutation status, gender, age, and TMRS were included 
in the multivariable Cox proportional hazard model for 
adjustment. The log-rank P value was calculated, and the 
Kaplan-Meier survival curves method was applied to depict 
the survival rate of the groups. Pearson’s correlation test 
was used to obtain correlation coefficients from correlations 
between variables in the different groups.

Results

Distinct metabolism phenotypes in p53 mutant LUAD

The flow diagram in Figure 1A depicts the process of 
identification and validation of deregulated metabolic 
genes in LUAD, as well as further correlation analysis of 
clinicopathological features, p53 mutants, and immune cells.

Of the 495 samples, somatic mutations were most 
frequently located in TP53 [observed in 272 (54.9%) 
samples with various mutation types (mostly missense 
mutations)] (Figure 1B). The characteristics of 495 patients 
with p53 mutation status in the present study from TCGA 
cohort are displayed in the Table 1, including the patients’ 
age at diagnosis, gender, and lung cancer clinical stage. 
There was no significant difference were found between 

p53 wild and mutant status in the LUAD patients. Given 
that TP53 was identified as a common oncogenic driver of 
mutations, we assessed the influence of p53 mutation on 
metabolic genes.

Identification of a tumor metabolic gene model for 
prognostic prediction

To distinguish tumor metabolic patterns between the 
mutant and wild-type p53 mutation states of LUAD 
samples, the p53-associated LUAD metabolic genes were 
selected via comparison analysis, and a LASSO regression 
model was subsequently constructed to estimate the 
weighting of metabolic genes and calculate the TMRS for 
predicting prognosis.

Through distributive difference analysis, 44 differentially 
expressed metabolism-related genes were identified 
according to the mutation status of p53 in LUAD  
(Figure 2A). Of the prognosis-related genes, 31 were 
involved in the glycose metabolic progress. Through 
univariate Cox proportional hazard regression analysis, 
24 genes related to prognosis were identified (P<0.05). 
Of these, six genes (ALDH3A1, CD207, CYP2A6, LPL, 
MGAT5B ,  NRXN1 ,  STUM ,  and  TPH1)  were both 
differentially expressed and had prognostic value in p53 
mutation LUAD. Genes were then selected using the 
LASSO regression model with logistic regression, and a 
model was constructed (Figure 2B).

Consequently, a two-gene signature (ALDH3A1: hazard 
ratio (HR) =0.63; 95% confidence interval (CI): 0.47–0.85; 
P=0.03; and MGAT5B: HR =1.52; 95% CI: 1.13–2.04; 
P=0.001) was selected in the model as a classifier, and 
the TMRS of each patient was formulated with the 
coefficients of LASSO regression and the corresponding 
genes’ expression value. The risk score was generated as 
follows: TMRS = (0.054 × expression level of ALDH3A1) 
+ (−0.0001 × expression level of MGAT5B). Finally, based 
on the median TMRS, patients were assigned to high- or 
low-risk groups. The Kaplan-Meier curve showed that 
patients with a high-TMRS had a significantly shorter 
OS than low-risk patients (HR =0.39; 95% CI: 0.18–0.85; 
P=0.008; Figure 2C).

Identification of TMRS-associated biological implications

To describe the BPs and mechanisms of hub genes between 
TMRS subgroups, the gene ontology (GO) functional 
enrichment analysis was performed using ClueGO and 
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Figure 1 Workflow of this study and mutation status in LUAD patients. (A) Workflow of the entire analysis for patients with p53 mutant 
status in TCGA and the GSE72094 lung adenocarcinoma cohort. (B) Oncoprint waterfall plot for the somatic mutations in LUAD samples. 
The top five most frequent mutation statuses and types are showed in the middle of the plot, annotated by the legend on the right. Age, 
clinical stage, and gender were listed at the bottom of the Oncoprint, showing that there was no correlation between the specific gene 
mutations and the clinical features. LUAD, lung adenocarcinoma; TCGA, The Cancer Genome Atlas.
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Figure 2 Construction and validation of the LUAD immune score model. (A) Volcano plot of differentially expressed metabolic genes 
between p53 mutant and wild in LUAD patients. (B) LASSO regression for the identification coefficient variables for the selection of tumor 
metabolism risk score model. (C) Kaplan-Meier analysis of overall survival according to the tumor metabolic score in LUAD patients. 
LUAD, lung adenocarcinoma.

Table 1 Baseline characteristics of 495 patients with p53 mutation status in the lung adenocarcinoma cohort

Baseline characteristics p53 wild No. p53 mutant No. P values

Gender

Male 101 109

Female 122 130 0.929

Age

<70 126 161

≥70 97 111 0.055

Cancer stage

Stage I 123 152

Stage II 57 62

Stage III 32 40

Stage IV 11 18 0.458

Total 223 272

P values were estimated from the t-test for continuous variables or the Chi-square test (χ2 test) for categorical data. These tests were two-sided.

BA

C log5G

http://clincancerres.aacrjournals.org/content/23/20/6078.long#T1
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GSEA as a reference. ClueGO was performed to enrich 
into three significant KEGG pathways (P≤0.05), such 
as: metabolic pathways, valine, leucine and isoleucine 
degradation, and tryptophan metabolism (Figure 3A). 
Furthermore, GSEA analyses indicated that the high-
TMRS subgroup was highly enriched in two biological 
processes: monocarboxylic acid catabolic process and 
protein targeting. Furthermore, the high-TMRS subgroup 
was involved in seven pathways: cell cycle, chromosome 
organization, DNA metabolic process, fatty acid catabolic 
process, monocarboxylic acid catabolic process, protein 
targeting, and nucleobase biosynthetic process (Figure 3B).

Construction and evaluation of the nomogram

A nomogram model was used to intuitively visualize 
the results of the multivariate Cox proportional hazard 
model, including clinicopathology (age and gender) and 
genetics (p53 mutation and TMRS). Notably, p53-related 
TMRS was converted into a categorical variable due to 
the limitation of continuous predictors. According to the 
nomogram, p53-related TMRS had the greatest weighting 
on the prognosis of LUAD, followed by p53 mutation, 
age, and gender (Figure 4A). In the dynamic nomogram, 
the total score was ascribed based on each individual 
factor score that indicated a specific probability of 1- and 
3-year survival prognosis (Figure 4B,4C). In addition, the 
discriminatory power of the nomogram was graphically 
evaluated using a calibration curve with a C-index of 0.64. 
The predicted line overlapped well with the reference line, 
demonstrating that the nomogram performed effectively. In 
addition, the receiver operating characteristic curves were 
analyzed, which showed that the predictive accuracy of the 
nomogram was 0.72 (Figure 4D).

Finally, to determine whether the predictive nomogram 
was clinically useful, decision curve analysis (DCA) was 
performed to evaluate the net benefit of the models. As 
shown in Figure 4E, the decision curve indicated that when 
the probability of decision-making based on the nomogram 
is >0.25 and <0.4, it is more beneficial to predict with an all 
or none-patients scheme.

Correlation between the tumor metabolic risk model and 
immune response phenotypes

We further illustrated the comprehensive immune landscape 
in p53 mutant LUAD by assessing the associations with 
TMRS. Specifically, we tested for associations between the 

tumor metabolic gene model and tumor-associated immune 
cells (immune cell composition).

As shown in Figure 5A,  CD4 memory resting T 
cells were more likely to be distributed in higher-level 
TMRS patients compared with lower-level patients. M1 
macrophages were also significantly enriched in higher-level 
TMRS patients.

By comparing the TMRS with these two types of 
immune cell, we represented the correlation between 
metabolic signatures and tumor immune cells. CD4 memory 
resting T cells enrichment, based on the percentage of total 
immune cell content, was negatively correlated with TMRS 
(r=−0.28, P<0.001; Figure 5B), whereas M1 macrophages 
were positively correlated with TMRS (r=0.32, P<0.001; 
Figure 5C). These results suggest that tumor metabolic 
genes are associated with immune response phenotypes.

Validation in the GSE72094 dataset

To validate the TCGA LUAD gene set, we also calculated 
the association between TMRS and the immune landscape, 
as well as prognostic prediction, using another publicly 
available independent gene expression dataset (GSE72094), 
which included 442 LUAD samples. The survival analysis 
results from GSE72094 were consistent with those of 
TCGA data (with the same regression coefficients being 
calculated). As expected, there was a consensus between the 
results from TCGA and GSE72094 datasets; TMRS was 
associated with favorable prognosis (HR =0.65; 95% CI: 
0.45–0.94; P=0.024). In the TMRS model, ALDH3A1 was 
significantly associated with favorable OS (HR =0.68; 95% 
CI: 0.47–0.98; P=0.043), but high levels of MGAT5B were 
not significantly associated with poor OS.

With  f i l t e r ing  based  on  the  ESTIMATE and 
CIBERSORT algorithms from 331 p53 wild type and 111 
p53 mutant samples, 246 p53 wild type and 78 p53 mutant 
samples were selected for further tumor immune landscape 
analysis. As shown in Figure 6A, CD4 memory resting T 
cells and tumor-related macrophages M1 were observed to 
be differentially expressed between p53 wild and mutant 
LUAD patients, which was consistent TCGA LUAD 
cohort. Both ALDH3A1 and MGAT5B were significantly 
expressed between p53 wild and mutant LUAD patients, 
which was consistent TCGA LUAD cohort (Figure 6B). 
There was a negative correlation between CD4 memory 
resting T cells and the TMRS (r=−0.20, P<0.001; Figure 6C),  
while M1 macrophages were positively correlated with the 
TMRS (r=0.22, P<0.001; Figure 6D).
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Figure 3 Identification of TMRS-associated biological functions. (A) The small sized nodes in the network represent the genes enriched 
in the specific pathway, while the big sized nodes represent the pathway term. The node colors correspond to the ClueGO-determined 
KEGG pathway clusters. (B) Gene enrichment plots shows the GSEA between the high- and low-TMRS subgroups. The upper enrichment 
plots contain the values of the genes’ enrichment scores and the corresponding barcode plot shows the position of the genes. TMRS, tumor 
metabolic risk score; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Validation of MGAT5B and ALDH3A1 in p53 mutant 
LUAD

A dimensional validation was performed to explore the 
expressions of MGAT5B and ALDH3A1 in the p53 wild 

and mutant LUAD patients, and the LUAD cell lines.
To investigate whether the expression of MGAT5B and 

ALDH3A1 is associated with p53 mutations at the cellular 
level, we transfected wild type p53 cDNA into p53 null cell 
lines H1299, and delivered p53 mutant type (p53Mt) cDNA 
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Figure 4 Metabolism-related nomogram construction and validation. (A) Nomogram for predicting 1- and 3-year overall survival of LUAD 
patients based on gender, age, and tumor metabolic score level. Calibration curves of the predicted and observed outcomes of (B) 1- and (C) 
3-year nomograms. (D) The ROC curve for the tumor metabolic score predicted in p53 mutant LUAD patients. (E) The clinical decision 
curve for the clinical variables combined with the tumor metabolic score, and with both the tumor metabolic score and the immune cells. 
LUAD, lung adenocarcinoma.
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into A549 cells, and then detected the status of MGAT5B, 
ALDH3A1, and p53. As shown in Figure 7A,7B, compared 
with those in parental or vector-transfected control cells, 
the protein and mRNA expression levels of MGAT5B 
increased in H1299 p53Wt cells, while the expression of 
ALDH3A1 was low. Also, compared with those in control 

cells, we observed increased ALDH3A1 and decreased 
MGAT5B in A549 p53Mt cells (Figure 7A,7B).

Secondly, IHC analysis of LUAD specimens was 
preformed to examine the expressions of MGAT5B and 
ALDH3A1 in p53 wild and mutant LUAD specimens. The 
results showed that the expression of ALDH3A1 in LUAD 
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Figure 5 Evaluation of the relationship between the tumor metabolic score and certain immune and stromal cell infiltration. (A) Relative density 
of 22 types of infiltrated lymphocytes in the TMRS as a high and low group. Correlation between the tumor metabolic score as expression and (B) 
CD4 memory resting T cells, and (C) M1 macrophages. *, P<0.05; **, P<0.01, ***, P<0.001. TMRS, tumor metabolic risk score.
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patients with p53 mutation was significantly higher than 
that of patients with p53 wild type (P<0.05). Meanwhile, the 
expression of MGAT5B was significantly lower than in p53 
mutant LUAD tissues (Figure 7C,7D).

Discussion

Tumor cells are hypothesized to reprogram immunity and 
metabolism in the TME, which may result in immune 

escape (20). The unique TME may then play a critical role 
in promoting tumor development, metastasis, and immune 
evasion (21). We studied the connection between immune 
cell composition and cancer metabolism to identify the 
possible roles and mechanisms of the TME in p53 mutation 
LUAD patients. We developed and validated a gene model 
of glucose metabolism and tumor-infiltrating immune 
cells, with transcriptomic data used as an input. MGAT5B 
and ALDH3A1 genes were involved in the activation of 
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Figure 6 Validation in the GSE72094 dataset. (A) The relative abundance of 22 tumor-infiltrating lymphocytes in the different p53 
mutation status of LUAD patients. (B) Correlation between tumor metabolic score as expression and (C) CD4 memory resting T cells, and (D) 
M1 macrophages. *, P<0.05; **, P<0.01; ***, P<0.001. LUAD, lung adenocarcinoma.
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the glycolysis and glycolysis-gluconeogenesis pathways, 
which promote alternative metabolic rearrangement. 
We also identified low levels of CD4 memory resting T 
cells and high M1 macrophage fractions, respectively, 
in the p53 mutant LUAD TME (based on results 
from the ESTIMATE and CIBERSORT algorithms). 
Multidimensional validation subsequently confirmed 
the reliability of our results. These results indicate 
that p53 mutation status influences both immunologic 
microenvironments and glycoses metabolic reprogramming; 
therefore, these mutations play an essential role in the 

development of lung cancer.
As a predictor of heterogeneous treatment benefits, we 

found that the gene signatures significantly outperformed 
p53 mutation status in the LUAD patient cohort with an 
independent response. We demonstrated that the TME 
constitutes a heterogeneous group of tumor-infiltrating 
lymphocytes, characterized by somatic mutations in the p53 
and glycoses metabolic pathways. In recent years, p53 has 
been found to: (I) play a direct role in innate and adaptive 
immune responses (22); (II) be involved in regulating the 
immune checkpoint molecules programmed cell death-1 
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Figure 7 Validation of MGAT5B and ALDH3A1 expression in p53 mutant lung adenocarcinoma. Representative images (A) and 
quantitation of immunoblots and mRNA levels (B) of MGAT5B, ALDH3A1, and p53 in A549 and H1229 cells. GAPDH was a loading 
control. N=3. Values were expressed as mean ± SD. *, P<0.05 vs. parental in the same cell lines. Representative IHC images of MGAT5B and 
ALDH3A1 (C) and quantitation (D) in p53 wild and mutant lung adenocarcinoma. N=10. Values were expressed as mean ± SD. *, P<0.05 vs. 
p53 wild.

and its ligand (PD-L1) (23); and (III) to function in the 
response to antigen-presenting cells, such as dendritic cells, 
derived from p53 mutations, which may active cytotoxic 
T-cell recognizing and natural killer cells (24). In oncogene-
addicted diseases (harboring EGFR mutations and ALK 
translocations), the concomitant presence of p53 mutations 
is associated with resistance to standard tyrosine kinase 

inhibitors (TKI) treatment. Regarding immunotherapy, a 
growing body of data is becoming available, suggesting its 
potential impact (25). Our results showed that an increase 
in M1 macrophages and a decrease in CD4 memory resting 
T cells were associated with tumorigenesis of p53 mutant 
LUAD. Similar results were reported for another subtype 
of lung cancer, lung squamous cell carcinoma, in which 
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increased infiltration of M1 macrophages was found to be 
correlated with the p53 mutant (26). Additionally, p53 is 
a known regulator of macrophage differentiation (27,28). 
Furthermore, numerous studies have shown that CD4 
memory resting T cells play a pivotal role in the immune 
control of human immunodeficiency virus (HIV) (29) and 
cancers (30).

We detected metabolic differences between p53 mutation 
statuses in LUAD within the same transcription dataset. 
We found that MGAT5B-mediated N glycan biosynthesis 
and the ALDH3A1-meditated glycolysis-gluconeogenesis 
metabolic pathway were associated with the p53 mutant 
and the prognosis of LUAD. MGAT5B is involved in the 
procession of glycosyl transferase on N-linked glycans, 
and results in an aberrant glycosylation pattern in cancer  
cells (31). β(1,6)-branched oligosaccharides, as the products 
of MGAT5B, are well-known predictors of poor prognosis 
and decreased survival time in human cancers (32), which 
is consistent with our findings. In addition, ALDH3A1 has 
previously been correlated with cigarette smoke in airway 
epithelial cells (33). The correlation between these two 
metabolic genes and immune editing in the TME suggests 
that they should be the focus of further research.

Enhanced glycolysis is a key metabolic route for 
cancer promotion and metabolism, and is also known 
as the “Warburg effect” (34). Unlimited proliferation 
potential and the Warburg effect in cancer cells lead to 
the production of high levels of lactate in the TME, which 
further facilitates the progression of tumors and immune 
escape (35). One important mechanism of immune escape 
is the glucose competition that occurs between cancer cells 
and lymphocytes infiltrating tumor tissue. Competition 
over glucose resources also depicts the role in regulating the 
proliferation and differentiation of immune cells (36). Tregs 
may contribute to immune escape mechanisms in the tumor 
immune response, and are important factors in inducing 
an antitumor response (37). During T-cell proliferation or 
differentiation into effector CD4+ T cells, increased glucose 
metabolism adaptations are required, similar to cancer cells. 
Coincidently, the glycosylation processing pathways have 
coevolved with the larger regulatory network that controls 
T cell activation (35). In the present study, CD4 memory 
resting T cells and high levels of M1 macrophages were 
related to N-glycans and ALDN. N-glycans may regulate 
cell adhesion by contributing to the immune system and 
tumor metastasis. Consistently, previous studies have 
reported that the core fucosylation of N-glycan, which 
is required for T cell receptor signaling with CD4+ T 

cell activation, is significantly increased in systemic lupus 
erythematosus patients (38). Upregulated MGAT5 has 
also been shown to enhance branched N-glycans on T-cell 
receptors, limiting their capacity by increasing T-cell 
activation thresholds (39). In one study, MGAT5 was shown 
to restrict CD8+ T cell activation via IL-10 to promote the 
establishment of chronic viral infections (40), while another 
study reported that MGAT5 is involved in regulating 
macrophage polarization (41). Furthermore, ALDH3A1 
has also been found to provoke metabolic reprogramming, 
leading to immunoevasion in lung cancer (42). Taken 
together, these results suggest that glucose metabolism 
could regulate the infiltration of tumor lymphocytic cells 
and promote tumor progression.

However, the specific roles and mechanisms of these two 
studied genes in the metabolic and immune reprogramming 
of the TME remain unclear and this demands further 
investigation. We also recognize the limitations of our 
study. Firstly, identifying the entire landscape of infiltrating 
lymphocytes is difficult because of current limitations 
in technology and bioinformatics. Further biological 
experiments and a systematic review could address this 
limitation. Secondly, although the model was cross-validated 
by an independent dataset, the roles and mechanisms of 
hub genes in the metabolic and immune reprogramming of 
the TME require further exploration in experimental and 
clinical studies.

Conclusions

Within the scope of our study, we used a multiscale 
modeling approach to correlate metabolic reprogramming 
with the tumor-infiltrating lymphocytes of the TME in 
p53 mutant lung cancer. We identified the MGAT5B and 
ALDH3A1, also combined them as metabolic model, 
would have an association with the prognosis of p53 mutant 
LUAD patients, and the stability and independence have 
been verified. We also found that the risk score was related 
to the immune cell infiltration component (CD4 memory 
resting T cells and M1 macrophages). Overall, this study 
provides new insights that will inform future investigation 
into the complex factors that contribute to the TME.
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